NONPARAMETRIC PROCEDURES FOR SELECTING A SUBSET
CONTAINING THE POPULATION WITH THE LARGEST
a-QUANTILE!
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1. Introduction and summary. A nonparametric solution is given for the prob-
lem of selecting a subset of & populations which with high probability contains
the one with the largest a-quantile, 0 < a < 1. It is assumed that each popula-
tion has associated with it a continuous edf F,(z) (¢ = 1,2, - - - , k), that samples
of equal sizes are taken from each population and that observations from the
same or different populations are all independent. We use the notation of the
companion paper [7] without redefining all the symbols and, in particular, it is
convenient to identify each population by its cdf.

A procedure for the problem, based on order statistics is proposed in Section
2 and limitations on its feasibility in terms of a bound P; on the possible guarantee
probability P* are examined in Section 3. An asymptotic expression in terms of
tabled functions is also given for P;. The expected size of the selected subset is
examined exactly in Section 4 and asymptotically in Section 5; the latter also
contains an asymptotic formula for the smallest sample size n required to meet
the P*-guarantee. Asymptotic relative efficiency evaluations of the proposed
procedure are carried out in Section 5. Section 6 treats the dual problem of
selecting the smallest a-quantile; Section 7 verifies a monotonicity property.
Extensive tables giving P; and the integer constant defining the procedure are

provided for the case = 1.

2. Formulation of the problem. A common fixed (i.e., given) number of ob-
servations are taken from each of the k& populations. A constant P* > 1/k is
preassigned and we are required to find a procedure R, for selecting a nonempty
subset of & populations which contains the one with the largest a-quantile with
probability at least P¥, i.e., a procedure R; such that

(2.1) P{CS|R,} = P¥,
for all possible k-tuples (Fy, Fa, ---, F}) for which
(2.2) mini ¢j<x Fij(y) = Fa(y) forall y.

We denote this set of k-tuples (Fy, F2, --- , Fi) by &
We shall assume that

(2.3) l1=(n+la=n
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(for any a # 0, 1 this is satisfied for n sufficiently large) and we define a positive
integer r by the inequalities

(2.4) rs(n+1Da<r+1.

It follows that 1 < r < n.
We now define a procedure B; = R;(c¢) in terms of a positive integerc (1 £ ¢ <
r — 1) and the order statistics Y;,; where Y;,; denotes the jth order statistic

from the population Fi(y) (j = 1,2, ---,n;¢=1,2, ---, k).
Procepurg R;. Put F; in the selected subset if and only if
(25) Yr,i = maXi<j<k Yr—c.i

where ¢ is the smallest integer with 1 < ¢ < r — 1 for which (2.1) is satisfied.

We shall show that for any given « and k a value of ¢ < r — 1 may not exist
for some pairs (n, P*) but if P* is chosen not greater than some function
P, = Pi(n, o, k) where 1/k < P; < 1, then a value of ¢ < r — 1 does exist that
satisfies (2.1). The function P; will be derived and evaluated; in particular we
shall be interested to see for fixed k¥ how rapidly it approaches 1 as n increases.

[If we allow ¢ = r and define ¥, ; = — o then any value of P* < 1 can be
obtained by putting all the populations in the selected subset. Thus P; represents
the largest P* for which the (non-randomized) problem is non-degenerate. If
P, < P* < 1 then randomization between the rule (2.5) with ¢ = r — 1 and
the degenerate rule (¢ = r) is desirable, but we shall not consider any such rules
in the discussion below. It should be pointed out however that all the results
below remain valid for both ¢ = 7 and ¢ = 0.]

3. Probability of a correct selection for R;. Using the notation of Sections 1
and 2 of [7], the probability of a correct selection P{CS | R,} is easily seen to be

(3.1) P{CS| R} = [Z.I1iZiHoeooi(y) dH,i(y)
where
(3.2) H,{y) = 2 3= (})Fia(y)(1 — Fra(y))" .

To find the infimum of (3.1) in @, we note that H, ., (y) depends on y only
through F;(y) and that it is an increasing function of F;(y). Hence we obtain
the infimum by setting Fr;(y) = Fu(y) for< = 1,2, ---, k — 1. Making the
transformation v = Fpy;(y) then gives

(3.3)  info, P{CS | Ry} = [Zu HiZoa(y) dH,a(y) = [0 Gi=i(u) dGi(u)

where Gr(u) = I,(r,n — r + 1) is the standard incomplete beta function. When
¢ = 0 the last member of (3.3) is clearly 1/k and we wish to show that G._.(u)

is an increasing function of ¢ (¢ = 1,2, ---, r — 1) for fixed r and » or that
G.(u) is decreasing in r for fixed w. Integrating G,(u) by parts gives
(34) Gr(u) — Gra(u) = —(w'(1 —w)™”"

which shows the required monotonicity. Hence the maximum value of P* for
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which a value of ¢ satisfying (2.1) exists is obtained by setting ¢ = r = 1 in
(8.3) and this easily reduces to S

(3.5) Pr=r(DA = oA = o) "
— (n) k—-l( 1) (k—l)/(n(z-i-l))

Hence for any P* < Py(n, o, k) = Pyavalueof ¢ < r — 1 exists and it is unique
so that the procedure R, is well defined for P* < P;. A short table (Table 2) of
Pi-values for o = 1,sothatr = (n + 1)/2, and k = 2(1)10 is given; the integral
in (3.5) was evaluated by Gaussian quadrature in the preparation of Table 2.
It can be shown that P; — 1 exponentially fast as n — . In fact, we can write
for large n (with r/n — «)

(36) Pr~vl— (k—1)(N/(T) &1 — (k= DI+ o)/4()TC

where @’ = 1 — a and C. does not depend on % or n; a detailed derivation of
(3.6) is omitted. Since 1 + o > 0and [(1 + o)/a']” > 0 are both increasing
in &’ (0 < & < 1) their product is also and hence the maximum value of the
quantity in square brackets in (3.6) is one; this shows that P, — 1 exponentially
fast.

Of course, the same phenomenon described above can be interpreted from
another point of view, namely, that for a given P* > 1/k there is a minimum
common number n of observations required to satisfy (2.1). Table 2 munedlately
provides the smallest common odd integer n for which Pi(n) = P*for a = &;
for instance, if & = 2, P* = .750, this smallest value of n such that Py(n) Z .750
is 3.

For small values of k and any « satisfying (2.3) the integral in (3.3) can be
written more explicitly and, in particular, for £ = 2 we obtain after algebraic
simplification the three equivalent expressions

info, P{CS | Ry, k = 2} = ()7 2 (HH R
(3.7) =14 o7 o (EHCRI
=1— (O™ 2ZTCEDHCI.

The last expression is more useful for computing if 7 is small and the middle one
is more useful if ¢ is small. A table (Table 3) of r — ¢ values satisfying (2.1) with
o = 1 sothatr = (n + 1)/2, and selected values of n, k and P*is given. Gaussian
quadrature was also used to evaluate (3.3) in the preparation of Table 3 and
(3.7) served as a check for k =

4. Expected size of the selected subset. The size S of the subset selected by
procedure R is, of course, a random variable and its expected value may be
taken as a measure of the efficiency of R;, with small values corresponding to
high efficiency. In this section we derive an expression for E{S|R.} and show
that the maximum value in ©; is attained when the cdf’s are all identical.



SELECTING A SUBSET CONTAINING THE LARGEST QUANTILE 1791

It is easily seen that for any ¢ (1 < ¢ < r — 1)
(4.1) E{S|Ry} = > % P{F; is included in the subset | Ri}
= Q2 ia f_f,_? 15 Hee i(y) dH, ((y).
For the special configuration (which we call the P-configuration)
(4.2) Fu(y) = Fey(y) = - = Fpy(y),
this reduces to
(43) BIS|By, P} = [%HY(y) dHoa(y)
+ (b = 1) [Zo Heoa(y) HZ, A(y) dH2(y)
and, if we set all of the F;’s equal (the W-configuration), we obtain’

(44) CEB(S|Ry, W} =k [2u H*Z u(y) dH, () ;
for ¢ equal to the integer c-value satisfying (2.1) the right side of (4.4) is approxi-
mately kP*.

To prove that E{S|Ri} is a maximum when Fpy(y) = Fiy(y) = --- =
Fy(y) for all y, we first prove the

Lemma. For any two cdf’s Fi(y) and Fa(y) such that Fi(y) = Fu(y) for all y
we have Fi(y) = Fig(y) (i = 1, 2) and for any integer c with 1 < ¢ < r — 1

(4.5) H, cy(y)H:r2(y) — Hra(y)Hr—o2(y) = Q (say)

1s non-increasing in F1(y) for any fized Fa(y).
Proor. Differentiating @ with respect to Fi(y), it is sufficient to show that

(4.6) Q= H,»(y) dH,—.1(y) — H,_.2(y) dH,.(y) = 0.

We show (4.6) by letting Fo(y) — 0 for all y, so that @ — 0, and showing that 0
is the maximum value of @, for F1(y) = Fu(y). For this purpose we differentiate
Q1 with respect to Fy(y) and obtain (neglecting common factors)

Qu=F"" (Yl — Fu(y)""F 7 (y)[1 — Fo(y)"™
= I — R@I7FTT () — Fa(y)
= I (L — B)IF T () — Fy(y)™”
Al = F(p)I'F(y) — F(y)[L — Fo(y)]}.

It follows from (4.7) that Q12 = 0 whenever Fy(y) < Fi(y) for all y and this
proves the lemma.
TuaroreM. E{S8} is a maximum in Q when

(4.7)

(4.8) Fu(y) = F(y) = -+ = Fiy(y) forall y.

,PROOF. Consider the pair Fi; and Fy; for any particular ¢ # &; we wish to
show that if F1;)(y) decreases on any subset of y values without crossing Fs,1(y),
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then E{S} is not decreased. Integrating by parts in the general expression (4.1)
for E{S} gives
E{8} = 251 [2w TTemt, asej Hime. a(y) dHri(y)
+ (%0 1152 Hre. o(y) dH i (y)
=1 — 250 % [T e Heeo o) [Ha(y) dHr—2s(y)
— Ho—i(y) dHri(y)]l.

For fixed Fpy(y) we can disregard all terms except j = ¢ since in the jth term
(j # 1) if Fiy(y) decreases then H., . i(y) decreases and hence E{S} increases.
Hence we need only show that

(4.10) ffeo I;—-ll,ayéiHr—c,a(y)[Hr,k(y> dHr—c,i(y) - H'r—:c,k(y) dHr,z(y)]

is a non-decreasing function of Fy(y) for fixed Fpy(y) in . Integrating by
parts again we find that it is sufficient to show that both of the functions

(4-11) Hr—c,i(y)Hr,k(y) - Hr.i(y)Hr—c.k(y),
(4:.12) Hr—c,i(y) dHr,Ic(y) - Hr,i(y) dHr——c,k(y),

and non-increasing functions of Fyy(y) for fixed Fpy(y) in Q. This was shown
for (4.11) in the lemma; to show this for (4.12) we differentiate (4.12) with
respect to Fra(y) and the proof is exactly the same as in (4.7). This completes
the proof of the theorem.

(4.9)

5. Asymptotic results and asymptotic relative efficiency (ARE). Asymptotic
(n — ) expressions for infg, P{CS|Ri} and E{S|R:} will be obtained for
fixed P*. A definition is given for the asymptotic relative efficiency ARE (R,
R”; A) of a procedure R’ relative to another procedure R” under the alternatives
A. Our procedure R; for « = 3 is then compared to others, e.g. the one based on
the sample means, for different translation alternatives including normal shift
alternatives.

We now hold k& and P* fixed and let n — o with 7/n — a where 0 < a < 1;
letB=c/(n+1) = ~/nt (only v will be fixed below). Let N(u, o’) denote a
normal chance variable with mean u and variance o*, let ®(x) denote the standard
normal cdf and let @ = 1 — «. We shall use a simple consequence of a well-
known result on the asymptotic distribution of sample quantiles which we state
as

Lemma 1. If U, has the distribution G,—.(w) with parametersr — ¢~ n(a — B)
=an —yntandn —r +1~ (1 —a)n + ynt then Y, = (U, — o) is asymp-
totically N( —v, a&).

If wesetc = v = B = 0 in Lemma 1 then we obtain

CoroOLLARY 1. If the distribution G.(u) has parameters 1 = no andn —r +1
~n(l — a) then

(5.1) Go(u) &~ ((u — a)ni/(a)?).
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Proor or LEmma 1. The standard proof that holds for fixed values of « — 8
also shows that fora — 8 = o — v/n' - a 0<a<l)

Wa = 0i(Un — a + v/n))/(a@)! = (Y, + v)/(aa)}

is asymptotically N (0, 1) and it follows that Y, is asymptotically N( —v, oa).
Letting u = a + y( aa/n) we now use the above lemma and corollary to
obtain

Gro(u) = P{U, < u} = P{Y, < y(aa)}} & &(y + v/(a)})
and since G.(u) =~ ®(y) we have from (3 3)
(5.2) limy»w info, P{CS | Ry} = [Z. 3 (y + v/(ad)?) dd(y).

Since thls quantity is set equal to the fixed constant P* < 1, we now see why
v = Bn}is a fixed constant so that 8 — 0 (like n*) and ¢ — » (like n'). More-
over if s = s(k, P*) is the (unique) root of

(5.3) Ze® 7y + 5) dB(y) = P*

(s or H = s/2 has been tabulated by Bechhofer [2], Gupta [4] and Milton [6])
then the rate at which 8 — 0 and ¢ — <« is given by

(5.4) gnt = ent/(n + 1) & s(ez)} (n— o),

Treating the latter part of (5.4) as an equality and solving for ¢ we can make the
procedure R, explicit and (2.1) will be satisfied for large n. A small table of
c-values based on (5.4) is numerically compared below with the corresponding
exact results based on (3.7) and excerpted from Table 3. Here the approximate
c-values are given to one decimal and one would use the largest integer contained
in this decimal to be conservative; the asymptotic approx1mat10ns are quite
good (and appear to be equally good) for each of the P*-values investigated,
P* = .90, .95 and .99; in these empirical results the approximation never differs
from the corresponding exact values by more than one and, when there is a dif-
ference of one, it is always on the conservative side.

It is useful to note that for each value of P* in Table 1 and in Table 3 the
entries g(n) seem to approach an arithmetic progression as n increases. Setting
B ~ c¢/n and r = n/2 we obtain for g(n) = r — c¢ asymptotically (n — o,
r/n— %)

(5.5) g(n) =~ n(1 — s/n?)

where s = s(k, P*) is given by (5.3). Hence if we let Ao denote the common
difference in the n-values in Table 3, we have asymptotically (n — «, r/n — %)
(5.6) g(n + Ag) — g(n) ~ 30 — 3s[(n + Ag)} — n¥] & 2Ao(1 — s/2n}) 2 24,

and this result is independent of both k and P*.
* We now examine E{S|R;} under the same limiting operation, assuming that
the Fy’s differ only in a location parameter 6. Particular subclasses of this
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TABLE 1
Comparison of Approxzimate and Ezact Values* of r — ¢

The 3 entries in each cell correspond to P* = .90, .95 and .99 respectively.
(Based on (5.4) and (3.3) with @ = 3 andr = (n + 1)/2)

n k=2 k=3 k=4 k=6 k=28 k= 10
45 16.8 (16) 15.4 (15) 14.6 (14) 13.7 (14) 13.2 (13) 12.8 (13)
15.0 (15) 13.7 (14) 13.0 (13) 12.2 (12) 11.7 (12) 11.3 (11)
11.7 (12) 10.6 (11) 10.0 (10) 9.2 (10) 8.8 (9) 8.4 (9)

95 39.1 (39) 37.0 (37) 35.9 (36) 34.7 (34) 33.9 (34) 33.3 (33)
36.5 (36) 34.6 (34) 33.6 (33) 32.4 (32) 31.7 (32) 31.2 (31)
31.8 (32) 30.2 (30) 29.3 (29) 28.2 (28) 27.6 (28) 27.1 (27)

145 62.0 (62) 59.5 (59) 58.1 (58) 56.6 (56) 55.6 (55) 54.9 (55)
58.9 (59) 56.6 (56) 55.3 (55) 53.8 (54) 52.9 (53) 52.3 (52)
53.1 (53) 51.1 (51) 50.0 (50) 48.7 (49) 47.9 (48) 47.3 (47)
195 85.3 (85) 82.3 (82) 80.8 (80) 79.0 (79) 77.9 (78) 7.1 (77)
81.7 (81) 79.0 (79) 77.5 (77) 75.8 (76) 74.8 (75) 74.0 (74)
74.9 (75) 72.6 (72) 71.3 (71) 69.8 (70) 68.9 (69) 68.2 (68)

205 | 132.4 (132) | 128.8 (128) | 126.9 (126) | 124.6 (124) | 123.3 (123) | 122.3 (122)
128.0 (128) | 124.6 (124) | 122.9 (123) | 120.8 (120) | 119.5 (119) | 118.5 (118)
119.7 (119) | 116.8 (117) | 115.3 (115) | 113.4 (113) | 112.3 (112) | 111.4 (111)

395 | 179.9 (180) | 175.8 (175) | 173.6 (173) | 171.0 (171) | 169.4 (169) | 168.3 (168)
174.8 (174) | 171.0 (171) | 168.9 (169) | 166.5 (166) | 165.0 (165) | 163.9 (164)
165.2 (165) | 162.0 (162) | 160.2 (160) | 158.0 (158) | 156.7 (157) | 155.7 (156)

495 | 227.8 (227) | 223.1 (223) | 220.7 (220) | 217.8 (218) | 216.0 (216) | 214.8 (215)
222.1 (222) | 217.8 (217) | 215.5 (215) | 212.8 (213) | 211.1 (211) | 209.9 (210)
211.3 (211) | 207.7 (207) | 205.7 (205) | 203.3 (203) | 201.8 (201) | 200.7 (200)

* The exact values are in parentheses.

class, e.g., normal shift alternatives (NA), will be considered in the ARE dis-

cussions below. We consider the P-configuration in which 67 = 65 =
-+ = Op_1yy = —0/n’ (say) and, for convenience, we set 0z = 0, i.e., we set
F[i](.’l)) = F(x) for 7 =k

= Fy(z) = F(z + 6/n*) for i <k.

We assume that F has a continuous derivative f > 0 at the (unique) point A for
which F(A) = a. If \; = X\i(a) is the ath quantile of F; then clearly A, = A,
N =M\ =\ — 8/nfori < kand fi(\;) = f(\). We shall also make use of

Lemma 2. If X, is the (o — v/n*)th sample quantile in a random sample of size
n from a population with distribution function F having a continuous deriwative
f > 0 at the (unique) point A = A a) for which F(\) = a (0 < a < 1), then
Y, = nf(\) (X, — \) is asymptotically N(—v, a&).
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Proor. For convenience we shall write A(a) as A, in this proof since there is no
danger of confusion. It is well known that

(5.7) W' = fQap)ln/(a — B)(a — B)H(Xn — Nap)

is asymptotically N (0, 1); the 'sté,ndard proof that holds for « — B fixed also
holds fora — 8 — a (0 < a < 1). Since f(¢) is continuous at A(a)

a—f=[Mtf(t)dt = a— [ f(t)d~a— (N — Nas)f(Na)
and since 8 — 0 as n — « we can now write
>‘°‘—5 = Ao — B/f()‘a) = Ae — V/f(xa)n%.

Substituting this in (5.7) and using again the continuity of f(2) at x = A\, and
the fact that 8 — 0, we obtain the asymptotic (n — &%, 8 — 0) equivalence

W' & (Y + 7)/(aw)},

which yields the desired result that Y, is asymptotically N( —v, aa).
Applying Lemma 2 to Fy; in (4.3) we have for the sample quantile X,,; with
cdf H,_,; for each 7 < k

(5.8) H,_odw/nt +2) = P{n}(Xn: — M)F(N) £ (w + 0)f(N)}

~&(((w 4 0f(\) + v)/(ea)!) = &(z +d + 9)
where z = wf(\)/(aa)f, d = 6f(\)/(a&)! and, as above s = v/(aa)’. Likewise
for each ¢ < £k, Hm-(w/n% + A) & &(z + d). For ¢ = k the same results are valid
with § = d = 0. Hence settingy = A + w/n’ in (4.3), writing the first integral in
terms of z and the second in terms of 2’ = z + d we obtain (after dropping primes)
(5.9) lipsew B{S| Ry, P} = [23 (2 + d + s) d®(2)

+ (b — 1) [2.8(z — d + )8 (2 + s) dd(2).

For the W-configuration, in accordance with the remark after (4.4)

lim,.., E{S| Ry, W} = kP*.

Denote the right side of (5.9) by K(d); we see that it is a decreasing function of
d or ¢ (by differentiation) and that K(») = 1. We now seek a simple explicit
expression for d. such that K(d.) = 1 + e where ¢ > 0 is small. Then, setting
= 0/n* in the definition of d above, we use the resulting

(5.10) C m(e) = dlea/A(N)
as an approximation to the sample size required to satisfy
(5.11) E{S|Ry,Pa} =1+ ¢

where P, is the P-configuration with 6y — 6 = Az =1,2,--- ,k — 1). It
should be noted that K(d) is an asymptotic formula for E{S|R,, P} obtained
by holding d (and 6) fixed and we are now evaluating it for large d.

From (5.9) and (5.11) we derive (5.12) below by using twice (on the first
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line and the fourth line) the fact that (1 — z)* &~ 1 — kx for z small and also
using twice (in deriving the second line and the last expression on the fifth line)
the first term of the Feller-Laplace (or Mill’s ratio) normal approximation
®(—2) = ¢(z)/z for large 2z; here ¢(z) denotes the standard normal density.
Thus we have (using & to denote an approximation) for large d

K@) — 12k — 1{ [20 8y — d + )8 (y + ) dd(y)
—®((— s—d)/2h)}
~ (b — D27y + )le(y — d + s5)/d] d@(y)
— &((—s — d)/2")}
(5.12) ~ [(k — 1)/d2e((s — d)/2) [0 & X(z/2!
+ (s + d)/2) d(z) — d2'@((—s — d)/2")}
~ [k = 1)/d2{e((s — d)/2)[L — (k — 2)B((—s — d)/6")]
— d2'((—s — d)/2)}
~[(k — 1)/d2e((s — d)/2) &~ 3(k — 1)&((s — d)/2").

If we set this equal to € > 0 then the approximate value ni(e) of n required by
procedure R; (for e small) to satisfy (5.11) is given by

(5.13) n(e) & am(s — AV2H)/A%(\)

where € = 2¢/(k — 1) and \? is the ¢ -quantile of &.

We now apply the same analysis to the procedure R; based on sample means
(see Gupta [3] for a detailed development and a fairly complete set of references).
We assume that the Fy; have a finite, known and (for simplicity) common
variance ¢°. To ensure that procedure R, is accomplishing the same goal as R, ,
we assume that the sample mean %, from the population with edf F; has an
asymptotic normal distribution with mean 6;;; where 6y = 09y < -++ = Oy ;
this certainly holds if we are dealing with a location parameter.

The procedure R, puts the sth population (which gave rise to &;) in the selected
subset iff

Ts < maxi<j<x Tj — 0

where 6 > 0 is chosen to satisfy the P*-condition (2.1). For specified P* < 1 we
find that 8 = so/n’ where s = s(k, P*) is defined by (5.3). For the P-configura-
tion with f; = 0 and 8 > 0 we obtain as in (5.9) and (5.12), lettingd' = 6/c > 0,

(5.14) liMw B{S|R:, P} = [Z 3 'y + d + s)dd(y)

+ (k= 1) [2@(y — d + ) (y + ) d(y),
(5.15) E{S|R:,P} — 1%k —1)&((s—d)/2H) ~K(d) -1
As before we let A = o/nf = od'/ng, set d’ equal to the value d.’ such that
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K(d') = 1 4 eand solve for ny = na(e); for e small we obtain
(5.16) na(e) & (s — AP2H)%P /A%
For translation alternatives (TA) we define the asymptotic relative efficiency

ARE (R, R”; TA) of R’ relative to R” to be the limit as ¢ — 0 of the ratio of
n” (e) to n'(€); hence for R; and R, we have

(5.17)  ARE(Ry, Ry ; TA) = limeo [no(e) /m(e)] = o’f*(\)/ea,

which is independent of 6 for any translation alternatives.
For a = } and normal shift alternatives (NA) with ¢ = 1 we obtain from
(5.17)

(5.18) ARE (R, Ry ; NA) = 2/

For & = % and two sided exponential shift alternatives (TEA) with continuous
symmetric densities about the median value 6; , we obtain

(5.19) ARE (R, , R,; TEA) = 2;

i, e., Ry is asymtotically twice as efficient as the procedure R, under TEA.

We can also compare R; with both non-randomized and randomized rank sum
(or seore) procedures which have been applied to the problem of selecting asub-
set containing the best population by Bartlett [1]. The basic procedures are de-
fined in Lehmann [5] in terms of a function J(z) defined for 0 < z =< 1, whose
inverse J©(z) = H(z) is a cdf. For some fixed function J(z) we can define the
score for the 7th population by ‘

(5.20) S;V,i =n' Z;';l J(RIJ/(N + 1)) (7' = 1, 2; ) k);

where R; ; denotes the rank of the jth observation X, ; from the 7th population
I1:in the combined sample of N observations; we are assuming that there is a
common number from each population so that N = kn. Then the non-random-
ized procedure R’ = R’(J) based on these scores is to put [ ]; in the selected sub-
set iff

(5.21) Sw,i > maxigjzk Swi — ¢

where ¢’ is a positive number chosen to satisfy the P*-condition (2.1). The
randomized procedure R” is similarly defined in terms of randomized scores but,
since the asymptotic properties of R” are equivalent to those of R, we need not
define R” here. The cdf’s F«(z) are again assumed to be of the form F(z — 6,),
so that we are dealing with the selection problem for a location parameter. We
shall use the result from [1] that for asymptotically small d* (our A), the com-
mon (large) sample size n’ that would be needed for R’ (and also for R") to
satisfy both (2.1) and (5.11) is

(5.22) n X [Ad/A [Za (d/d2){J(F(x))} dF ()T,
where d. in (5.22) is the root in d of the equation obtained by setting the right
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side of (5.9) equal to 1 + ¢, and where
(5.23) A? = [5JJ%u) du — (f3J(u) du)™

It should be noted that »” in (5.22) represents the value of n that would be needed
if one knew that the true-configuration were given by 6y — 65 = A
(¢=1,2, -+, k) for some fixed A, not depending on n. In [1] the limiting process
on 7 is equivalent to ours with fixed ¢ > 0 and fixed § = d(aa)?/f(\) asin (5.8).
The value ni(¢) of n; required by procedure R; to satisfy (5.11) for the Pa con-
figuration is given by (5.10) with d. the same as in (5.22). Hence for any: transla-
tion alternatives (TA) we have from (5.10) and (5.22)

(5.24) ARE (R:, R'(J); TA) = AY(\)/aa[2 (d/dz){J(F(z))} dF(x)]
and it is interesting to note that this is independent of e.

If we. take J = H = & and consider normal alternatives (NA) then ( 5. 24)
with @ = % gives the same result as in (5.18)

(5.25) ARE (R,, R'(®); NA) = 2/r.

For the same H if we consider TEA then (5.24) with @ = 1 gives, after using
symmetry and straightforward methods of integration, .

(5.26) ARE (R, , B'(3); TEA) = (3)"/4(2/7) = 7r/2-

If we take J*” = H = U, the standard uniform distribution, and.consider
logistic alternatives (LA) then (5.24) with @ = 1 gives

(5.27) ARE (Ry, R'(U); LA) = #(300)"/3(30)" = &5

for the LA it is known that this “score statistic” with J“™ = H = U reduces to
the Wilcoxon statistic and gives the locally most powerful test. For the same H
if we consider the (TEA) then (5.24) with a = 1 gives

(5.28) ARE (R:, B'(U); TEA) = %(3)"/3(3)" = 4

We note with curiosity (but without explanation) that the last two numbers are
reciprocals and the two numbers before that are also reciprocals.

It can be shown (we omit the proof) that the ARE in both (5.17) and (5.24),
considered as a function of a for 0 < a =< 1, is a maximum for @ = % for all three
of the alternatives considered above, i.e., for NA, LA and TEA. A sufficient con-
dition for this is that f(x) be symmetric about z = 0 and f*(z)/[F(z)(1 — F(z))]
be decreasing for + = 0; these properties hold in each of the three different
alternatives considered above.

6. Dual problem. Consider the dual problem of selecting a subset containing
the population with the smallest a-quantile. For specified P* > 1/k we now re-
quire a procedure R’ that satisfies

(6.1) P{CS|R/} =z P
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for all possible k-tuples (F1, Fy, - -+, Fy) for which
(6.2) maxigick Fri(y) = Fu(y), forall y;

denote the set of all such k-tuples by Q. We again assume (2.3) and define r
by (2.4). The procedure dual to procedure R, of section 2 is
PROCEDURE R;'. Put F; in the selected subset if and only if

(6.3) Y, = minigicr Yo

where ¢ is the'smallest integer with 1 < ¢ < n — r for which (6.1) is satisfied.
It will be convenient to use also the notation H.(F;(y)) for H, (y). For this
problem Equation (3.1) is replaced by

(6.4) P{CS|R/} = [Z, [T} {1l — Hrrei(y)} dH, ()
= [Ze [li=e Horio(1 — Fisi(y)) dHnoria(1 — Fru(y)).

If the F,(y) are all symmetric about y = 0 then for any k, by mé,king the trans-
formation s = —y, we obtain L

(6.5) P{CS Ry} = [20 I Huriaeo(Fij1(2)) dHpepao(Fiuy())

and we note that the problem is equivalent to selecting a subset containing the
largest (1 — a)-quantile (a = ).
Equation (3.3) is replaced by

(6.6) infa,s P{CS| Ry} = [3[1 — Groo(w)™ dGo(u)
= [3 Giliio(u) AGura(u).

If « = L thenn — r + 1 = r and hence for any & we note that (6.6) reduces to
(3.3). Hence for o = 3 the tables for determining ¢ are the same for both prob-
lems; this is not true in general for a ## 3. In particular, the tables we have com-
puted for & = % can also be used for the problem of selecting a subset containing
the population with the smallest median.

Other discussions for this problem are similar to those of the dual problem and
are omitted.

7. Property of monotonicity of unbiasedness. Let p; denote the probability
that R, retains F[; in the selected subset.
TuaeoreMm. For any two cdf’s Fi(-) and F;(-) such that

Fyy) = Fra(y) 2 Fin(y) = Fi(y)
for all y we have
(7.1) Di = Ppj.

Proor. Letting M denote the set {m:m = 1,2, --- | k;m # 1, m # j} we use
the fact that H, (y) is an increasing function of F;(y) and then integrate by parts
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to obtain
Zeo Mmew Hre () Hoe i(y) dH.,,(y)
— H,—,(y) dH,,{(y)}
= 2o T Lmese Heon(y){Ho—e,i(y) dH,,(y)
}
]

Di— Pj

H
(7.2) — H,.,(y) dH,,{(y)
< [Ze Ulmew Hreo(y){H, 5(y) — Hod(y)} dHre,(y)
+ 2 omren J 2o ([ mersmpm’ Hron(y) H e, ) {He.i(y)
- — H,(y)} dH—con(y).

Since Fia(y) = Friy(y) for all y it follows that H,,«(y) = H,,(y) for all y and
every term in the last member of (7.2) is non-positive; this proves the theorem.
It follows that under our assumption (2.2) the probability of including Fy; in
the selected subset is not less than the probability of including any other Fy;; in
the selected subset, i.e., the procedure B; is unbiased.
A similar result holds for the dual problem; the proof is similar to the above
proof and is omitted.

TABLE 2
Valuest of Pi(n) for « = % as a function of k and n
k
”n
2 3 4 5 6 7 8 9 10

1 .50000 | .33333 | .25000 | .20000 | .16667 | .14286 | .12500 | .11111 | .10000
3 .| .80000 | .68333 | .60455 | .54675 | .50204 | .46612 | .43646 | .41143 | .38995
5 .91667 | .85531 | .80716 | .76779 | .73467 | .70620 | .68132 | .65929 | .63959
7 .96503 | .93592 | .91094 | .88906 | .86959 | .85206 | .83611 | .82150 | .80801
9 .98529 | .97215 | .96023 | .94931 | .93921 | .92982 | .92103 | .91276 | .90496
11 .99381 | .98803 | .98261 | .97749 | .97263 | .96801 | .96359 | .95936 | .95530
13 .99739 | .99489 | .99250 | .99019 | .98796 | .98580 | .98371 | .98168 | .97970
15 .99890 | .99783 | .99679 | .99577 | .99478 | .99381 | .99285 | .99192 | .99101
17 .99954 | .99908 | .99863 | .99819 | .99776 | .99733 | .99691 | .99649 | .99608
19 .99980 | .99961 | .99942 | .99923 | .99904 | .99886 | .99867 | .99849 | .99831
21 .99992 | .99984 | .99975 | .99967 | .99959 | .99951 | .99943 | .99936 | .99928
23 .99997 | .99993 | .99990 | .99986 | .99983 | .99979 | .99976 | .99973 | .99969
25 .99999 | .99997 | .99996 | .99994 | .99993 | .99991 | .99990 | .99988 | .99987
27 .99999 | .99998 | .99998 | .99997 | .99996 | .99996 | .99995 | .99994
29 .99999 | .99999 | .99999 | .99998 | .99998 | .99998 | .99998
31 .99999 | .99999 | .99999 | .99999

For example, for £ = 2 and P* = .99 it follows from the above table that we require at
least n = 11 observations from each of & = 2 populations to be able to find a value of ¢ or
r — ¢ to satisfy the basic requirement (2.1).

t Based on (3.5) with» = (n + 1)/2 for « = § by (2.4).
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TABLE 3

¢ for which P{CS | R} = P* for a =

P* = 750
n r
k=2 k=3 k=4 k=35 k=6 k=1 k=38 k=9 k=10
5 3 1 1 1 1 0% 0% 0% 0% Ox
15 8 6 5 4 4 4 4 3 3 3
25 13 10 9 8 8 8 7 7 7 7
35 18 15 13 13 12 12 11 11 11 11
45 23 19 18 17 16 16 16 15 15 | 15
55 28 24 22 21 21 20 20 20 19 | 19
65 33 29 27 26 25 25 24 24 24 | 23
75 38 33 31 30 30 29 29 28 28 | 28
85 43 38 36 35 34 33 33 33 32 | 32
95 48 43 41 39 39 38 37 37 37 | 37
145 73 67 64 62 61 61 60 60 59 | 59
195 98 91 87 86 85 84 83 83 82 | 82
245 123 115 | 111 |109 |108 |107 |106 | 106 105 | 105
295 148 139 (135 |[133 |132 |131 130 | 129 129 | 128
345 173 164 |[159 (157 (155 (154 |153 | 153 152 | 152
395 198 188 | 183 | 181 179 | 178 | 177 | 176 176 | 175
445 223 212 207 |205 |203 |202 |201 |200 199 | 199
495 248 237 | 231 220 |227 |25 |224 |22 223 | 222
P* = .900
5 3 1 0% 0% 0% 0% 0% 0% 0% 0%
15 8 4 3 3 3 3 2 2 2 2
25 13 8 7 7 6 6 6 6 5 5
35 18 12 11 10 10 10 9 9 9 9
45 23 16 15 14 14 14 13 13 13 13
55 28 21 19 19 18 18 17 17 17 17
65 33 25 24 23 22 22 21 21 21 21
75 38 30 28 27 26 26 26 25 25 25
85 43 34 32 31 31 30 30 29 29 29
95 48 39 37 36 35 34 34 34 33 33
145 73 62 59 58 57 56 56 55 55 55
195 98 85 82 80 79 79 78 78 77 77
245 123 108 |105 |103 (102 |101 |101 |100 | 100 99
295 148 132 | 128 126 |125 |124 |124 (123 |122 | 122
345 173 156 [152 (150 | 148 | 147 |147 |146 | 145 | 145
395 198 180 175 |173 (172 |[171 [170 |169 | 169 | 168
445 223 203 (199 | 197 |195 [194 |193 192 |192 | 191
495 248 227 (223 (220 |219 (218 |217 |216 |215 |215
P* = 950
5 3 0% 0% 0% 0% 0% 0% 0¥ 0% 0%
15 8 3 3 2 2 2 2 2 2 2
25 13 7 6 6 5 5 5 5 5 4
35 18 11 10 9 9 8 8 8 8 8
45 23 15 14 13 13 12 12 12 12 11
55 28 19 18 17 16 16 16 16 15 15
65 33 23 22 21 20 20 20 19 19 19
75 38 28 26 25 24 24 24 23 23 23
85 43 32 30 29 29 28 28 27 27 27
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TABLE 3—Continued

P* = 950
n r
k=2 k=23 k=4 k=5 k=6 k=1 k=8 | k=9 | k=10
95 48 36 34 33 33 32 32 32 31 31
145 73 59 56 55 _ 54 54 53 53 52 52
195 98 81 79 7 76 76 75 75 74 74
245 123 104 101 100 99 98 97 97 96 96
295 148 128 124 123 121 120 120 119 119 118
345 173 151 147 145 144 143 142 142 141 141
395 198 174 171 169 167 166 165 165 164 164
445 223 198 194 192 190 189 188 188 187 186
495 248 222 217 215 214 213 212 211 210 210
P* = 975
5 3 0¥ 0¥ 0¥ ox (3 O# 0% 0% 0¥
15 8 2 2 2 1 1 1 1 1 1
25 13 6 5 5 4 4 4 4 4 4
35 18 10 9 8 8 7 7 7 7 7
45 23 13 12 12 1 11 1 11 10 10
55 28 17 16 16 15 15 14 14 14 14
65 33 22 20 19 19 19 18 18 18 18
75 38 26 24 23 23 22 22 22 22 21
85 43 30 28 27 27 26 26 26 26 25
95 48 34 32 32 31 30 30 30 30 29
145 73 56 54 53 52 51 51 51 50 50
195 98 78 76 74 74 73 72 72 72 71
245 123 101 98 97 96 95 94 94 93 93
295 148 124 121 119 118 117 117 116 116 115
345 173 147 144 142 141 140 139 138 138 137
395 198 170 166 165 163 162 162 161 160 160
445 223 193 190 188 186 185 184 184 183 182
495 248 217 213 211 209 208 207 206 206 205
P* = ,990
5 3 0% 0% (U 0% (3 0% o% 0% 0¥
15 8 2 1 1 1 1 1 1 1 1
25 13 5 4 4 3 3 3 3 3 3
35 18 8 7 7 7 6 6 6 6 6
45 23 12 1 10 10 10 9 9 9 9
55 28 16 15 14 14 13 13 13 13 12
65 33 20 18 18 17 17 17 16 16 16
75 38 24 22 21 21 | 21 20 20 20 20
85 43 28 26 25 25 24 24 24 24 23
95 48 32 .| 30 29 29 28 28 28 28 27
145 73 53 51 50 49 49 48 48 48 47
195 98 75 72 71 70 70 69 69 69 68
245 123 97 94 93 92 91 91 90 90 90
295 148 119 117 115 114 113 113 112 112 111
345 173 142 139 137 136 135 135 134 134 133
395 198 165 162 160 159 158 157 157 156 156
445 223 188 184 183 181 180 180 179 178 178
495 248 211 207 205 204 203 202 201 201 200

# Degenerate cases in which all the populations go into the selected subset with prob-
ability one.
t Based on (3.3) with r = (n + 1)/2.
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