PRESERVATION OF WEAK CONVERGENCE UNDER MAPPINGS

By FLemMminGg TopPsoE
Um’befsity of Copenhagen

Suppose we have a weakly convergent sequence of probability measures de-
fined on some space S and that we carry the measures over to another space S’
by means of a measurable mapping, or perhaps by means of a whole sequence of
mappings. How far is weak convergence preserved? .

Throughout what follows, S and 8" denote two separable metric spaces. The
letter h will always denote a measurable mapping from S into S’ (Borel measura-
bility), the letter g will denote a measurable mapping from 8’ into the reals R,
P will be used for a probability measure on S, and @ will be used for a probability
measure on . Weak convergence of a sequence of probability measures, nota-
tionally indicated by the symbol —, , is defined in the usual way requiring con-
vergence of the integrals for every real, bounded and continuous function.

If & is a P-continuity function (i.e. continuous a.e. P) and if P, —, P then
weak convergence is preserved, i.e. P,h~" —,, Ph™. This is almost trivial and one
would guess that the P-continuity of & is also necessary for the preservation of
weak convergence; indeed, this is so as demonstrated in [4].

A more complicated problem arises if, instead of one h, we have a whole se-
quence {h,} of mappings and ask whether P,h, ' —, Ph ' holds for every
sequence {P,} with P, —, P. A powerful sufficient condition has been given by
Rubin in an unpublished paper ([5]). Here we shall find necessary and sufficient
conditions.

Since it is of no importance that the limit measure in the above formulation of
the problem is generated from P via a mapping k, we shall replace it by a measure
Q. To be precise, we are given a sequence of mappings {f.},>1, a probability
measure P, and a probability measure ; and we search after conditions that
P.h,~" converges weakly to @ whenever P, converges weakly to P. When this
holds, we shall say that weak convergence is preserved; from the context it should
always be clear which mappings and measures we have in mind. Clearly, weak
convergence is preserved iff

(1) Yoba cont., Vrour [ 9(hn) AP — [ gdQ

holds (bd. cont. = “bounded continuous”).

For every fixed g we can solve the problem suggested by (1). If fis a function
from S into R and if & and e are positive, we denote by 8;..(f) or 9s.f, the
d,e-boundary of f, the set of those points « in S for which the distance between
f(z") and f(z") exceeds e for some pair of points ', z” in the open sphere with
center x and radius & (see [4], [6]).
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TrEOREM 1. Given P, a sequence {f.}.>1 of bounded, real-valued, and measurable
Junctions defined on S, and a real number o (which, in many applications, is of the
form f fdP). Then a necessary and sufficient condition that f o dP, — «a forevery
sequence {P,} converging weakly to P is that

(i) the sequence {f,} be umformly bounded,

(ii) ff,. dP — a, and

(iii) Vesolimgo lim sup,sew P(85,efn) = 0
hold.

This result, interesting in its own right, is easily proved by adapting the ideas
and methods presented in [4] to the present problem and there seems to be no
point in running through a detailed proof.

Using the methods of [6] one finds that the condition (iii) above holds iff for
every ¢ > 0, for every sequence {6;} of positive numbers converging to 0, and
for every subsequence {f,,} we have

(2) P(nlf=l ask,e(fnk)) = 0.

This condition, which can be easier to check than (iii), will not be used in the
sequel.

Applying our new knowledge we find that (1) holds iff Ph, * —, @ and
(3) Ve>0 Vg bd. cont. linla_,o lim SUPn>0 P( 6.; ,eg(hn) ) =0

hold. As one might guess from this, we find the following answer to our problem:
THEOREM 2. A necessary and sufficient condition that weak convergence is pre-
served s that

(4) Ph, ™ —, Q

and

(5) V50 lim;.o im SUPp»e P(95,6h0) = 0
hold.

The §,e-boundaries oceurring in (5) are defined in analogy with the definition
for real-valued functions.

It is implicit in the theorem that the validity of the conditions is independent
of the choice of metrics (as long as they generate the correct topologies). The
condition (5) can, just as well as the condition (iii) of Theorem 1, be reformulated
by requiring that sets of the form )= 9s;,e(hn,) have P-measure 0.

Note that (5) does not involve the measure @.

Proor or TuroreM 2. The derivation of (3) tells us that we need only con-
sider those bounded continuous functions g which are uniformly continuous. The
sufficiency follows from this remark. Assume now that weak convergence is pre-
served. Then (3) and (4) hold. We must prove that (5) is satisfied. Clearly, this
is so in case S’ is the unit interval. Then the result follows in case S’ is a countable
product of unit intervals (with the usual metric for product spaces). Since any
separable metric space is homeomorphic to a subset of the countable product space
just considered, the result follows for the general 8’. The theorem is now proved
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except for the fact that we only proved it with a specific distance function in S’
(one generated by a homeomorphism to a space with a specific distance function).
Assume then that d and d* are two equivalent metrics in 8’ and assume that the
condition of the theorem based on d holds; we must prove that the condition
based on d* holds. The reader should observe that the condition (5) is not inde-
pendent of the metric (it is easy to construct a suitable example). However, we
only claim that (5) taken together with (4) is independent of the metric. Denoting
open spheres by S(-, -) and using obvious notation, we define for every y in S’
and for every positive ¢ 2 number p.(y) by

pe(y) = sup {p:8(y, p) < 8*(y, €)}.
We need the following easily established facts:

(6) Vyeﬂ' Ve Pe(y) > 07
(7) Ve,ﬂ cl {y:pe(y) = 77} c {yip;e(y) < 217}7
(8) Vi Vens 852e(h) © B (el {yipe(y) < n}) U 8s.4(h);

here, cl denotes closure.
Fix ¢ > 0. Then, for any u > 0 we have

lim;.o im SUP,e0 P(35,0¢hn) < 1M SUPnseo Pha (cl{y:pe(y) < n})

= Q(el {y:p(y) = n}).
Thus

1im;.0 im sUppsew P(93,0¢kn) < limy.o Q(el {y:p(y) < 7))
= Q(Nwocl{yio(y) = n}) = Q(F) =0. QED.

Let us turn to the case where @ is generated from P via a given mapping A,
i.e. assume that @ = Ph™". In Theorem 2 we only have to change (4) to

(9) Ph, ™ — PR,

that is we demand that h,, considered as a random element, converges indis-
tribution to . We remind the reader of the following implications:

Phy ' =4 PR Yy ba. oouns. [ {g(hn) — g(B)} dP —0
= Vg bd. cont. f Ig(hn) - g(h)l dP — 0
< h, — hin measure

< h, — h a.e.

It is of course easy to construct examples of essentially different mappings having
the same distribution, thus the second implication arrow can not be reversed.
Rubin considers the set .

(10) E = {x e 8:ho(xs) — W(z), Y z, — 2}
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and finds that if PE = 1 then weak convergence is preserved. To get a feeling
for the content of this condition note that £ = S amounts to the same thing as
the continuity of & and the uniform convergence of h, to h on every compact sub-
set of S. For the purpose of bringing Rubin’s condition in a form closer to our
condition, observe that a point z in S belongs to Eiff h,e — hx and
lim;o im SUppsw @i, (S(x, 8)) = 0 hold; in the last expression we look at the
oscillation of k, in the sphere S(z, ). Denoting by C the set of convergence:

C = {x & S:hyx — ha},
we find that
(11) E=CnNgoUs U, nmgn (8\3s,(kn)).

The second set occurring in (11) is clearly measurable and, since S’ is separable,
the set C is also measurable ( consider the mappings x — (h.z, hx) — d(h.z, hx)),

thus E is measurable').
From (11) we deduce that Rubins condition is equivalent to the two require-

ments:

(12) hn — h a.e.
and
(13) Ve>0 ]jlné—»O ]-imn—no P( Umgn a&,e(hn)) = 0.

If we wish, the limit in (13) can be written in the form lim; P(lim sup, 9; ¢k, ).

Clearly, (12) implies (9) and (13) implies (5) so that we have now proved
Rubin’s theorem.

Rubin’s condition is sufficient but not necessary. In fact neither (12) nor (13)
are necessary. As far as (12) is concerned this follows from previous remarks. To
see that (13) is not necessary consider the example S = 8 = [0, 1], P = Lebesgue
measure, h = 0, and h,xz = 0 except for £ = r, when h,x = 1; here {r,} is a
sequence of points dense in [0, 1]. Clearly, weak convergence is preserved but
(13) fails. Also note that (12) holds in this example (we even have convergence
everywhere). Qualitatively speaking, weak convergence is preserved if the map-
pings are well behaved except for a limited number of peaks (say that each A, has
one peak) even if the locations of all the peaks are well spread out over S. This
result can not be proved by Rubin’s method.

We shall now indicate some situations to which the necessity of our condition
for preservation of weak convergence applies. Consider the random variables
{h.} associated with the central limit theorem and assume that these have been
realized on the space R”. That is, our basic probability space is R® with some
(Borel-) probability measure P and for z = (x1, 2, , * - - ) in R® h, () denotes the
normalized sum A, (xy + 2 + -+ + ,) + B, . For suitable normalizations

+ 1 Rubin’s result holds even if we drop the separability assumption; however, there is
some difficulty in proving the rather unessential claim that E is measurable (is it ?).
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(the A’s and B’s) and suitable P, Ph,™* converges weakly to a normal distribu-
tion. If we replace P by a sequence { P,} converging weakly to P, we can no longer
be sure that we have weak convergence to the normal distribution, that is weak
convergence is not preserved. This follows from Theorem 2. In fact, it turns out
that, no matter what P is and no-matter how we choose the A’s and B’s, the con-
dition (5) always breaks down. The same negative result is found if one considers
the random variables associated with the arch-sine law or those associated with
the limit theorem for the maximal among the n first sums.

Lastly, some bibliographical remarks, most of them communicated to me by
Professor T. W. Anderson. Rubin’s theorem was established in the unpublished
paper [5]. I believe that this paper contains a proof of precisely the version we
have called “Rubin’s theorem.” A special case of the result proved in [5] was
proved by T. W. Anderson ([1]). Another special cage was employed by T. W.
Anderson and H. Rubin in [2]. A proof, different from ours, of Rubin’s theorem is
soon to be published in a monograph by P. Billingsley ([3]). Further remarks can
be found in [1].
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