PERMUTATIONS WITHOUT RISING OR FALLING w-SEQUENCES

By MorTroN ABRAMSON AND W. O. J. MoOSER
McGill University

0. Introduction. A permutation of degree n > 1 is said to contain the sequence
ijk - - - st if, in the permutation, ¢ immediately precedes j, j immediately precedes
k, ---, and s immediately precedes ¢. The rising w-sequences (w = 2) are those
in the left column in Table I; the falling w-sequences are in the right column.

The enumeration of permutations without rising 2-sequences is given by Whit-
worth [8], p. 102. Permutations without rising or falling 2-sequences have been
treated by Kaplansky (2] in the form of what he calls the n king problem: in
how many ways can n kings be placed on an n X n board, no two in a row or
column and no two attacking each other? (See also [1], [3], [4], [6], [9].) Riordan
[5] enumerated permutations without rising 3-sequences. In Section 1 we obtain
expressions for the number of permutations containing exactly r = 0 rising and/or
falling w-sequences. In Section 2 we obtain corresponding results in the “circu-
lar”’ case, where the integers 1 and n are considered adjacent.

1. Straight line case. Call a k-choice

(1) n<ae < - < ag
from{1,2, --- ,n}a (n:k|a,b,c, --- )-choice if
(2) a = Zz,’—x;_1>l 1, b= Zz;—z;_1>2 1, c = Zz.’—-z;_1>3 11 Tt
Clearly a =2 b 2 ¢ = ---, and any (n: k|a, b, ---, p, ¢)-choice is also a
(n:k|a,b, -, p)-choice (but not in general conversely). For example, for
n = 2l,
3) 2,3,5,9,10, 11, 13, 17, 18, 19, 20, 21
isa n:121]4,2,2,0, --- )-choice. Let ((n: k|a,b,¢, -+, p, q)) denote the
number of (n:k|a,b,c, ---, p, g)-choices.

As usual we take

) =nl/ri(n — r)! when 0 =r =< n,
=0 otherwise.

THEOREM 1.

@) (m:klabe -,p @)= CEEC) - GO ™),
12k =n

We require the well-known [7], p. 92,
LemMa. The number of ways of putting n like objects into m differents cells is
(A = (Y. When no cell is empty the number of ways is (m_1).
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TABLE I
1 2 w w w—1 .. 1
2 3 e w—+1 w+1 w e 2
n—w+1 n—w+2 n n n—1 n—w+1
Rising Falling
Proor oF THEOREM 1. Clearly, a k-choice from n (i.e., from {1, 2, ---, n}) is

conveniently represented by n — k symbols 0 (one for each integer not in the
k-choice) and k symbols 1 (one for each integer in the k-choice) arranged along
a straight line (rising order being left to right). For example, with n = 23, the
12-choice (3) is represented by

(5) 01101000111010001111100.

We find the arrangements representing the (n: k| a, b, - - - , p, ¢)-choices as fol-
lows. Place a + 1 boxes in a row, forming a + 2 “cells”: a cells between pairs
of adjacent boxes and one cell at each end. Distribute the £ symbols 1 into the
a + 1 boxes, none empty, in (%;') ways. Place a single symbol 0 in each of the
a “in-between” cells. Choose b of the a cells, in (5) ways, and place a second sym-
bol 0 in each. Choose ¢ of the b cells, in () ways, and place a third symbol 0 in
each. Continue until ¢ cells have been chosen, in (%) ways, from the p cells and
an additional symbol 0 has been placed in each of the ¢ cells. Now distribute,

without restriction, the remainingn —k —a —b—¢c— -+ — p — ¢ symbols
0 into the ¢ 4 2 cells—the ¢ cells involved in the previous step and the 2 cells
at the ends—in ("7F70bpletetrly o (nokledbble ity Gavs. The result
follows.

In a k-choice, a part is a sequence of consecutive integers not contained in a
longer one; the length of a part is the number of integers in it. For example, the
12-choice (3) contains 5 parts:

(6) (27 3)7 (5)7 (97 10) 11), (13)7 (177 18’ 19) 207 21)7

of lengths 2, 1, 3, 1, 5 respectively. Thus, a (n: k|a, b, ¢, - -+ )-choice contains
a + 1 parts. Hence, the number of k-choices from n containing exactly r parts is
@) (m:k|r—1)) = G,

in agreement with [1].
Formula (4) may also be obtained from (7) and repeated use of the relation

(8)((7’&’0[&, ba C Dy Q)) = ((n - k+ l:a + 1|b,07"';p,Q))(k_al )

which is obtained as follows. Place n — k symbols 0 along a straight line, forming
n — k + 1 cells. If we choose @ + 1 of the cellstobea (n —k+ 1:a+ 1],
¢, -+, P, g)-choice, and then distribute the &k symbols 1 into these a + 1 cells
with none empty, the resulting sequence of 0’s and 1’s corresponds to a (n: k| a,
b,¢c, -+, p, q)-choice, and (4) follows immediately.
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The relation
(m:k|ar, -+ ,a0)) = ((n—L:k|ar, -+, au))
+ (n—1:k—1|a, - ,00) — ((n—2:k—1]|ar, -+, aw))
+ (n—22k—1|las— 1, as, -+, a))
—((n—3:k—1|lai— 1,4, ,a))
+ (n—3:k—1|ai—1,a2—1,0a3, -+, ay))
—(m—4:k—1|lax— 1,8, — 1,a3, -+, aw))

+ (0 —wk—=1|lar—1, -, 01— 1,a))

—((n—wH+l:k—1|laa—1, -, a1 — 1, a0))
+(n—w—-—1k—1|laa—1,--,a, — 1))

is obtained by observing that the first term on the right counts those choices
which do not contain the integer n; the next two terms count those choices which
containn and n — 1;thenext two terms count those choices which contain n and
n — 2 but not n — 1; the next two terms count those choices containing n and
n — 3butnotn — 1 andn — 2; --- ; the third and second to last terms count
those choices containing n and n» — wbutnotn — 1,n — 2, --- , n — w + 1;
the last term counts those choices containing » but not n — 1, n — 2, ---,
n — w.

This relation is valid for a; = 0 provided we agree that ((n: k| a, b,¢, ---)) =
0 whenever one (or more) of the a, b, ¢, - - - is negative.

The special case w = 1 is

(m:kla))=((n—1:k]a))+ ((n—1:k—1]a))
—(n—2:k—1]a))+ (n —2:k —1]|a— 1)),

in agreément with [1], since a (n:k | a)- choice has a + 1 parts, and also in agree-
ment with the lemma in [5], since a (n: k | a)-choice has k¥ — a — 1 successions.

Let A = (a:5),1=1,2,---,n;7=1,2, ---, m, be an n X m matrix. Let
gni(m | v) denote the number of ways of choosing k of the nm entries such that
if aup and a,s are any two of the chosen entries then a # v, and 8 = & when
l@ — v| =< v. It is easy to see that

9) gnar(m|v) = Dako Dileo Dt -+ Darzbm®™™

'((n:klalaa2""aav))a vz 1
Indeed, if the rows are numbered 1, 2, - - - , n, then, for a particular k-choice
of the n rows, forming a (n: k| a1, - -+ ,a,)-choice, say, there are m*** ways of

choosing k entries of the matrix—one from each of these k rows—so that the given
conditions are satisfied.
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In a permutation of 1,2, - - - , n, the joint occurrence of k of the 2(n — w + 1)
events listed in the two columns of Table I is possible if and only if
(i) no two of the events come from the same row and
(ii) two which come from rows s and ¢ with [s — ¢| £ w — 1 must come from
the same column.
Let us focus our attention on a partiuclar choice of k consistent events from
Table I. We prove that if the rows, from which these k events come, form z

(n —w+ 1:k|a, @, -+, @y1)-choice (of the rows) then the number of
permutations containing these k particular events is
(10) m—k—a—a— -+ — a2 —w+ 2)}, w = 2,

with the understanding that when w = 2 the above expression is (n — k)!.

The following proof is valid for w > 2. If two events come from rows s and ¢
say,1 £t — s < w — 1, then they are in the same column of Table I, and a
permutation containing them must also contain the events, in that column, which
are in the rows between i.e., in rows s + 1, s + 2, --- , ¢ — 1. Thus the permu-
tation contains

(11) k4 (a1 — a2) +2(a2 — as) + -+ + (w — 2) (Gw—2 — Gw-1)
=k+ata+t+ -+ aw2— (w—2)0
events (from Table I), and their rows form a
(n—w+lik+a+a+- - +as— W—2)awa|b, b, -, be)-choice
bh=by= -+ = bp1 = Qo .

This choice of the n — w + 1 rows has exactly a,—1 + 1 parts. Furthermore,
two events in rows belonging to different parts of the above choice involve no

common integers. Let a1, a2, - - , @a,_,+1 be the lengths of the a,—1 + 1 parts.
They involve, respectively,
(12) a1+w—1, a2+w—1,~-,a,,w_l+1+w—.1

different integers, so, by the previous remark, the k events involve
(13) Z?:fﬁl (i +w—1) = Z?l’flﬂ ai+ (w— 1)@+ 1)
different integers altogether. Of course,

(14) YimPa=ktatat o+t — @=2)0
and hence there are

(15) n—k—a —a— """ —Opg— Gu1— W+ 1

integers not involved in the events. Treating these integers and the aw— + 1
parts as

(16) n—k—a—aG— = Gy —w+2
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distinet entities, we deduce that there are
17) m—k—a—a— - —Ge—w+2)!

permutations containing any particular k chosen events whose rows form a
m—w+ 1:%|a1, -+, awa)-choice.

In the case w = 2, the proof of (10) is similar.

Using the well-known principle of inclusion and exclusion {7], p. 53, we now
have

TuroreM 2. (i) The number of permutations of 1,2, - - - , n containing exactly
r = 1 rising and/or falling w-sequences s

N, w) = 2T (1)) ZalE" Too Xl o 20027
((n—wH+ l:ir+7i|lar,a, -, 0w1))
m—=r—i—am—a— - — G2 — W+ 2), rz 1.
(ii) The number of permutations without rising or falling w-sequences s
No(n,w) = nl + 25 (=1)° Xatte 2timo oo -+ 202zt 2%
(n—w+1lii|a,a, @) R—t—a—a— - —Ga—w+2)!

(iii) The number of permutations containing exactly r 2 1 rising (falling)
w-sequences s

Re(n,w) = 205 (—1)°(Y) TaS" 2 2t~
el (m—wH+ Lir+dfla, @, o, G))
n—r—i—a—a— - — Gy — W+ 2)!
(iv) The number of permutations without rising (falling) w-sequences s
Ro(n, w) = n! + 2IE"" (1) 2otk 20 2
ey ((n—wtlii|a, @, Q)
n—i—a—a— - — G — W+ 2)!
Using Vandermonde’s formula (7], p. 9,
(18) Do @) G2 = (T,

we have the following special cases.

d) Ro(m, 2) = nl+ >3 (1) 2amp ((n — 1:4]a)) (n — 0)!

=nl+ 215 (-1) 25 (HER) (0 = 9)! by (7)
=nl+ 203 (=)' — ) 25 (7)) i)
= 25 (=) — DI by (18)

in agreement with Whitworth [8], p. 102.
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n' + Zt=l ( ]-) Za—o Zb——o ((n—z zla b))
-m—17—a—1)!

=nl4 2050 (=) 20 2o (G G) (i !

1) Ro(n, 3)

-m—1i—a—1)) by (4),
=nl4 2 (-1 255 (GH AT
(n—17—a-—1)! by (18)

(and puttinga =7 — 7 — 1)
Ro(n, 3) = nl + 2010 (=1)" 2055 (5) (57 (n — 20 + j)!
in agreement with Riordan [5], p. 747, expression (2).
1) No(n, 2) = nl4 2305 (1) 22527 ((n — 1:¢] a))
-(n = 0)!
= !+ 205 (=1 Xam 2" (W) (W) (e — 4)! by (4)
=nl+ 2 (1) L2 EH T — i) by (18)

in agreement with Abramson and Moser [1], last expression combined with (9)

on p. 271.

On an n X n chess-board, a positioning of 7 counters with no two in a row or
column is described by a permutation (41, %2, - -, 4,) of degree n: the counters
are in the squares, column j and row z;,7 = 1, 2, - -+, n. Thus No(n, w) is the

number of ways of placing n counters on an n X n board, no two in a row or
column and no w lined up consecutively along a diagonal. In particular, Ny(n, 2)
is the solution to the n-kings problem. The numbers N, (n, w) and R,(n, w) also
have chess-board interpretations.

2. Circular case. Now we turn our attention to the circular case. The clockwise
w-sequences are those in (A) in Table II; the counterclockwise w-sequences are

in (B).

TABLE 1I
(A) (B)

1 2 w—1 w w w—1 - 2 1

2 3 e w w4+ 1 w4+ 1 w eee 3 2

3 4 o w41 w42 w+2 w+1 -« 4 3
n—w-41 n— 2 n n n—1 .. n—w-+1
n—w-+4+ 2 n 1 1 n n—w-+ 2

n 1 ) w—2 w-—1 w—-—1 w-—2 ) 1 n

Clockwise Counterclockwise
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We will enumerate permutations which contain exactly r clockwise and/or
counterclockwise w-sequences.
Define, for1 < ¢ # 5 < n,

(19) ,]=7—1 if 1<y
=j—171+4+n if 57 <.
Call a k-choice

(20) < x< o <

from {1,2, ---,n} a(n:k|a,b,c, ---)-choice if (with zo = %)

(1) a= ZzTn+1>1 1, b= Zsz+n>2 L c= Z:Tzs+1>3 IR

sums taken with ¢ running through 0,1,2, --- ,k — 1.Clearlya 2 bz2zc2 ---,
and any (n: k| a, b, --- , p, g)-choice is also a (n: k| a, b, - - - , p)-choice (but not

in general conversely).
These “circular” k-choices are best seen when arranged in a circle. For ex-
ample

21 3

20 ,
(22) 19 o

18 10

17 |
13 !

is a (23: 12| 5)-choice, a (23: 12 | 5, 3)-choice, a (23: 12 | 5, 3, 3, 0)-choice.

Let {{n:k|a, b, ¢, -+, p, g)) denote the number of (n: k| a, b, ¢, -+, p, @)-
choices.
TeEOREM 3. For 0 < k < nand 0 < gq,

23) {n:kla,b,c, -+, D Q)
= (’n/a) (ﬁ:i) (Z) (ch) s (:) (n_k_zzlf_m_p_l),

Proor. Clearly a “circular” k-choice from n is conveniently represented by
n — k symbols 0 and k& symbols 1 arranged in a circle with one of n symbols
marked, by a * say, to indicate that it corresponds to the integer 1. For example,
forn = 23, the (23:12 5, 3, 3, 0)-choice (22) is represented by



1252 MORTON ABRAMSON AND W. O. J. MOSER

\
o '
o) e
o o
- o
24 %
(24) o o
- ~
P ~
/ 8]
000
We find the arrangements representing the (n: k| a, b, ¢, ---, p, ¢)-choices as

follows. Place a distinguishable boxes in a circle, forming a cells. Distribute the
k symbols 1 into the boxes in (:7}) ways. Place a single 0 into each cell. Choose
b of the a cells in (3) ways, and place an additional single 0 in each. Choose ¢
of the b cells, in (%) ways, and place an additional single 0 in each. Continue until
g cells have been chosen, in (7) ways, from the p cells, and an additional 0 has
been placed in each of these ¢ cells. Distribute the remaining n — k — a — b
— .-+ — p — q symbols 0 into the last ¢ cells, without restriction, in (by the
lemma) ("*7*7 ;7P ) ways, Mark one of the n symbols with a *. The
resulting configurations fall into sets of a each which are the same by rotation,
and the result follows.
The special case

(25) (k| ) = (n/r) () (7S = /(n — k) G2) (FF

is the number of “circular” k-choices from n with exactly r parts, in agreement

with [1], p. 270.
Formula (23) may also be obtained from (25) and the relation

(26) «n:kla’bycy ;p)Q» = «n_k:a|b’c> ,p»Q»(’z::i)(n/(n—k))

which is easily established.

In a permutation of 1, 2, - -- , n the joint occurrence of k of the 2n events in
Table II is possible if and only if

(i) no two come from the same row,

(ii) two which come from rows » and s witho, s < w — lors, v < w — 1
must come from the same column, and

(iii) if the k events all come from the same column then their rows must be a

(n:k|a, -+, aw-)-choice (of the rows) with a,—, = 1.

Conditions (i) and (ii) are obvious. Condition (iii) is necessary, for if a,— = 0
and the % events all come from the same column then the permutations con-
taining them would contain all the events in that column—and this is impossible.
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Now an argument similar to the one used to deduce (10) shows that the
number of permutations containing any particular set of &k consistent events,
from Table IT, whose rows form a (n: k| a1, az, - - - , aw-1)-choice, is

(n—lc—a,—ag—— —aw—Q)!.

Using exclusion and inclusion we deduce
THEOREM 4. (1) The number of permutations of 1, 2, -+ -, n containing exactly
r 2 1 clockwise and/or counterclockwise w-sequences ts

M,(n, w) = 205N (=1)'(F) 2ah Xala et - 2anTig 20
Anir+ilar,a, @) — T — 1 — @ — @ — c — Gua)!

(ii) The mumber of permulations without clockwise or counterclockwise w-se-
quences 18

Mo(n,w) = n!+ 230577 (1) 2oaim 200a 206 -+ 2astia 2
Am:i|ar,ae, Q) — T —ay — ag — -+ — Gy)!

(i1i) The number of permutations containing exactly r = 1 clockwise (counter-
clockwise) w-sequences s

Q@ (n, w) = 23T (=1)'(T) 2aln Xaia e o r 2anTia
n:r+i|la,a, @) —1r—1i—a —a — +° — Gp)!

(iv) The number of permutations without clockwise (counterclockwise) w-se-
quences 1s

Qo(n, w) = n!+ 23577 (=1) 2o0im Doier 2oeder -+ 2anTia
Un:ilay, a2, -~ ,8))(N — 1 — @ — G — +++ — Gpz)!
In the simple case when w = 2 we have
Qo(n, 2) = n+ 205 (=1)" 2ia ((n:i] @) (n — 0)!
=n!+ 205 (=1 Zaa /(0 = D) @3 (T (0 — 9)! by (25)

TABLE 111

n No(n, 2) My(n, 2) No(n, 2)/n! Mo(n, 2)/n!

2 0 0 0 0

3 0 0 0 0

4 2 0 .08333 0

5 14 10 .11667 .08333

6 90 60 .12500 .08333

7 646 462 .12817 .09167

8 5242 3920 .13001 .09722

9 47622 36954 .13123 .10183
10 479306 382740 .13208 .10547
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=nl+ 25 (DT W/ (0~ D)~ 0)! by (18)
=nl 25 (1)

in agreement with Whitworth (8], p. 104.

If we mark the top row of an n X n chess-board, and then identify the top and
bottom edges of the board, we obtain a cylindrical board. A positioning of n
counters (on this board) with no two in a row or column is described by a permu-
tation of degree n. Now Mo (n, w) is the number of ways of placing n counters
on this cylindrical board no two in a row or column, and no w lined up con-
secutively along a diagonal. Two positionings, described by permutations
(%, -+, %) and (1, -+, j») may be considered equivalent if one can be ob-
tained from the other by a rotation of the board ie., if for some Kk,
&+ k=j (modn),r =1, ---, n. For example My(n, 2)/n is the solution to
the cylindrical n-kings problem: in how many ways can n kings be placed on a
cylindrical board, no two in a row or column, no two attacking each other (and
no two positionings equivalent by rotation).

As an illustration the 14 permutations

1 3 5 2 4 4 2 5 3 1 2 415 3
2 41 35 5 3 1 4 2 35 1 4 2
36 2 41 1 4 2 5 3 31 5 2 4
4 1 3 5 2 25 31 4 4 2 5 1 3
5 2 4 1 3 31 4 25

I I1 111

are those counted in N¢(5, 2) = 14. The 10 permutations in columns I and II
are those counted in Mo(5, 2) = 10. The permutations (13524) and (42531)
represent the two equivalence classes which are counted in M, (5, 2)/5.

A short table of the numbers Nq(n, 2) and M, (n, 2) follows (Table III).
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