BOUNDED EXPECTED UTILITY

By PereEr C. FISHBURN

Research Analysis Corporation, McLean, Virginia

1. Introduction. The Blackwell-Girshick utility axioms [1], pp. 104-110,
apply a preference-indifference relation < (“is not preferred to”’) to the set ®; of
all discrete probability distributions defined on a set of consequences X. More
precisely, with reference to a o-algebra on X that contains {x} for each z ¢ X, ®; is
the set of all countably additive measures on the o-algebra such that P(4) = 1
for some countable set A in the o-algebra. The first purpose of this paper is to
show that the Blackwell-Girshick utility theorem, which can be viewed as an ex-
tension of the standard von Neumann-Morgenstern result [3], can be obtained
even on weakening their (B-G) denumerable “sure-thing” axiom. The second
purpose is to show that versions of the new axiom, which is related to Savage’s
P7 [2], p. 77, can be used in deriving the expected-utility property for other sets
of probability measures on X, including general s-additive measures and finitely-
additive measures. Bounded utilities result in all cases considered except for the
case where all distributions are simple.

2. The von Neumann-Morgenstern theory. The von Neumann-Morgenstern
expected-utility theory serves as the base of our discussion.

Leta = (1 — a) when a ¢ [0, 1]. An abstract convezx setisaset ® = {P,Q, R, - -}
and an operation aP + a@ associating an element of ® with each fraction in
[0, 1] and each ordered pair of elements of ®, such that if P, @, R ¢ ® and
a, B [0, 1] then

1. 1P 4+ 0Q = P,

2. aP + aQ = aQ + oP,

3. a(BP + BQ) + aQ = oBP + (1 — aB)Q.

With < a binary relation on @, let P < @ & [P £ @ and not Q@ < P], and
P~ Q<[P £ Qand @ < P). < on @ is a weak order if it is transitive and strongly
connected (P, Qe® =P < QorQ < P).

The following axioms and theorem (proofs in [3], Appendix, and [2], Chapter 5)
form the core of the theory. In all cases P, Q, R ¢ ®.

Axiom 0. ®@ is an abstract convex set.

Axiom 1. < on ® 7s a weak order.

Axiom 2. [P ~ (X)Q, ac (0,1)] = oP + aR ~ (X )o@ + aR.

AxioM 3. [P < Q, Q< R] = aoP + aR < Q and Q@ < BP + BR for some
a, Be(0,1).

TuaEOREM 1. [Azioms 0, 1, 2, 3] = there is a real function uw on @ such thatif
P,Q e ®and a € [0, 1] then

(1) w(P) = u(Q) &P <@,
(2) u(aP + aQ) = au(P) + au(Q).
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3. The Blackwell-Girshick theory. Henceforth we interpret ® as a set of prob-
ability distributions or measures on a set X, take aP + a@ as the ordinary convex
combination of measures P, @ ¢ ®, and assume that @ is closed under convex com-
binations so that Axiom 0 holds. In addition, all one-point distributions are as-
sumed to be in ® and no notational distinction will be made between x £ X and
the one-point distribution that assigns probability 1 to {x}. Because the one-point
distributions are elements of ®, convex closure requires that ®@,, the set of all
simple distributions on X (those that assign probability 1 to some finite subset),
be a subset of @, but does not imply that the whole of ®; is included in ®. However,
we shall for the present take ® = ®; (for any o-algebra that contains each {x})
since this is the Blackwell-Girshick setting. Not only is ®; an abstract convex set,
but also if @i = 0 and P;e® for 4 = 1, 2, -+ and D i1 a; = 1, then
D aiPie®a.

The Blackwell-Girshick theory uses Axioms 1 and 3 and the following denumer-
able extension of Axiom 2 to strengthen Theorem 1 to obtain Theorem 2 (essen-
tially their Theorem 4.4.2).

Axiom 2. [P, Qie ®s, P: < Qi,a; = 0fori =1,2, '-'and}:‘;la.- =1]=
e aP: € Do as. If in addition P; < Q; for some i for which a; > 0,
then Y aiPi < 2 Q.

THEOREM 2. [® = @4, Awioms 1, 2%, 3] = there is a bounded real function u on
®4 such that (1) holds and

3) u( D ailP) = E?=1 au(P;)

whenever Do a; = 1 and a; = 0, P; & @ for all .
Expression (2) is a special case of (3), resulting when oy = o, a0 = &, P; = P,
P2 = Q.

4. Bounded utility. With D i a;Pie ® and D impp10s > 0 for all no
Axioms 1, 2, and 3 alone imply by the easy extension of (2) that

(4) (2 aPy)
= Z?=1 au(P;) + (E:’Ln-}-l ag)u( Z?=n+1 aq Z:‘Ln-f-l ai)'—IPi),

which appears as the middle equation on p. 110 of [1]. From (4) we see that if
u on ®; is bounded, then (3) follows. In addition, if (3) holds, then 4 on ®; is
easily seen to be bounded. Thus, it seems that what Axiom 2* adds to Axiom 2
when ® = @ is that u on ®;, satisfying (1) and (2), be bounded.

To verify that Axiom 2% is indeed stronger than Axiom 2 when ® = ®;, we
first embed ®; in a vector space. Let X = {1, 2, -- -} and let 3 be the set of all
real-valued, countably-additive set functions on the class of all subsets of X so
that ®; C 3. 3 is easily seen to be a vector space over the real number field. The
set, of one-point measures in ®; is a linearly independent subset of ®; and of 3, and
the subspace of 3 generated by the one-point measures includes @, but does not
contain any P in ®; that is not simple. Let & be the class of all subsets of ®; that
(i) contain each one-point measure and (ii) are linearly independent. Using
Zorn’s lemma on & with C as the order relation we readily find that & has a
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maximal element, say 8§ C @, , such that (i) and (ii) hold for 8, and each P & ®q is
a unique linear combination of elements in 8.

Let u(z) = z for each x ¢ X, u(P) = 0 for each nonsimple P ¢ 8, and extend u
linearly to the subspace of 3 generated by S. This subspace includes ®, . If, for
P,Qe®,P =2 asS:;andQ = 2 B:S;where S, ¢ 8 for each 7, then u(aP + aQ)
= u( X aaSi + 2 aB:S:) = D acau(Ss) + 2 aBau(S:) = au(P) + au(Q)
so that (2) holds. Defining P'< Q if and only if u(P) = w(Q),forall P, Qe ®4, (1)
also holds and, as is easily seen, Axioms 1, 2, and 3 hold. However,  is unbounded,
(3) is false, and Axiom 2* cannot hold.

5. Axiom 4 and variants. We now introduce an axiom that, along with Axioms
1, 2, and 3 implies that u on ® = ®; is bounded and hence yields the conclusion of
Theorem 2. Axiom 2 and the new axiom, Axiom 4, can therefore replace Axiom
2* in the Blackwell-Girshick system. When ® = ®,, both Axioms 2 and 4 are
implied by Axiom 2* but together they do not imply Axiom 2*. However, Axiom
2* does follow from Axioms 1, 2, 3, and 4 when ® = ®;, as will be implied by
Theorem 4. (See Theorems 7 and 8 and their proofs for contrasting conclusions.)
~ Along with Axiom 4 we state a weaker variant (4W) and a stronger variant
(48).

Axiom4. [A € X, P(A) = L,z4e X, 24 < zforallze Al]=z+« < P.[A C X,
P(A) =1,2%e¢ X,z < z*forallze A= P < z*.

AxioMm 4W. [A € X, P(A) = 1, z4e X, 24 < x for all e A] = 2+ < P.
[ACX,P(A) =1Lz*eX,2< z*forallze A] = P < a™.

Axiom 48. [A € X, P(A) = 1, Pxe®, Py <z for all xe A]=Psx < P.
[A CX,P(A) =1,P*c¢®,z < P*forallze A]= P < P*.

Axiom 48 is Savage’s final postulate, P7 [2], p. 77, translated into the context
of this paper. Axiom 4 is obtained from this by replacing P and P* with simple
one-point distributions z and z*. Axiom 4W is obtained from Axiom 4 by replac-
ing z4« < z and z < ¥ withzs < z and z < z*. Clearly, Axiom 48 = Axiom
4 = Axiom 4W.

The following version of Savage’s P5 [2], p. 31, will also be used in several of the
theorems to follow.

Axtom 5. x < y for some x, y ¢ X.

6. Theorems. For convenience of comparison we now present a series of
theorems, the first of which was proved in Section 4. The next two sections give
proofs of the other theorems. :

THEOREM 3. [® = ®4, Axioms 1, 2, 3, 5] do not imply the conclusion of Theorem 2.

THEOREM 4. [® = @4, Axioms 1, 2, 3, 4] imply the conclusion of Theorem 2.

THEOREM 5. [® = ®u, Axioms 1, 2, 3, 4W] do not imply the conclusion of
Theorem 2. .

THEOREM 6. [® = ®4 , Axioms 1, 2, 3,4W, 5] imply the conclusion of Theorem 2.

In the next two theorems @, is the set of all s-additive probability measures on
any o-algebra ® on X that contains each {z} for z ¢ X and each <-interval of X.

THEOREM 7. [® = ®, , Axioms 1,2, 3, 4] imply that there is a bounded real func-
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tion w on ®, such that (1) holds and
(5) u(P) = [u(z)dP()

for every P e ®, .

THEOREM 8. [® = @, , Azioms 1, 2, 2%, 3, 4W, 5] do not imply the conclusion of
Theorem 7.

Savage [2], in his finitely-additive theory, says (p. 78) that “. .. perhaps, if the
theory were worked out in a countably additive spirit from the start, little or no
counterpart of P7 would be necessary.” In terms of this paper Theorems 7 and 8
and Theorems 3 through 6 show that a little counterpart of P7 (Axiom 4 or 4W)
is essential in obtaining a general expected-utility result in countably-additive
situations.

In the two final theorems ®; is the set of all finitely-additive probability meas-
ures on the class of all subsets of X. We use the largest Boolean-algebra here be-
cause it is essentially the Boolean-algebra used by Savage [2], but any Boolean-
algebra that contains each {z} and each <-interval can be seen to serve as well.
Recall that Axiom 48 is essentially Savage’s P7.

THEOREM 9. [® = ®;, Azioms 1, 2, 3, 4S] imply that there 1s a bounded real func-
tion u on ®; such that (1) holds and (5) holds for every P & ®@; .

Tueorem 10. [¢® = ®,, Azioms 1, 2, 2%, 3, 4, 5] do not imply the conclusion of
Theorem 9.

7. Discussion and examples. This section proves the “do not imply” theorems,
Theorems 5, 8, and 10, with specific examples. The next section then proves the
other theorems.

Proor or THEOREM 5. Let u on @, satisfy (1) and (2) with u(z) = 0 for all
x ¢ X. Then Axioms 1, 2, and 3 are easily seen to hold and Axiom 4W istrivially
satisfied. Following the analysis in Section 4, we haveu(z) = 0 for all x ¢ X and
can let u be arbitrary (say, identically 1) on the distributions in $ that are not
simple. This reverses the approach taken in Section 4 and results in Axioms 1, 2, 3
and 4W holding with © on ®; unbounded.

Proor or TurorEM S. Let X = [0, 1], let & be the Borel sets on X, and let
w(zx) = —lifz < 3, u(xr) = lifx = 3, w(P) = 2 u(z)P(z) forall P ¢ @, .
Defining P < Q @ u(P) = w(Q), Axioms 1,2,2% 3,4W, and 5 are easily verified.
But Axiom 4 is violated by the uniform measure Q on [}, 1] for 1 < x forall x ¢ [4,
1] yet @ < 1 since u(Q) = 0.

Thus we note that, although Axiom 2* implies Axiom 4 when ® = ®; , Axiom 2*
does not necessarily imply Axiom 4 even in the presence of the other axioms when
@ properly includes @, , which is the case here.

Proor or TurorEM 10. With ® = ®; we take our cue from Savage (p. 78)
and let X = {1,2,3, ---}, u(z) = /(1 + ),

uw(P) = [u(x)dP(z) + limeo P(u(z) 2 1 — ¢),
and define P < Q@ & u(P) =< u(Q). Since (1) and (2) hold, Axioms 1, 2, and 3 are
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easily seen to hold, and Axiom 5 holds. Axiom 4 also holds: if P(4) = 1 and
T« < x for all x ¢ A, then u(zx) < u(P);ifx < 2*forall z e A, then u(P) <
u(z™) since for any z*, u(z*) < 1 — e for ¢ small. Moreover, Theorem 4 leads
to the conclusion that Axiom 2* holds. Let P be any probability measure on the
set of all subsets of X such that P(z) = 0for all x. For this measure, u(P) = 1 +
1= 2, which violates (5). It follows from Theorem 9 (or by easy modification
of the example) that Axiom 48 does not hold.

8. Proofs of Theorems 4, 6, 7, and 9. Because the proofs of these theorems
have common parts it will be efficient and instructive to prove them as a unit. In
all four theorems Axioms 1, 2, and 3 are taken to hold, and @ satisfies Axiom 0.
Moreover ®; @ in all cases since ®; & ®, and ®q & @, . The u referred to is that
provided by Theorem 1 and therefore satisfies (1) and (2).

With z; ¢ X and P; ¢ @ for all 7, Theorem 1 implies by the easy extension of (2)
that

(6)  w(Z (3)'P) = 2 (Du(P) + (1)"w( X (3) Pars)

and, in particular,

(7) w2 (3)') = 20 (1) 'ulz:) + (3)"u( 251 (3) Tass).-

For each of Theorems 4, 6, 7, and 9 the special case of (6) represented by (7)
leads to u on X being bounded. We prove this using the weakest of the Axiom 4

series, Axiom 4W. Suppose % on X is unbounded above. Take u(z;) = 2°for all .
Then, by (7),

w( 2 (D) 20+ ()X (3)'em),
and for large enough n there is an z4 < x; for all ¢ > n so that w(D, (3)z) =
n + (3)™u(z%) by (1) and Axiom 4W. This implies that w( Y (%)) = + =,
a contradiction. Unboundedness below is dealt with symmetrically.

Hereafter let @ = inf u(x), b = sup u(z); whence a = b. We next show that,
for each case, # on ® on bounded. For Theorems 4 and 6 with ® = ®; this is all
we shall require since (3) then follows from (4). However, for Theorems 7
(® = @,) and 9 (® = ®;) we shall need to show also that a < u(P) = b for all
P & ®, and that, in general, inf, u(x) < u(P) = sups u(z) when P(A) = 1.

Suppose first that 4(X) = {a, b}. Then a = u(P) = b for all P ¢ ® readily
follows from Axiom 4 and (1) for Theorems 4, 7, and 9.For Theorem 6, Axiom5
requires a < b. With a < b we now show for Theorem 6 that Axiom 4W implies
that u on ®; is bounded. For this let ®, = {P|Pe®;, P(u(z) = a) = 1},
® = {P|Pe®;, P(u(z) = b) = 1}, so that every P & ®; can be written as a
convex combination of a P, ¢ ®, and a Py £ ® . Hence if u is bounded on ®, u @,
it is bounded on all of ®; by (2). For @ ,a < u(P) for all P ¢ ® by a < b, Axiom
4W, and (1). Suppose « on ®, is unbounded. Then with u(P;) = 2°and P;& ®,
for all 7, (6) implies that

(8) w25 (DP) 2 0+ (1) (24 (3) Pass)
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which requires u(D_ (1)°P,4:) to approach —«= as n — =, for otherwise
w(X (3)'P;) must be infinite. But clearly > (2)'P.i:e® so that
a = w(), (%)'P,y:) for all n, and thus a contradiction is obtained. Hence u on
®5 is bounded. A symmetric proof shows that « on ®, is bounded.

Next, suppose that u(X) # {a, b} so that there is a zeX such that
a < u(z) < b Fixz, let Zx = {z|zeX,z ~2},Z+ = {z]2zeX, 2 < 2},
Z* = {z|zeX, 2 < z} so that neither Zx nor Z*isnulland Zx u Zxu Z* = X,
and let

CPx = {PIPS(P7P(Z*) = 1})
®x = {P|Pe®, P(Zx) = 1},
®* = {P|Pe® P(Z*) = 1}.

Then, for any of the cases considered, each P & ® can be written as a convex
combination of a measure in ®, , a measure in ®+, and a measure in ®*. Conse-
quently, if % is bounded on ®4u ®xu @* it is bounded on all of ®; and if
a < u(P) £bforal Pe®yu®xu®*, then a < w(P) £ bforall Pe@®. For
Theorems 4, 7, and 9, u(P) = u(z) for all P ¢ ®x follows from (1) and Axiom 4.
For Theorem 6, u on ®# is bounded since there must be x, 4 ¢ X such that x < 2
and 2z < y when a < u(z) < b:use (1) and Axiom 4W. We next observe that
u(z) = w(P) for all P ¢ ®* by (1) and Axiom 4W. An analysis using (8) then
shows that « on ®* is bounded. A symmetric proof shows that u on @4 is bounded.
Hence, for all cases, # on @ is bounded. This completes the proofs of Theorems 4
and 6. The other proofs are completed as follows.

Proor oF THEOREM 7. Let M be such that u(z) < uw(P) < M for all Pe@*,
If w(z) = b for some x & Z*, then w(P) < b, by Axiom 4 and (1). If u(z) < b
for all z e Z* proceed as follows. Let A(e) = {z|u(z) < u(z) < b — ¢,
B(e) = {2|b— e < u(z) <b},0<e<b—u(2).Given P & ®* let P4 be the
conditional distribution of P on A(e) when P(A(e)) > 0, let Pge be the con-
ditional distribution of P on B(e) when P(B(e)) > 0; if P(A(e)) = 0 set
w(Paw) = a, and if P(B(€)) = 0 set u(Pse) = a. By this and (2), u(P) =
P(A(e))u(Paw) + P(B(e))u(Pre). By definition, Axiom 4 and (1),
u(P 4) < band since u(Ppey) < M forallee (0,b — u(2)),u(P) = P(A(e))b
+ [1 — P(A(€))]M. Because the measures in & are o-additive, P(A4(e)) — 1 as
e — 0, so that u(P) =< b. Hence u(z) < w(P) < bfor all P ¢ ®*. A symmetric
proof shows that a £ u(P) < u(z) forall P ¢ ®«. Thus ¢ = w(P) = b for all
Peo,.

Using a standard partition proof, (5) follows readily from the fact that
[ u(x) dP(z) is well defined for all P & @, [1, being monotone in X is ®-measur-
able, and it is bounded] and the fact that Axiom 4 and ¢ = w(P) = b for all
P e@®, imply, by the foregoing proof, that for any A e® of the form
A={z|lc = (<u) = (L)d},c,dela, b, if P(A) > 0, thenc < u(P4) =d
for the conditional measure P, of P on 4.

Proor oF THEOREM 9. With u(z) < w(P) forall P ¢ ®* suppose that b < w(P)
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for some P ¢ ®*. Then a suitable convex combination Q of P and some z ¢ Z*
vields, by (2),b < w(Q) < w(P). Therefore, x < Qforallz ¢ Z* and P < Q by
Axiom 48, so a contradiction is reached. Hence u(z) < u(P) < b for all P ¢ ®%,
and, symmetrically, ¢ £ u(P) = u(z) for all P £ ®4 so that ¢ < u(P) £ b for
all P & ®; . From this and Axiom 48 it then follows that inf, u(z) < w(P) =
sup4 u(x) when P(A) = 1. A standard partition proof then gives (5).

9. Summary. In summary we include a few generalizations whose validity is
easily established with reference to the modes of proof for the preceding theo-
rems.

We consider a set @ of probability measures, on a Boolean algebra on X, for
which Axioms 0, 1, 2, and 3 hold. The fixed algebra is assumed to contain each
{x} forz ¢ X and each <-interval of X. Moreover, not only is ® an abstract con-
vex set (Axiom 0) but also it

(a) is closed under countably infinite linear combinations,

(b) is closed under the formation of conditional probabilities,

(¢) contains every one-point probability measure.
®4, @, , and ®; are particular instances of ® that satisfy these conditions.

Let w on @ satisfy (1) and (2) of Theorem 1. Then, under the preceding specifi-
cations, u on @ satisfies (5) for all P ¢ @ if and only if Axiom 48 holds, and, when
(5) holds, u on @ is bounded. In fact, (5) holds if and only if the weaker version
of Axiom 48 obtained on replacing P+ < z and z < P*by Px < z and 2 < P*
holds. This weakening of Axiom 48, not mentioned above, corresponds to the
weakening Axiom 4 that results in Axiom 4W.

If ® = ®; and u on @ is bounded, then (5) holds. However, if ®; € @ and % on
® is bounded, (5) can be false. (5) can even be false (see the Proof of Theorem 8)
when v is bounded and inf u(z) < w(P) =< sup u(z) for all P £ ®. However, (5)
holds when P(A4) = 1 implies that inf, u(z) < w(P) = sup, u(z).

In certain cases Axiom 48 can be weakened and (5) will still hold. If ® = @,
Axiom 4 implies (5), and Axiom 4W implies (5) provided that the very mild
Axiom 5 is also adopted. If ® = ®, , Axiom 4 implies (5), but Axiom 4W does not
imply (5) even when it is supplemented by Axioms 2* and 5. When ® = ®;, no
weakening of Axiom 48 is sufficient for (5) except for that noted above (Px < z
and x < P*in place of P*+ < z and = < P¥).
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