SIGN AND WILCOXON TESTS FOR LINEARITY!
By RIQHARD A. OLsHEN?

Yale University

1. Introduction and summary. This paper introduces two tests of linearity
against convexity in regression. In the first, the test statistic is the number of
positive signs of second differences computed from certain of the observations.
In the second, a Wilcoxon statistic is computed from those differences. Possible
competitors of these tests are the usual least-squares ¢-test applied to regression
coefficients, Mood’s median test [12], and Hill’s R test [6]. Certainly the first of
these is to be preferred when errors are independent -and normally distributed
with common variance, and the alternative is quadratic regression. The sign
test to be introduced here is simpler to compute than any of these other three
tests, and the Wilcoxon test is also rather simple to compute. Both can be criticized
in that their test statistics are calculated from certain randomly chosen observa-
tions.

The tests based on second differences are compared with the ¢-test when the
alternative is quadratic regression and errors are continuously and symmetrically
distributed. To be precise, in the model

(1) V,=gX  +bX:+a+ e

fori =1, --- , N, we shall compare tests of Ho:g = 0 against Hy:g > 0;a, b, and
g are unspecified, and the ¢’s are independent, with identical distributions which
are symmetric about their mean value of zero and have (unknown) variance o°.
The criterion whereby tests are compared is Pitman efficiency, which is defined
as follows.

Suppose 6 is an unknown real parameter of a probability distribution Hj .
Suppose further that for each positive integer N, Ay and Ay" are two size
a (0 < a < 1) tests of the null hypothesis § = 6, against the alternative 6 > 6,
based on a random sample of size N from Hs . Let Bx(6) and 8y*(8) be the re-
spective power functions, 8 be a fixed number in (e, 1), £&v be a sequence of
numbers for which &v | 6, and My(&x)[Mo(Ex)] be the least integer for which
Ba,(£x) = BlBY,(Ex) = B]. The Pitman efficiency of Ay relative to Ay™ for the
sequence of alternatives &y is defined to be the limy.. Ma(éx)/Mi(éx) provided
that limit exists and does not depend on « and B beyond the requirement

0<a<pB<l
This definition differs from some others which are commonly used (see, for
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example, [8]). Various technical facts concerning the Pitman efficiency of one-
sample tests are discussed in an appendix, which may be of independent interest.

2. A simple design. In this section and throughout the paper, for X1 < X, <
X3, and respective observations Yy, Y, Y3, the second difference based on these
points is Y1 — 2Y» 4+ Y;. Suppose, now, that there are equal numbers (say n)
of observations at X = —k, X = 0, and X = k for some real number k. Form n
independent second differences, A1, ---, A,, by choosing one observation at
random from each set for each second difference. Each A; has expectation 2gk?
and variance 7 = 66”. (One easily sees that in the model two second differences
are independent if, and only if, they do consist of distinct observations. Excessive
computational difficulties would accompany consideration of dependent second
differences.) The sign test with this design rejects H, for large values of

S, = 2:';1 IA; > 0],

where I[-] is the indicator function of the event [-]. The Wilcoxon test rejects
H, for large values of

W, = Ei<} I[Ai =+ A; > 0]

While S, is obviously a special case of the usual one-sample sign statistic, W, is
not precisely a special case of the one-sample Wilcoxon rank-sum, which can be
expressed as W, + S, . Yet W, and W, + S, are equivalent for purposes of
computing Pitman efficiency (see the Appendix), and the more tractable expres-
sion has been chosen for use here.

The least-squares estimate of ¢ is (2nk*) A, where A = n™" D7y A;. And the
least-squares ¢-test of H, rejects for large values of

tn = n'A/(66°) = et 'R/ ()",

¢* is the usual residual mean-squared appropriate to an analysis of variance of
the Y’s. Of course when the €’s are normal, ¢, has a t distribution with 3n — 3
degrees of freedom, which is central when g = 0. A natural competitor of S, ,
W. , and t, is the one-sample ¢-test based on the A’s, which rejects H, for large
values of

b= 03/ (A — B)*/n — 1]} =au n¥B/(7)".

When the ¢’s are normal #, , in contrast to ¢, , has a ¢ distribution with only » — 1
degrees of freedom. Plainly the sign, Wilcoxon, and one-sample ¢-tests of Ho
against H; considered here are equivalent for purposes of computing Pitman
efficiency to those of the one-sample location problem for ¥ and 6, where F is the
common distribution function of the second differences of the error terms in (1),
and 6 = 2gk’. The following results are essentially due to Pitman. ( Technical
details are deferred to the Appendix.) Note that a test statistic and the test
based on it are labeled by the same symbol. )

(2) TurorEM. If ¢ < w and F is continuous at the origin and has a right deriva-
tive (F'(0)) there, then for any sequence of alternatives the Pitman efficiency of
8, to 1, is 47°[F'(0)].
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(3) TuEOREM. If F is continuous and * < oo, then the Pitman efficiency of W, to
in exists for every sequence of alternatives. When F is absolutely continuous with
density f, that effictency s 127 [f_w f (u) dul’, which can of course be infinite. The
efficiency is always infinite when (a < o and) F is continuous but not absolutely
continuous.

Now computations of Pitman efficiency relatlve to t, and %, mvolve # and 7
only insofar as each of them tends in probability to 7. (Of course ¢* < « 1mphes
the convergence is actually with probability 1 and in L, .) A consequence of this
fact is the following.

(4) TuEOREM. The conclusions of (2) and (3) hold with &, replaced by t. 10 the
statements.

3. Observations at integer points. In this section the tests of Section 2 are
studied in a more general setting. Consider an experlmental design consisting of
n observations at each of the integer points from —r to r, so that there are 2r + 1
different values of X. Because three observations are needed for each second
difference, it is convenient to assume that 2r + 1 = 0 (mod 3), that is,
r = 1 (mod 3). Suppose the model (1) is appropriate and that F is the common
distribution function of the second differences of the error terms. Form

= (2r + 1)n/3 independent second differences, A; , - - - , A, (again by random
selection) from the observed values for a set of X’s, one each at

—r 414 —r+@/Mm) Fi, —r4 20" /n) +1i
for ¢ =0,---,(n'/n) — 1.

Each A; has expectation 2g(n’/n)* and variance 6¢°.
As before, the sign test rejects H, for large values of

S'n' = 1,=1 I[Az > 0],
while the Wilcoxon test rejects for large values of
W = 2tim IlA: + A; > O],

The comparisons of S, and W, to least-squares ¢ are facilitated by first compar-
ing them to the one-sample ¢-test, #,/ , based on the A’s. It is in fact obvious that
(2) and (3) hold verbatim for the designs being considered here provided = is
replaced by n'—recall that +* = 64°.

When r > 1, the least-squares ¢-test cannot be described as conveniently as it
was in the last section, which was simply the case r = 1 because Pitman efficiency
is invariant under changes in scale. Least-squares ¢ rejects H, for large values of

b = c(’l‘, n,)g/<&2)*7

where, as before, ¢” is the residual mean square appropriate to an analySIS of
vapiance of the Y’s c(r, n) is a constant depending only on r and n’, and

g=2 X - 2 XHY/Br X' — (XXM
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is the least-squares estimate of g. The summations extend over all 3n" observa-
tions.

It follows from the definition of Pitman efficiency that for a given sequence of
alternatives the efficiency of S,.(W, ) with respect to ¢, is its efficiency with
respect to #,» multiplied by the efficiency of £, with respect to ¢,- . The techniques
of Section Al of the Appendix make it easy to prove the following assertion.
(5) LemmMaA. If o* < o, then for every sequence of alternatives the Pitman efficiency
of & 10 by s

10(2r + 1)*/81(4r* + 8° 4 * — 3r).

As has been mentioned, Section 2 was really about the case r = 1, and it was
implicit there that the efficiency of %, with respect to ¢, is 1. That value is unique
to r = 1. For only when r = 1 is § an average of the A’s, The loss of Pitman effi-
ciency of #,» with respect to ¢,» when r > 1 corresponds to the inefficiency of such
an average as a point estimate of g. (5) and the remarks of the last three para-
graphs combine to prove the Theorems (6) and (7).

(6) TaEOREM. Suppose F satisfies the assumptions of (2). Then for every sequence
of alternatives the Pitman efficiency of Sy+ to t,: s

80(2r 4+ 1)4(F'(0))%*/27(4r* + 8° + +* — 3r).

(7) TuaeoreM. If F satisfies the assumptions of (3), then for every sequence of
alternatives the Pitman efficiency of W to t,: is

800°(2r + 1)'[[Z0 f*(u) dul’/9(4r* + 8&° + 1 — 3r)

of F 1s absolutely continuous with density f. The efficiency is  otherwise.

Results of Hodges and Lehmann ([8], pp. 324-7) provide lower bounds for the
efficiencies given in (6) and (7). The number given in (7) is always at least
8(2r + 1)*/75(4r* 4 &° 4 r* — 3r). While the number given in (6) can be 0,
it is not less than 10(2r + 1)*/243(4r* 4 8° 4 +* — 3r) when F has a unimodal
density. Naturally both these lower bounds agree with Hodges and Lehmann’s
bounds (108/125 for W, to t.r , & for S,/ to t,» with unimodal density) in case
r = 1. When r is large, the efficiency of i, to t, is nearly 40/81, and so both
efficiencies and their lower bounds are roughly half their values when r = 1.

4. Most efficient sign test. The sign test of Section 3 can be generalized as
follows. Suppose that the model (1) is appropriate and that Y’s are observed at
N (not necessarilydistinct) values of X. Form independent second differences
A1, Ap, - -+ from the Y’s subject only to the requirement that the expectation of
each second difference does not depend on b, so if a difference is based on observa-
tions at X; < X, < X3, then X; — 2X, 4+ X; = 0. A test of H, against H; could
be based on the statistic

(8) S = 8w, N, A, N, ) = 2 wdla; > 0],

where the w’s are nonnegative weights, and the summation extends over all



SIGN AND WILCOXON TESTS FOR LINEARITY 1763

second differences formed. The test would reject H, for large values of S. In
view of the discussion of Section Al and A2 in the Appendix, it is reasonable to
compare tests of the type described by means of their efficacies (if they exist),
where in the present context the efficacy of S is

(9) [(d/dg) Byl S} |omsl’/Varo { ).

The derivative in (9) is taken from the right; E,f{-} and Var, {-} denote the ex-
pectation and variance of the random variable in brackets when g is applicable.
The “most efficient sign test” is defined as that test of the form (8) which maxi-
mizes the expression (9).

Suppose as in previous sections that F is the common distribution function of
the second differences of the error terms. Assume that F' is continuous at 0 and
(to avoid trivialities) that it has a positive right derivative F’(0) there. Then (9)

is precisely
(10) (F'(0)X( X wi( X3 — 2X3,: + X3,))"/% 2 w!

where the ith second difference is computed from observations at X
< Xs.: < Xs.:, and naturally the sums extend over all differences formed. The
Schwarz inequality applied to the numerator of (10) implies that the whole
expression is not more than

4(F'(0))’D =au 4(F'(0))* 2 (X1 — 2X3: + X5.)°

with equality if and only if w; is proportional to X}, — 2X3.; + X3,: for each 1.
The proof of the following lemma is now complete.

(11) Lemma. If F'(0) is positive, then the most efficient sign test uses second differ-
ences formed so as to maximize the criterion D. The weight of the 1th second difference
is proportional to X3,s — 2X3,: + Xs.:.

(11) is closely related to a result of Cox and Stuart ([2], Section 3).

There are often computational problems associated with the most efficient test.
For example, suppose that equal numbers of observations are taken at
—4, —3, —2, -+ , 4 (corresponding in the notation of Section 3 tor = 4). Then
the most efficient test forms second differences from observations at ( —4, 0, 4)
and either (—1, 1, 3) or (—3, —1, 1) (or both provided independence is main-
tained). The weights are in the ratio 4:1, and power computations are compli-
cated. The criterion D computed for the most efficient test is in the ratio 272:243
to D computed for the simpler test using identically distributed differences.

5. Acknowledgments. I am grateful to F. J. Anscombe, Byron W. Brown,
Herman Chernoff, and Lincoln Moses for their advice on several earlier versions
of this paper, and to L. J. Savage, who was of great help in bringing the paper to
its final form.

APPENDIX

,Al. Pitman’s method. The Appendix contains some technical details essential
in the body of the paper. The first topic covered is a reformulation of Pitman’s
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method for computing Pitman efficiency as shown, for example, in the paper by
Noether [14].

Assume, as in Section 1, that 6 is an unknown real parameter of a probability
distribution Hy , and that for each N, Ay is a size « (0 < a < 1) test of the null
hypothesis § = 6, against the altérnative § > 6, based on a random sample
Zy, -+, Zy from Hy. Ay rejects the null hypothesis for large values of the
statistic Ty = Tx(Z, - -+ , Zx). In what follows, derivatives are taken from the
right, and 0y = 6, + kN ~* where k is an arbitrary positive constant. We study
first the power of Ay at the alternative 0y .

Suppose there are two real-valued functions yx(8) and ox(8) with the following
properties:

(A) ¥’ (60) exists for all N;

(B) limyo [¥a'(60) /on(80)N'] = ¢ > 0; :

(C) for each z, the distribution function of [Ty — y¥x(6)]/ox(6) tends to the
standard normal distribution function ®(z) uniformly in  (and hence uniformly
in 8 and z ([15], p. 35)) for 6, < 6 < 6y + d for some d > 0;

(D) limN_.w O'N(GN)/O'N(G()) = 1,
and an additional assumption to be specified.

Often, but not always, yx(8) = Eo{Tx}, on'(6) = Vary {Tx}.

Now the existence of ¥y'(6) implies [Yn(0) — ¥n(00)]/0 — 6o = Yn' (65)
+ g(N, ), where for fixed N g(N,60) iso(1) as6 | 6, . The final assumption, then,
is

(E) g(N, 6x)/N'oy(80) —0asN — .

Assumption (B) implies that y»'(6o) is ultimately positive, though not neces-
sarily that lim sup ¥x'(6) > 0. It is interesting to note that assumption (C) is
not redundant in the following sense. There is a compact interval I and a family
of distribution functions Fy () (one for each pair (N, y), N a positive integer
and y ¢ I) with the following properties. For each (N, y), Fy4(x) has mean 0 and
variance 1; Fy () — ®(x) for each y (thus uniformly in z); Fy,(x) is uni-
formly continuous in the pair (y, «) for each fixed N. Yet, the convergence of
Fy () to ®(x) is not uniform in (y, ). For example, let I = [0, 1]. For y ¢ I,
let Fy, be the distribution function of a standardized gamma variable with
parameter the minimum of (N + ! and y(N + D4+ y (N + 1)™*. Then for
each fixed k Fy iy—-+ -+ ®, but clearly the distributions Fy , possess the three cited
properties.

With assumptions (A)—(E), Noether’s arguments can be extended to show
that the power of Ay at the alternative 8 tends to 1 — ®(z. — kc), where z, is
defined by 1 — ®(z.) = o Those arguments show also that if & | 6o,
£x — 00 = o(N1), then the power of Ay at £y tends to o, while if N ™% = o(&y — 6o),
then the power of Ay at £y tends to 1.

Further consequences of Noether’s arguments are these. Suppose 4 (based on
Ty) and Ay™ (based on Tx*) are two sequences of tests satisfying A—F for each
fixed k. If & | 6y is any sequence of alternative hypotheses, then in the notation
of Section 1, M1(&x) ~ ky/£x’ and My(£x) ~ ke/tx" for some fixed positive numbers
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k; and k, . Moreover, the Pitman efficiency of Ay relative to Ay™ for the sequence
£y is
limy., [efficacy {Ay}/efficacy {Ax*}],

where efficacy {Ay} = [¥n (60)F/ox'{60}, and efficacy {Axy*] is defined
analogously.

Obviously Noether’s generalization of Pitman’s method can be rephrased in
the context of this section.

A2. Application of Pitman’s method to sign, Wilcoxon, and ¢. Let Z;, -- -,
Zy be independently and identically distributed with (left-continuous) dis-
tribution function F satisfying F(z — 6) = 1 — F((8 — z) +) for every z
and some unknown 6. The problem consists of testing the null hypothesis § = 0
against the alternative 6 > 0. Assume first that F has finite variance 7°.

Computations of the efficacies of the ¢ and sign tests for this problem are well
known and are omitted. Suffice it to say that for the former, Ty = N Zy/?x
Yn(0) = N%/r, ox(6) = 1, and for the latter, Ty = D neyI[Z, > 0],
Yn(0) = NF(8),0n(8) = [NF(8)F((—0) +)]%. Zy and #y are the sample mean
and sample standard deviations of the Z’s. While it is known that (for any se-
quence of alternatives) the Pitman efficiency of the sign test to the i-test is
47’[F'(0)]* whenever F is continuous at 0 and has a right derivative (F'(0))
there, Noether’s version of Pitman’s method cannot be used directly to prove this
assertion unless F’ is assumed to exist in some interval [0, 8] and to be continuous
at 0. A discussion of the case ©* = « is contained in the next section.

Computation of the efficacy of the Wilcoxon test for the problem under con-
sideration is, to the best of my knowledge, not available in the literature. Thus,
several technical points concerning that computation are discussed here. To
facilitate the discussion assume: (i) That F is continuous; (ii) that * < o ;
and (iii) that

lims o [Z0 67 [F(u + 28) — F(u)] dF (u)

exists and is finite—ecall that limit d.
The Wilcoxon test rejects the null hypothesis for large values of

ﬁ§m=l I[Zn + Zm > O]
= N ens Il Zn + Zn > 0l + D2 ns I [Zn > 0] =aet Wa + S .

Now it follows from facts mentioned in the previous section and a theorem of
Hoeffding ([10], Theorem 7.3) that (for any sequence of alternatives) the test
which rejects for large values of Wy has the same Pitman efficiency relative to
any test satisfying (A)—(E) as does the Wilcoxon test. So we study the test
based on Wy .

Let yx(8) = Eo{ Wy} and ox°(8) = Vare { Wy}. Compute easily ¢»(8) = (3)

2o F(u + 26) dF(u), and notice that o4°(8) is a continuous function of 6.
In particular o' (0) = N(N — 1)(N — 2)/24. Hence, in the notation of
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Section Al, D is satisfied. Moreover,
n'(8) = Tims o (2) [%0 67 F(u + 20 + 26) — Fu + 20)] dF(x)

when this limit exists and is finite. Assumption (iii) implies ¥’ (0) exists, and
arguments of Hodges and Lehmann ([8], p. 326) show that therefore F is ab-
solutely continuous, and d > 0. Consequently (A) and (B) and also (E) are
satisfied. Hodges and Lehmann’s arguments together with the following lemma
give a necessary and sufficient condition for (iii). The condition is that the
density of F be square summable. The number x is said to be a Lebesgue point
of the function & if

limsao 6" [21 |1(t) — h(z)|dt = O

at z ([13], p. 255).
(12) LemmA. Let G be an absolutely continuous distribution function with density
g. Then for fized v,

(13) limgo [2 857Gz + v + 8) — Gz + 7)lg(2) dz = [Zug(e + v)g(z) dz

if —v 1s a Lebesgue point of gxg~, where g () = g(—z), and * denotes convolu-
tion. The limit integral is finite and continuous for all v if and only if g is square
summable.

Proor. Suppose é§ > 0, and let W and Z be two independent random variables
with the property that W — v and Z have distribution function G. Then

SIPr{—s<W—-2<0} =06 [ZGx + v+ 8 — Gz + v)g(z) do
= 5! fo_s(g*g_)(x — ) dx.

So if —+ is a Lebesgue point of gxg~, then ([13], p. 255) as & | 0 the above three
identical quantities tend to (g*g )(—v) = [Zug(u + v)g(u) du.

The final step in proving the lemma in case 6 > 0 is accomplished by noting
the equivalence of these three propositions.

(14) g*g_ is continuous.
(15) (g*g )(0) is a finite number.
(16) g is square summable.

(14) implies (15) implies (16) is trivial. For a proof that (16) implies (14) see,
for example, the book by Hewitt and Stromberg ([5], p. 398). Incidentally, that

lim; 08~ fo—s (gxg )(x — v)dz = (gxg" )(—7)

when g is continuous is even a consequence of the first mean value theorem for
integrals.

The proof for § < 0 is now obvious.

(12) extends Lemma 3(a) of [9]. Since this paper was submitted for publica-
tion, a different proof that (13) holds for v = 0 when g is square summable has
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been given by Mehra and Sarangi ([11], p. 101). The lemma can be used to
extend various recent results in nonparametric theory.

In order to show that (i), (ii) and (iii) imply that the Pitman efficiency of

Wilcoxon to ¢ can be computed by the methods of the previous section, there re-
mains the task of showing that Wy satisfies C. This is accomplished by the fol-
lowing theorem, which has obvious multivariate generalizations.
(17) Tueorem. Suppose that Zy, ---, Zy are independent, identically dis-
tributed random variables, each with distribution function G(x — ), where 6 ¢ O,
a compact set of real numbers. (The dependence of the Z’s on 6 is suppressed.)
Suppose further that u is a real-valued symmetric function of m real variables for
which

(iv) E{u(Zy, -+, Zn)} = 0(6),

(v) B{lu(Zy, -, Zn) — n(0)|""°} is uniformly bounded for 6 ¢ O, and.

(vi) Var{E{u(Zy, -+, Zn) | Z1}} = £(0) is continuous and uniformly bounded
away from 0 on ©. '

For N =z mlet

UN = UN(Zly Sty ZN) = (172)_1 Zléii<'"<im§1\’u(zi1) tee )Zim)‘

Assume finally that:
(vil) Var {Ux} s a continuous function of 6.
Then the distribution function of

Ux"™ = (Uy — 1(0))/[Var {Us}]}

tends to ®(x) uniformly in the pair (x,0), x e [— o, ©], 8¢ 6.

Proor. This theorem amounts to little more than reading arguments of
Hoeffding ([10], Theorems 7.1 and 7.2) in view of a theorem by Parzen ([15],
(10.1)). Rather than studying Uy™ directly, first study Ty = N*(Uy — 5(8)).
Thus, let ¥(Z,, 0) = E{u(Z., Ziy, -+, Zs,) | Z.} — n(6), where 75, -+,
im # n, and set Yy(0) = mN* D ¥_¥(Z,, 6). Now it follows from (v) that
Var {u(Z,, -+, Zx)} is uniformly bounded on ®, and so ([10], (5.13), (7.9),
(7.10), (7.12)) imply E{(Ty — Yx(0))’} tends to O uniformly on ©. The
variables ¥(Z,,0),n = 1, --- , N, are independent and identically distributed.
Applying (10.1) of [15], the conditions of which are satisfied as a consequence of
(v), the distribution function of Yy(6), Hys(z), tends to ®(x/m(£(0))?)
uniformly in (z, 6). An obvious ‘“uniform” application of a theorem of Slutsky
([3], Section 20.6) implies that the distribution function of Uy tends to
®(z/m(¢(6))?) uniformly in (z, 6). Now according to Theorem 5.2 of [10],
N Var {Uy} decreases as N increases, and limy.., N Var {Uy} = m’¢(6). Dini’s
theorem ([5], p. 205) and (vii) imply the convergence is uniform on ®. Another
“unifox;m” application of the theorem of Slutsky implies the desired conclusion
for Uy".

The verification that Wy satisfies the assumptions of this theorem is easy and
omitted. Collecting results of this section and Section Al, the following fact is
evident. If F satisfies (i), (il), and (iii), then for any sequence of alternatives
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(tending to 0), the Pitman efficiency of Wilcoxon to ¢ is 121-2[ffw fA(z) dal’,
where 7° is the variance of F, and f is its density. In case (i) and (ii) hold but
(iii) does not, then arguments of Hodges and Lehmann ([8], p. 326) can be
employed to show that (again, for any sequence of alternatives) the Pitman
efficiency of Wilcoxon to ¢ exists and equals «. These conclusions are analogous
to those of Andrews [1] for two and larger sample problems.

A3. ¥ = . Suppose the assumptions of the first paragraph of Section A2
hold except now assume that 7* = «. For comparisons of the ¢-test with the
sign test and the Wilcoxon test to make sense, it is necessary that the -test be
consistent. I hope to present more information on that consistency in the near
future, and at that time to prove several conjectures stated at the end of this
section. The following remarks must suffice for now.

As before, the -test rejects the null hypothesis 8 = 0 for large values of &y = qet

N'Zy/tx.
(18) TuEoREM. Assume that Zy does mot obey the weak law of large numbers,
that is, Zy does mot tend in probability to 0. Then the t-test is not consistent in the
following sense. For no fixed 6% > 0 does there exist a sequence of constants dx
for which Profty > dy] — 0 and Pre«[ty > dy] = 1 as N — . (Pry[-] is the
probability of the event [-] when 6 is applicable).

Proor. Let §* be an arbitrary fixed positive number. The symmetry of F
implies Pry [ty > 0] is uniformly bounded away from 0. So it is enough to prove
that Prys [ty > 0] > 1las N — oo,

Now Pros [ty > 0] = Prys[Zy > 0] = Pro[Zy > —6]. Suppose these identical
quantities do tend to 1 as N — «. By the symmetry of F, then, Pro Zy < 6% —1,
and so Pro[—0% < Zy < 6*] — 1. Let Hy be the distribution function of Zy
under the hypothesis § = 0. By what has been shown and Helly’s theorem
([4], p. 261), Hy has a subsequence which converges in distribution, and every
limit in distribution of a subsequence of Hy is supported on a subset of [—6%, 6¥].
Because Zy does not tend in probability to 0, at least one limit in distribution of a
subsequence of Hy is nondegenerate. Call that limit H. Now H is necessarily
infinitely divisible ([4], p. 556). But there are no nondegenerate infinitely divisible
distributions supported on bounded sets ([4], p. 174), which contradicts the
assumption Pro[Zy > —6%] — 1 and thus completes the proof.

I believe that the converse to this theorem is false. Yet there are weaker suf-
ficient conditions for the consistency of the {-test than the condition 7* < .
It can be shown, for example, (using the arguments of [4], pp. 232-234) that if
F(z — ) has density f(x — 6) ~ 1/|x — 8]’ as |x| — o, then the ¢-test is con-
sistent. ‘

The following conjectures can be supported by plausibility arguments. Each is
believed to hold for every sequence of alternatives and for those F for which
7* = « but ¢ is consistent. If F is continuous, the Pitman efficiency of Wilcoxon
to ¢ exists and is infinite. If F'(0) exists and is positive, the Pitman efficiency of
sign to ¢ exists and is infinite. However, if F'(0) = 0, the Pitman efficiency of
sign to ¢, when it exists, can be 0 or .
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