NONPARAMETRIC PROCEDURES FOR SELECTING THE ¢
POPULATIONS WITH THE LARGEST «-QUANTILES!

By Miuron SOBEL

University of Minnesota

1. Introduction. There are given %k populations with cumulative distribution
functions (edf) F(z) = F; (1= 1,2, --- ,k); anumber a with0 < o < 1 and an
integer ¢t with 1 < ¢ < k — 1 are preassigned. The goal is to select those ¢ of the k&
populations which have the largest a-quantiles based on 7 independent observa-
tions from each of the k populations. The form of the edf F; is unknown but it is
assumed that F;(z) is continuousinz (2 = 1, 2, - - - , k). Two different formula-
tions of this nonparametric problem will be given; for each formulation there will
be a Case A and a Case B according to whether a certain assumption is made. A
subset approach to this problem with a similar nonparametric formulation is con-
sidered in a companion paper [1]. This paper deals only with exact results; a
discussion of the asymptotics for this paper will be published later in a separate
paper.

Let z.(F') denote the ath-quantile of the distribution F; if this quantile is not
unique we can define it as any arbitrary point (or any convex combination of
points) in the closure of the set {z:F(x) = a}. However, we shall assume that
each F; has a unique a-quantile in order to avoid extra notation which does not
add to the basic ideas of the problem. Let Fi;(z) = F|; denote the cdf with the
ith smallest a-quantile. The correct ordering of the k distributions is

(L.1) Fry < Fy £ -+ L Fy

where Fp; < Fp; means that 2.(Fiq) = 2.(Fp). It is assumed that no a priors
information (in the form of a distribution or otherwise) is available concerning
the correct pairing of the F'; and the F(;; . We do not assume that the & distribu-
tions have the same supports, nor do we require that they differ only in a location
parameter, i.e., the problem and the solution are nonparametric.

It is clear that if the F,(x) are ordered uniformly in z, i.e., if there are no cross-
overs; then the problem of selecting the ¢ smallest of the F;(z) is equivalent to the
problem of selecting the ¢ populations with the largest a-quantiles.

FormurAaTION 1. Let ¢, > 0 (v = 1, 2) be two specified numbers such that
a* < a 21— & Let 25(F) and Z5(F) denote the infimum and supremum of the
set {x; F(z) = B}. Unless stated otherwise, the indices 7, j will run over the ranges
1=1,2,---,k—tandj =k —t+ 1,k —t+ 2, -, k, respectively. Let
F = F(z) denote the min F;(z) and F = F(x) denote the max Fy;)(x). Define
the closed interval

(1.2) I = [Zaee*(F), Farer(F)].
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Figure for Formulation 1

N

X

Figure for Formulation 1. To be in the preference zone (i.e., in the complement of the
indifference zone) each Fyj(x) (0 = 1,2, --+, %k — ) must avoid the shaded area, ie., F(z)
must avoid the shaded area.

Let di; = inf (Fr(x) — Frj(x)) over all z ¢ I and let
(13) d = min(i,j) dij = infzsz (E(-’E) - F’(a:))

Finally let d* and P* denote specified constants with d* > 0 and
1 > P* > 1/(}). We define Fy_y < Fp_ipy to mean that Zo(F—y) <
Toa(Fre—s1) and when this is the case we define a correct selection (CS) to mean
the selection of those ¢ populations with the largest a-quantiles; we shall not need
the definition of a CS when Fy_y = Fp_iy -

Our goal is to find a procedure R which satisfies the probability requirement

(1.4) P{CS|R} =z P* when d = d¥%

where d* > 0 and P* with 1 > P* > 1/(%), are preassigned constants. Any
vector or point (Fy, Fa, -+, Fi) for which d < d* for at least one pair (3, 7) is
said to be in the “indifference zone’”” and no probability requirement is made for
such points. (See figure for Formulation 1.)

In order to define our basic order statistic in (1.6) below we have to assume
that the common sample size n from each population is sufficiently large so that
1 = (n + 1)a = n. Let the positive integer » be defined by

(1.5) r<(n4+ Da<r+ 1.

It follows from the above that 1 = r < n. Yet Y ; denote the jth order statistics
from F;(j=r,r +1;4=1,2,--- , k) and let

(1.6) Wi=Tr 41— (n+ DalVei+ [(n + Da — r]Vmrs.
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The coeflicients in (1.6) are based on a linear combination of two adjacent order
statistics to approximate the point where the sample cdf (with slanted lines
instead of horizontal lines) is equal to a.

We can now define the

Procepure R. Take n independent observations from each population and
select the ¢ populations which give rise to the ¢ largest W-values.

If o is rational then (n 4 1)a will be an integer for some arithmetic progression
N of n-values and then r = (n 4+ 1)a and W, = Y, ; for simplicity we shall
assume that « is rational. For example, if &« = % then N is the set of odd integers.

[In most practical problems o« canbe written as (or approximated by) a
fraction with small denominator D. Then the maximum loss due to restricting
our attention to n-values in N is that we take at most D — 1 extra observations
per population. Clearly this is not a deficiency of the procedure R since, if neces-
sary, we could (a) compute the P{CS | B} for all integers, and/or (b) investigate
whether any error arises in interpolating among the computed probabilities for
n & N to decide what common sample size to use. For many D-values neither of
these is necessary; for example, if @ = % then D — 1 = 1 and the inefficiency is
clearly negligible even for moderate n-values.]

Hence for our formulation and this procedure R the problem now reduces to
finding the smallest integer n such that (1.4) is satisfied; we shall be content with
finding the smallest n in N that satisfies (1.4). In the sequel we refer to the above
as Formulation 1A and if a certain additional assumption (see (2.11) below) is
made we call it Formulation 1B.

FormuraTION 2. Let ¢, > 0 (v = 1, 2) be two specified numbers such that

Figure for Formulation 2

[

F1eure for Formulation 2. To be in the preference zone (i.e., in the complement of the
ipdifference zone) each Fy(z) (¢ = 1,2, .-+, k — {) must avoid the shaded area, ie., F(z)
must avoid the shaded area.

X
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el*élaé 1— " Fori=1,2 -+ ,k—tandj=k —t+1,k—t+2, -,k
let dij = Za—ey*(F1j1) — are,*(Fry) and let

(17) d' = ming, dij = eyt (F) — Faregr(F).
Our goal is to find a procedure.R such that
(1.8) P{CS|R} = P* when d =0,

where P* (with 1 > P* > 1/(})) is a preassigned constant. (See figure for
Formulation 2.) The form of the procedure is the same as for Formulation 1
above and the comments made there hold in this case also; in particular, the
same assumption that o is rational will be made. Hence the problem again re-
duces to finding the smallest integer n such that (1.8) is satisfied. The vectors (or
points) in the indifference zone are those for which di; < 0 for at least one pair
(2, j). We refer to the above as Formulation 2A and if a certain additional as-
sumption (see (2.11) below) is made we call it Formulation 2B.

The reason for introducing both ¢* and &* above is that the experimenter
may want to make &* and & unequal. In particular, he may want to make them
proportional to @ and 1 — «, respectively; for o = % this means that
a* = e = ¢ (say).

In the rest of this paper we find exact expressions for the P{CS | R} for each
formulation and these are then used to find the smallest integer n that satisfies
the corresponding P*-condition. Tables of exact n-values are given at the end of
the paper for selected values of k, P*, and d* = ¢* = &*.

2. Probability of a correct selection. For each formulation we calculate a
lower bound to the exact P{CS | R} as a function of d for an arbitrary configura-
tion and for the “least favorable” configuration, the latter being defined as the
configuration that yields the infimum of the P{CS} in the complement of the in-

difference zone.
2.1 P{CS} for Formulation 1A. Let Y, = Y denote the rth order statistic

associated with the distribution F'f; . The probability element dH, (y) = dH(y)

and the cdf H, (y) = H{y) of Y, , respectively, are well known (or easily

shown) to be

(2.1) dH(y) = T(f)Fffll(y}[l — Fra(y)]"" dFa(y),

(2.2) Hyy) = 25— (DFla()l — Fa(y)]"” = GFa(y)),

where G(p) = Grn—ra(p) is used for the standard Incomplete Beta function
G(p) = nY/(r — D)I(n — )] [T27(1 — 2)" " da.

The probability of a correct selection under the procedure R is given by

P{CS|R} = P{max (Y, -+, Yo—n) <min (Y, -+, Yay)}
= D e P{max (Yo, -+, Yaon) < Y
(2.3) = min (Yg_wn, "+, Y)l

=D e [ ITT Hiy) T i (1 — Ho(y)] dH (y)
2 D [r 4+ 2imen [rr = Ti + To (say),

v
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where I is the infinite open interval (say, (a, «)) to the right of I. We now
make use of the well-known result that G(y) is a continuous nondecreasing func-
tion of y and the fact that this property holds by assumption for F;(y) for each
1; using this it follows from (2.2) that the same property holds for H () for each
i. On I' it follows from the definition of d and &* that Fi;(y) = « + &* + d for
each 7 and Fjj(a) < a + & for each 7; hence Hi(y) = G(a + & + d) for each
i and Hi(a) £ G(a + &) for each j. Bounding one set of factors in (2.3) and
integrating the other set we now obtain

Ty 2 G a + & 4+ d) [+ D25 [To—use [ — He(y)dHi(y)
= @ at+ e + D~ [ (1 = H(I
=G a+ & +d)1 — Ao+ )]
Let H(y) and H(y) be defined as in (2.2) with Fi;(¥) replaced by F(y) and
F(y), respectively. Since H{y) = H(y) we can bound 7; below by writing
(24) Ty 2 2 iens [rH ' (y) Tlanrinpni [1 — Ho(y)] dHi(y)

but in order to justify replacing Hg(y) by H(y) in (2.4) we need another ex-
pression for P{CS | R}. Starting with the same first line as in (2.3) and proceeding
as above we can also bound the P{CS | R} by writing it in the form

P{CS|R} = 2T P{max (Yo, -+, Yaoy)
= Yu <min (Y, -+, Yo)}
(2.5) = 2 [Za {1155 s Hy(y) Tmemen L — Hy()1} dH ()

= ¢=-1 fI —1 i Hy(y) 31 — H(y)]‘dHﬁ(y)
+ @ o — o + [ — Gla — )],

where the second term now comes from the infinite open interval to the left of I
We note from (2.5) that to minimize the P{CS | R} we have to set H;(y) equal
to H(y) for y e I; we proceed to do this now in (2.4). Combining the results for
T; and Ts above we obtain

(2.6) P{CS|R} =t [; H'(y)[1 — H(y)*dA(y)
+ 0 a4+ e+ d)[l — Gla+ &)

We now compute a lower bound for the P{CS | R} at the least favorable con-
figuration (lfc) by setting d = d* in (2.6) and by setting F(y) = F(y) + d*.
Hence, letting w = F(y),

(2.7) H(y) = GIE(y)] = G(u + d¥),

(2.8) H(y) = GIF(y)] = G(u).

Hence (2.6) takes the form

" (29) P{CS|R} = ¢ [5G (u + dHL — Gw)] dG ()

+ a4+ &+ d)[1l — (o + &)
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From ¢2.5) we now obtain the expression
(2.10) P{CS|R} = (k — ¢) [alatei ()1 — G(v — d*)1'dG(v)
+ G Ha— " +d"1 — Gla — &),

which can also be obtained from (2.9) by an integration-by-parts.

It is interesting to note that in this formulation with fixed n and d* — 0 the
right side of (2.9) approaches a lower bound which is less than or equal to 1/(}),
with equality holding only if & + &* = 1 and @ — &* = 0. In fact, by differenti-
ation it is easy to see that the right side of (2.9) is increasing in each of ¢ and
es". Hence the lower bound as d* — 0 must lie in the closed interval
(@)1 — G()], 1/(5)}, which reduces to {27, 1/(})} for « = 4.

For n — o and ( r/n) — o we will show below that the right side of (2.9)
approaches one for any fixed d* > 0. If simultaneousty d* — 0 then the limit
must be at least 1/(§); the latter follows from the fact that the limit (n — « and
(r/n) — o) obtained after setting d* equal to the ‘inadmissible’ value zero in the
right side of (2.9) is 1/(}).

2.2. P{CS} for Formulation 1B. A slight variation of the results in the last
section is obtained if we make the assumption that for all «

(211) Fa(z) 2 Fpun(z) = F(z) (i=1,2,---,k—1),
Fip(e) £ Fp—g(z) = F(x) (G=k—t+1Lk—t+2---,k).
For the special case t = 1 we omit the second part of (2.11) and for¢t =k — 1

we omit the first part. [It should be noted that we could have assumed that for all
pairs (v, ) with v < &

(2.12) F[s](x) = F[y](ili) for all z,

but the assumption (2.11) is a weaker assumption and accomplishes the same
purpose, namely to make F; = Fp; = F (say) in the worst configuration.]
Under the ssumption (2.11) the derivation of the first term on the right side of
(2.9) i.e., the integral, remains exactly the same as in (2.9) but the contribution
from the complement of I is different. The final result for this formulation, using
the same methods as above, is

P{CS|R} = t [3¥20 G Y (u + d¥)[1 — G(w)]7 dG(w)
(2.13) + @ a+ e +d)[1l—Ga+e) =1 —Glat e +d*) 19
+ (t)_l{l - Gk—¢+1,z[G(a + 62 + d*)] + Gk—t+1,t[G(a — € )]}

The explanation of the second term on the right side of (2.13) is as follows. In
the jth term of the sum in (2. 3) we let u = Fm(y) and consider that portion
of the integral for which a + &* < u < a + & + d*. Asy approaches y; =
Zotes*(Fi—t1) (the right end point of I from within I, we have Fi;(y) = a + e

and it follows that Frg(y) = « + & + d*, and hence by (2.2)

Hi(yl)zG(a+e2 -I-d) for 7,=1’2,...’k_t.
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Hence, letting I, denote this part of the integral in (2.3),

Lz G at e +d%) [ St Tlberirows (1 — He(y) dH,(y)
214) =6+ e" +d)1 = Il — H)] "

2 G a+ o+ d){[L - Gla+ ")) — [l — G(a+ o* +d*)]).

The last part of (2.13) represents the contributions of the intervals
P —I—d fu= landO fusta—¢g ,respectlvely

For d* = 0 and any pair ™ = 0 and & = 0, it is easily seen that the right side
of (2.13) reduces to 1/(%) for any fixed n.

It is natural to “conjecture” that the right side of (2.13) is greater than the
right side of (2.9) and hence that Formulation 1B requires an n-value which is
not larger than that required by Formulation 1A. This is indeed the case since
the difference A of these quantities satisfies the inequality

(2.15) Aztfa) A —y)Tdy -1 —-2)  (0=sz=1)

where z = G(o + & + d*). Differentiating the right side of (2.15) we find that
it is decreasing from 1/(%) to 0 as x increases from 0 to 1, so that A = 0. Another
proof of this “conjecture” could be based on the fact that the indifference zone
under Formulation 1A is included in the indifference zone under Formulation 1B.

It can be shown that the expressions in (2.9) and (2.13) are asymptotically
equivalent for large n (or, equivalently, for d* close to zero) and it will be of some
interest to see how much difference it makes in the sample size to make the as-
sumption (2.11). Tables 1, 2, 3 and 4 show that this difference is quite small for
P* = 75 and that it decreases with increasing P* and also with i mcreasmg k.

2.3. The P{CS} for Formulation 2A. Using the third expression in (2.3) as a
starting point, setting H(y) = G(a + ") for each 7, integrating the resulting
expression and letting 1 = min; £a—e;+(Fj;) gives

(216)  P{CS|R} 2 ¢ (o + &"){1 — [Tiaeen [t — H()1I5)
= Gk_t(a -+ ez*) H?‘:lc-—t+1 1 — Hj(x)]

Increasing every H; as much as possible at 2; we obtain G(a — &) for each of
them and hence in the least favorable configuration

(2.17) P{CS|R} = G (a + &")[1 — G(a — «)]".

It is easily seen that this tends to one as n — « and the remaining problem is to
determine the smallest n for which the right side of (2.17) is at least P*,

For the special case « = 3 we haver = (n +1)/2 =n —r + 1 and, usmg
the symmetry of the Incomplete Beta function, (2.17) becomes for a = ez* =
(say)

(2.18) P(CS|R} = G"(3 + &),

which does not depend on ¢.
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2.4. The P{C8} for Formulation 2B. We now make the same assumption (2.11)
as in Formulation 1B and, using the same methods as above, we obtain

(219) P{CS|R} = ¢ [{™" " (w1l — G(w)]"" dG(u)
¢ [ @I — G dG(w)
+ @ o+ &1 — Gla — ")) = [1 = Gla + «")]'}
= (D)7 G—et1.(@la — &) + 1 = Girtr.(Fa + )]
+ 7o + &)1 — Gla — &™) — [1 — Gla + &)]'}.

It is natural to ‘“‘conjecture” that the right side of (2.19) is greater than the
right side of (2.17) and hence Formulation 2B requires an » which is not larger
than that required by Formulation 2A. This is indeed: the case and the proof is
exactly the same as in Formulation 1. We also note that for ¢ = e* = 0 the right
side of (2.19) reduces to 1/(%).

Fork = 2, = 1, and o = %, Tables 1 through 4 give the smallest odd integers
that will solve the problem for selected values of d* = ¢* = &* and P*, for each
of the four formulations, 1A, 1B, 2A and 2B.

3. Calculation of Tables. For a = % the expression for the Incomplete Beta
function G(u) can be simplified. In fact, if n = 2m + 1 then r = $(n 4+ 1) =
n —r +1=m -+ 1and writing Gna(u) for G(u) we have, settingy = z — %

(3.1) Gra(u) = [(2m + 1)/(m))"] [§ (z — 2*)" da
= [(2m + 1)/(m)2™] [2 (1 — 4")" dy.
Integrating-by-parts it is easy to show that

(3.2) Gryr(u) = Gu(u) + () (u — §)(u — w’)™
Since Gi(u) = u we can iterate (3.2) to obtain
(3.3) Gria(u) = 3 + (u — 3) 27 () (w — 7).

This exact expression (3.3) is very helpful in carrying out on a computer the
numerical (Gauss-Legendre) quadrature of the integral in (2.9) for any ¢ and %;
the exact solutions in n (rounded upwards to the next odd integer) are given in
Tables 1, 2, 3 and 4.

In the remainder of this section we consider bounds for the P{CS|R} for
Formulations 1A and 1Bwitha = 3,k = 2,t = land d* = ™ = &* = ¢* (say).

FormuLATION 1A. For the special case b = 2,¢ = 1, « = % and ¢* = d*, using
the right side of (2.9), the equation determining n for Formulation 1A becomes

(3.4) J1% G(u + d*) dG(u) + G(% + 2d*)G(3: — d¥) = P,

where G = Gy,»—1 is the Incomplete Beta cdf with parametersr = (n + 1)/2 =
n — r + 1. To evaluate the integral I in (3.4), it is useful to note that for¢ > 0



TABLE 1: (d* = ¥ = .20)1
Ezxact smallest odd number n of observations required per population by procedure R for
selecting from k populations the one with the largest median

[The 4 entries in each cell correspond to formulations 1A, 1B, 2A and 2B and are based
on (2.9), (2.13), (2.18) and (2.19), respectively]

p* k
2 3 4 5 6 7 8 9 10
.550 1 3 7 9 11 1 13 15 15
1 3 7 9 11 11 13 15 15
3 5 7 9 11 11 13 13 15
1 5 7 9 9 11 13 13 15
.600 3 5 9 1 13 15 15 17 19
1 5 9 11 13 15 15 17 19
3 7 9 1 1 13 15 15 17
3 5 7 9 11 13 13 15 15
.650 5 7 1 13 15 17 19 21 23
3 7 1 13 15 17 19 21 23
5 7 9 11 13 15 15 17 17
3 7 9 1 13 15 15 17 17
.700 5 9 13 17 19 21 23 25 27
5 9 13 17 19 21 23 25 27
5 9 11 13 15 17 17 19 19
5 9 11 13 15 15 17 19 19
.750 9 13 17 21 23 25 27 29 31
7 13 17 21 23 25 27 29 31
7 11 13 15 17 19 19 21 21
7 11 13 15 17 17 19 21 21
.800 11 17 21 25 29 31 33 35 37
11 17 21 25 29 31 33 35 37
9 13 15 17 19 21 21 23 23
9 13 15 17 19 21 21 23 23
.850 15 23 29 33 35 39 41 43 45
15 23 29 33 35 39 41 43 45
13 15 19 21 21 23 25 25 27
11 15 17 21 21 23 25 25 27
900 21 31 37 41 45 47 51 53 55
21 31 37 41 45 47 51 53 55
15 19 23 25 27 27 29 31 31
15 19 23 25 25 27 29 29 31
.950 35 45 51 57 61 65 67 69 71
35 45 51 57 61 65 67 69 71
23 27 29 31 33 35 37 37 39
23 27 29 31 33 35 37 37 39
.975 47 59 67 73 i 81 83 87 89
47 59 67 73 7 81 83 87 89
29 33 37 39 41 41 43 45 45
29 33 37 39 41 41 43 45 45
.990 67 79 89 93 99 103 105 107 111
67 79 89 93 99 103 105 107 111
39 43 45 47 49 51 53 55 55
39 43 45 47 49 51 53 55 55

1 ¢* is the common value of ¢* = &*; for formulations 2A and 2B only &* is used.
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TABLE 2: (d* = & = .15)t
Ezxact smallest odd number n of observations required per population by procedure R for
selecting from k populations the one with the largest median

[The 4 entries in each cell correspond to formulations 1A, 1B, 2A and 2B and are based on
(2.9), (2.13), (2.18) and (2.19), respectively]

pP* - k
2 3 4 5 6 7 8 9 10
.550 3 7 11 15 19 21 23 27 29
1 7 1 15 19 21 23 27 29
5 9 13 17 19 21 23 25 27
3 9 11 15 17 21 23 25 27
.600 5 1 15 19 23 27 29 31 33
3 1 15 19 23 27 29 31 33
7 1 15 19 21 23 25 27 29
5 1 15 17 21 23 25 27 29
.650 7 13 19 25 29 31 35 37 41
7 13 19 25 29 31 35 37 41
9 13 17 21 23 27 29 31 33
7 13 17 21 23 25 27 29 31
.700 11 19 25 31 35 39 41 45 47
9 19 25 31 35 39 41 45 47
11 17 21 23 27 29 31 33 35
9 15 19 23 27 29 31 33 35
.750 15 23 31 37 43 47 51 53 55
13 23 31 37 43 47 51 53 55
13 19 23 27 31 33 35 37 39
13 19 23 27 29 33 35 37 39
.800 19 31 39 47 51 57 59 63 67
19 31 39 47 51 57 59 63 67
17 23 27 31 35 37 39 41 43
17 23 27 31 35 37 39 41 43
.850 27 41 51 57 63 69 73 7 79
27 41 51 57 63 69 73 7 79
21 29 33 37 41 43 45 47 49
21 27 33 37 39 43 45 47 49
.900 39 55 67 75 81 85 91 95 97
39 55 67 75 81 85 91 95 97
29 35 41 45 47 51 53 55 57
29 35 41 45 47 51 53 55 57
.950 61 81 93 103 109 115 121 125 129
61 81 93 103 109 115 121 125 129
41 49 53 57 61 63 67 69 71
41 49 53 57 61 63 67 69 71
.975 85 107 121 131 139 145 149 155 159
85 107 121 131 139 145 149 155 159
53 61 67 71 75 7 79 81 83
v 53 61 67 71 75 7 79 81 83
.990 119 143 159 169 177 183 189 193 197
119 143 159 169 177 183 189 193 197
71 79 83 89 91 95 97 99 101
71 79 83 89 91 95 97 99 101

t €* is the common value of e* = &*; for formulations 2A and 2B only €* is used.
1813



TABLE 3: (@* = ¢ = .10)}
Ezact smallest odd number n of observations required per population by procedure R for
selecting from k populations the one with the largest median

[The 4 entries in each cell correspond to formulations 1A, 1B, 2A and 2B and are based on
(2.9), (2.13), (2.18) and (2.19), respectively]

P* k
2 3 4 5 6 7 8 9 10
550 9 17 27 35 43 49 55 61 65

3 17 27 35 43 49 55 61 65
11 21 29 37 43 49 53 57 61
5 17 27 35 41 47 51 55 59

.600 1 23 35 45 53 61 67 73 77
9 23 35 45 53 61 67 73 7

15 25 35 41 49 53 59 63 67

9 23 33 39 47 53 57 61 65

.650 17 31 45 56 65 (£ I | 87 91
13 31 45 55 65 73 79 87 91
19 31 39 47 55 59 65 69 73
15 29 39 47 53 59 63 69 73

.700 23 41 57 69 79 87 95 103 107
21 41 57 69 79 87 95 103 107
25 37 47 55 61 67 73 i 81
21 35 45 53 61 67 71 75 81

.750 33 53 71 85 97 105 113 121 127
31 53 71 85 97 105 113 121 127
31 43 55 63 69 75 81 85 89
27 43 53 61 69 75 79 85 89

.800 45 71 89 105 117 127 135 143 151
45 71 89 105 117 127 135 143 151
39 53 63 73 79 85 91 95 99
37 51 63 71 79 85 91 95 99

.850 63 93 115 131 145 155 165 173 179
63 93 115 131 145 155 165 173 179
49 65 75 85 91 99 103 109 113
49 63 75 83 91 97 103 109 113

.900 89 125 149 169 183 195 205 213 221
89 125 149 169 183 195 205 213 221
65 81 93 103 109 117 121 127 131
65 81 93 101 109 115 121 127 131

.950 139 183 211 233 249 261 273 281 201
139 183 211 233 249 261 273 281 201

95 111 123 133 139 147 153 157 163

93 11 - 123 133 139 147 153 157 161

975 195 243 275 297 313 327 339 349 359
195 243 275 297 313 327 339 349 359
123 141 153 163 171 177 183 189 193
123 141 153 163 171 177 183 189 193

.990 271 325 359 383 401 415 427 439 449
271 325 359 383 401 415 427 439 449
163 181 193 203 211 219 225 229 235
163 181 193 203 211 219 225 229 235

t ¢* is the common value of e* = e*; for formulations 2A and 2B only €* is used.
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procedure R for selecting from k populations the one with the

TABLE 4: (@*

et = .05)f
Ezact smallest odd number n of observations required per population by

largest median

[The 4 entries in each cell correspond to formulations 1A, 1B, 2A and 2B and are based
on (2.9), (2.13), (2.18) and (2.19), respectively]

P k
2 3 4 5 6 7 8 9 10
.550 31 69 107 141 171 197 221 243 263
15 67 105 141 171 197 221 243 263
43 88 117 147 171 193 213 231 247
17 71 107 137 163 187 207 225 241
.600 47 93 139 179 213 243 260 291 313
33 93 139 179 213 243 260 2091 313
57 101 137 169 193 217 287 255 271
35 91 129 161 187 211 231 249 265
650 67 125 179 223 261 203 323 347 369
55 125 179 223 261 203 323 347 369
75 123 161 193 219 241 263 281 207
57 115 153 185 213 237 257 277 293
700 95 165 227 277 319 353 385 411 435
8 165 227 277 319 353 385 411 435
97 147 187 219 247 271 291 311 327
81 141 181 215 243 267 287 307 323
750 181 217 285 341 387 425 457 487  5li
125 217 285 341 387 425 457 487  5l1
123 177 219 253 281 305 325 345 361
11 171 213 247 277 301 323 343 359
.800 181 283 361 421 471 511 547 517 605
177 283 361 421 471 511 54T 577 605
157 213 257 201 321 345 367 387 403
147 209 253 289 317 343 365 385 401
.850 253 371 459 527 579 623 66l 695 723
249 371 459 527 579 623 661 695 723
201 261 307 341 371 397 419 439 457
193 259 308 339 369 395 417 437 455
.900 31 503 601 675 733 781 83 87 889
359 503 601 675 733 781 823 857 889
265 320 377 413 443 460 493 513 531
21 327 375 411 443 469 491 511 529
.950 563 737 851 933 997 1049 1095 1133 1167
561 737 851 933 997 1049 1095 1133 1167
381 449 497 535 567 503 617 630 657
379 447 497 535 567 593 617 637 657
975 781 979 1103 1191 1250 1317 1363 1405 1441
781 979 1103 1191 1250 1317 1363 1405 1441
499 569 619 650 691 719 743 763 783
499 569 619 659 691 719 743 763 783
.990 1087 1307 1439 1535 1607 1667 1717 1761 1801
1087 1307 1439 1535 1607 1667 1717 1761 1801
661 733 783 825 87 85 909 931 9049
659 733 783 823 857 85 909 931 949

t ¢* is the common value of e* = &*; for formulations 2A and 2B only €* is used.
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and 2d*/c an integer,
(35) Iz 32263 +jo) + GG + (G — DOIGG — d* + jo)
— G —d"+ G- 1ol

this is obtained by considering non-overlapping squares of side length ¢ whose
diagonals form the line segment onv = u + d*with: —d* <u <%+ d* and
replacing the integral over the lower triangle of each square by 1 the integral over
the square. If we replace the integral over the lower triangle in each square by the
integral over the whole square we clearly obtain an upper bound for I; it follows
that an upper bound B to the absolute value of the error in (3.5) is given by

(36) By = 4 216G +jo) — GG + (G — DNGG — d* + je)
-GG —d* + (G = Do)l

We choose ¢ < d* so that 0 < A = (d* — ¢)/2 < %; then the point (3, 3) is
not included in any of these squares and for each square the distance from the
boundary to (%, 3) is at least A2}, Hence each square has a distance from  of at
least A in one of the two coordinates. Since there are 2d*/c squares it follows
that

(3.7) Bi < B, = (d*/0)[G(3 + A+ ¢) — G(3 + A)]

We note that By = ¢d* forn = 1 and it can be shown that B; decreases with n;
in fact it can be shown that both B; and B, decrease exponentially fast with n.

ForMULATION 1B. Fork = 2,¢ = 1, = 3 and ¢* = d, using the right side of
(2.13), the equation determining n for Formulation 1B becomes

(38) [I&G(u + d*) dG(u) + G(3 — d)
+ YG(} + 2d*) — G(3 + d") = P*

where @ is the same as in (3.4). The only part that presents any difficulty in
(3.8) is the integral and it is the same integral as the one already considered for
Formulation 1A above; hence all the results above on I can be used here also.
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