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THE INVARIANCE PRINCIPLE FOR A LATTICE OF
RANDOM VARIABLES!

By J. KusLBs
University of Wisconsin

1. The invariance principle for a sequence of independent random variables
was introduced by Erdos and Kac in [4] and further generalized by Donsker [31,
Prokhorov [6], and others. Here we will consider another aspect of this concept.

The symbol Y denotes {(z, ¥):0 < «, y = 1} and C will be the space of real
valued continuous functions on Y which vanish on the set {(x, y):x = 0 or
y = 0}. The topology on Y is that given by the usual Euclidean distance d( , )
and C has the uniform topology. The analogue of Wiener measure on C is the
Gaussian measure u defined on the smallest sigma-field containing the open sets
(denoted hereafter by ®) such that if pi, - -, pi are distinet points in ¥ with
p; = (x;,y;) forj = 1, - -+, k then the functionals f(p1), - - -, f(px) defined on C
have a Gaussian joint distribution with mean vector zero and covariance matrix
B = (b;;) where b;; = E(f(p:)f(p;)) = min (z:, z;) min (y:, ¥;)- This measure
has been studied by J. Yeh in [7], [8], [9] and by N. N. Chentsov in [2].

Let {Xi:1 < 4,5 < «} be a family of random variables. For any integer n
let Sij = 2.5 Xwm/n wheres, j = 1, --+,n and > (.5 means the sum is taken
over all integers k < 4 and m = j. We further define So; = Sj = 0 for 7, j=
0, ---,n. A sequence of stochastic processes X, (x, y) is defined as follows:

(1.1) Xu(z,y) = Sij + [Siin — Salnly — j/n] + [Sia; — Salnlz — i/n]
+ [Simsr — Sini — Sijn + Suln’l(@ — i/n)(y — j/n)]

for’i/n <z< @G+ D/njmsy=<(G+1)/n,ands,j=0,---,n— 1 Then
X.(z, y) has continuous sample paths on ¥ and hence induces a measure, call it
pn, on (C, ®). The invariance principle is stated in the following theorem.

TuporeM 1. Let {Xi:1 < 4, < »} be a family of independent identically
distributed random variables such that E(X:;) = 0 and E(X%) = 1for 1 =4,
j < . Let {8,} be any sequence of positive numbers decreasing to zero such that
if X has the distribution common to the { X} and Z is X truncated at né, then
lim, n*P{|X| > né.} = 0, E(Z) = o(1/n), and E(Z%) = 0(n*™) for some & > 0.
Further, let p, be the measure induced on C by the stochastic process defined tn (1.1)
using {X:1 < 14,5 < n}. Then the sequence of measures {un} converges weakly to
the measure .

Here by weak convergence it is meant that lim,, fc G(f) du, = fc G(f) du
for every bounded continuous functional G on C. It is known [6], p. 165, that if
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2 Tt is easily seen that E(X) = 0, E(X%) = 1, and E(|X;"*) < « for some 5 > 0 are
conditions sufficient to assure the existence of the sequence {8n}.
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{un} converges weakly to p and G is a functional which is continuous on C except
for a set of p-measure zero then the distribution of G relative to u, converges to
the distribution of @ relative to u. Hence, for example, if G(f) = max yyer f(, ¥)
then G(f) is continuous and the corresponding functional, with u,-measure one,
is max {Su, -+, Su} so the distribution of max {Su, ---, S.:} converges to
the distribution of G(f) relative to w.

In Section 5 we will calculate the characteristic function of the functional
H(f) = [[+f*(z, y)dedy. Since limy > mf*(i/n, j/m)n™ = H(f) for all
feC and for every € > 0, im, pa{f: |2 i /0, j/n)n" — H(f)| > ¢ = 0
we then have that

lim, P{2_um S% < n'u} = w{fH(f) < u}.

Hence the limiting characteristic function of ¥ (.. S%;/n’ is the characteristic
function we calculate. In Theorem 2 we also relate the distribution of H(f)
to the corresponding functional on Wiener space.

The technique used to calculate the transform of H(f) is that of M. Kac and
A. J. F. Siegert as presented in [5]. Special thanks are due to M. D. Donsker for
a stimulating conversation during the writing of this paper.

2. The family of all probability measures on (C, ®) is assumed to have the
topology induced by weak convergence. To prove the invariance principle we
will need several lemmas obtaining sufficient conditions for a sequence of such
measures to have a limit point. In the one-dimensional case the proof involves
Kolmogorov’s inequality, or a variation thereof, and since an analogue of this
seems quite difficult in the lattice case (due to the fact that there is no linear
ordering for the partial sums nS;;) I mention that it is the next lemma which
plays a similar role here.

Let N be a positive integer and let z; = y; = j/2" forj = 0, 1, ---, 2". Let

®r = {pe(l, m) = (ik, Ymok):l, m = 0, -+, 2% for k=0,1,---,N.

The z-segments (y-segments) of ® are those line segments with endpoints in
@ whose z-coordinates (y-coordinates) are adjacent and having common y-co-
ordinate (z-coordinate). If p & ® then the index of p equals max {k:p & ®s}.

Lemma 1. If f(p) s a real-valued function on ®y such that for some v e (0, 1)
and constant H > 0

[f(p1) — f(p2)| £ H[d(p1, p2)]"

whenever p, , P2 are endpoints of a x-segment or y-segment in ®, fork = 0,1, --- , N
then for any p1, ps 1n ®o we have

[f(p1) — f(p2)| = 8H[d(p1, p2)]"/(1 — 277).

Proor. It clearly suffices to show that if p; and ps have a common y-coordinate
(or common z-coordinate) then

If(p1) — f(p2)| = 4Hd(p1, p)]"/(1 — 27).
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We will only examine the case of a common y-coordinate as that of a common
z-coordinate then follows by symmetry. Hence assume p1 = (x4, y) and
P2 = (21,y) whereh < landy = y;forsomej = 0,1, - -+, 2". If b = 0 each of
the integers in the set {k, A + 1, - - - , I} can be written as the product of an odd
integer and a power of 2. Let s = 22" be the unique integer among h, h + 1, -- -,
such that the power of two in the above representation (here denoted by 7)
is maximum and let ¢ = (2, y). If A = 0 choose s from {A + 1, - -- , I} and again
define ¢ = (z,, y). We will show that for< = 1,2

[f(@) — f(ps)| = 2HId(q, p:)]"/(1 — 27)

and since d(p1, p2) = d(g, p:) the lemma will be proved. Now ¢ is not equal to
both pi, ps so first assume ¢ 5 p.. Then b £ s = 22" < [ and we can express
I — s in binary form

l—s=2+4 ... 421 420

where r > 1o > +-+ > 1 > 1y 2 0. Thus ¢ = (z;, y) lies on some y-segment in
®, and p; = (x:1, y) on some y-segment in @,, . Hence it is possible to approach

= (21, ¥) by not more than r, points p» = pw, Pu, ***, Pos, which have
decreasing y-coordinates, common z-coordinate z;, and with increasing indices
ko < bn < -+ < ko;o = To. Furthermore, d(pm, poq;.|.1) = 2k°i_N for ¢ = 0,

, 8 — 1. Let puo = pry(lo — 1, mo) where pro(lo, mo) = Pas, . Then pro & @y,
and it lies on some y-segment in @,, so it is possible to approach pi by not more
than 1 — 7o points P, pu, * -+, P15, which have decreasing y-coordinates, com-
mon z-coordinates given by the z-coordinate of py, and with increasing indices
ko < ku < -+ < ki, = r such that ro < kw and d(pij, pryja) = 277 for
j=20,--,8 — L Letpx = p,(bL — 1, m) where p,,(lh, 1) = p, . Then
P2 € @, and it lies on some y-segment in ®,, so we continue as before. After o + 1
applications of the above we reach a point pa41,0 with z-coordinate z,. To get
from p; t0 Pat1,0 We can travel by no more than ro + (1 — n) + -+ +
(Ta — Ta1) = rosteps and since koo < ko < =+ < Kosg =10 S b < + -+ < kypy =
1 = -+ = 7qit follows that

[f(p2) — f(Parro)| £ H D jze 29707,
Now by projecting P, P20, ***, Pao Onto the line x = z;, we also have that
1f(g) — f(parr0)] < H 2 520297,
Thus
f(q) = f(p)| < 2H 203029707 < 2H2%V7/(1 — 27)
since 0 < v < 1. Now
Aps,q) = (1= )27 = (2 + -+ +27)27" z 27"
S0

[f(p) — f(p2)| = 2H[d(q, p2)]"/(1 — 277)
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as was to be proved. A similar estimate holds for |f(¢) — f(p1)| so the lemma is
proved.

If u is a probability measure on (C, ®) such that for all p;, p, in ¥ we have
fc If(p1) — f(p2)|®du < bld(p1, p2) "+ where a, b, § are positive we will say that
u has property 4.

LemMmA 2. If {u.} 7s a sequence of probability measures on (C, B) which satisfy
property A for some a, b, and & uniformly in n, then for every ¢ > 0 there exists a
compact subset E of C such that p.(E) =2 1 — eforallm = 1,2, -+ .

Proor. Let 0 < v < min (8/a, 1) and for H > 0 we define

E(H) = {feC:maxp pzslf(p) — f(p2)| = HS for all § > 0}.

Since f in C implies that f(0, 0) = 0 it is clear from Ascoli’s theorem that E(H)
is a compact subset of C. Let ’

G(s, t,7) = {fe C:|f(s/27,t/2)) — f((s — 1)/2°,4/2")| > §(1 — 27" )H2™™},
I(s,t,5) = {fe C:1f(s/2, 4/2)) — f(s/2', (¢ — 1)/2))| > H(1 — 27")H2™"},
and
F(H) = Uz UL UL [G(s, 8, 5) u I(s, ¢, ).
As a result of Lemma, 1 it follows that F(H) D C — E(H). Since each u, satisfies

property:A for some @, b and § uniformly in n it follows that for J = G or I and
n=12---

un(J (s, ,)) < 87[(1 — 27 H] 27,
Hence forn = 1,2, - -

un(F(H)) < 4b8°[(1 — 27")H]* 254 27707
and for sufficiently large H it follows that uniformly inn = 1, 2, --- we have
w(F(H)) < e. Hence for such an H we also have u.,(E(H)) > 1 — e so the
proof is complete.

3. Throughout the remainder of the paper we assume that {X;;:1 < 7,7 < o}
is a family of independent identically distributed random variables such that
E(X;) =0and E(X3;) = 1forl < 4,j < «.Asin Theorem 1 we further assume
that if X has the distribution common to the {X;}, then there exists a sequence
of positive numbers {8,} decreasing to zero such that if Z is X truncated at
nd, and ‘

(3.1) o, = WP{|X| > 18}, B. = nE(Z),

then lim, &, = lin, 8, = 0 and E(Z%) = O(n*"?) for some & > 0.
The next lemma is trivial but is included because of its use in Lemma 4.
Lemma 3. Let X, ---, Xi be independent identically distributed random
variables with mean zero and finite sixth moment. Then

B(X: + - + X)? = kE(XY),
E(X,+ - + Xu)* = kE(X),
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E(Xi 4 -+ + Xu)* = kE(XY) + 6(5)[EXD],
E(X;+ - + Xu)" = kE(X®) + 30(5)E(X)E(X®) + 20(H)[E(XM]
+ 90 [E(XY ],

where X has the distribution common to each of the (X2 = 1, -+, k}.

Lemma 4. Let Yi; denote X i; truncated ot nd, for i,j = 1, - -+, n and suppose
Tn 18 the probability measure obtained on (C, ®) from {Z:;; = Y — E(Y )4,
=1, -+, n} in the same manner that u, is obtained from {X ;4,5 = 1, ---, n}.
Then r, has property A for a = 6 and some & > 0,b > 0 independent of n.

Proor. Let p1 = (21, y1), p2 = (22, ¥2) be points in ¥ and suppose that
0= u,%,j1,J. =n — 1are integers such that 7,/n < z, < (¢, + 1)/n and

Jo/n = ys = (§s + 1)/n for s = 1, 2. Following the notation of (1.1) we will
denote the stochastic process which yields r, by X,'(z, y). The first case we will
deal with is when %4 = % = 7 and j; = j» = j. Then we have

Jelf(tm) — f(p2)lfdra = EIXJ(p2) — X' (p)) = E(Wy + We + Wy)°,
where W1 = (y2 — w1) Zli=lzk,j+1, We = (2 — 1) Z£=1Zq1.k
Wi = nZinul(ze — ¢/n)(y2 — j/n) — (20 — i/n)(yn — j/n)].

Since the Z;; have common mean zero and they are independent it follows that
Wi, Ws, Wsare independent, E(W,) = E(W.) = E(W3;) = 0, and by Lemma 3

E(W, + Wy 4+ W5)°
= DIAEB(WSE) 4+ 152 0ciciss EOWHEWE) + Diciciss BOWHE(W H)]
+ 20D 1<iciss EOWSE(W ) + 90E(W)E(W)E(WS).

Now E(Z};) < 1thus [E(Z%)] £ E(Z3;) fori,j = 1, - -+, n. Applying Lemma
3 again we find

E(W, 4+ Wo + W3)® < 180[2d(p1, po)IY{nE(Z°) 4+ 2n’E(Z') + 5n%)
sincet =n —1L,j7=<n—1ly. — | < dp1, p2), |12 — 2| < d(p1, p2), and
nl(x2 — i/n)(ya — j/n) — (212 — o/n)(y1 — j/n)| = 2d(p1, pe).

Here, of course, Z has the distribution common to each Z,;. Since d(p;, p2) <
2Y/n, B(Z%) = O(E(Y?Y)), and E(Y?%;) = O(n*™) for some & > 01it follows that

E(Wy + Wy + W3)® < M[d(py, p)I*

where M, 6 > 0 are independent of p;, p; and n.
The case that 44 < % and j; < j» is another possibility. Then 4 + 1 < 7,,
A+ 1=, and

{B(X (p) — X/ (po)[}°
S {EXS (p) — Sirrinl}”® + {ESumn — Siilt
+ {E[84,.4, — X' ()}
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Now by our first case the first and last terms-on the right-hand side are dominated
by [M d(p: , p2)]®®"° and by Lemma 3 we have (with & = 422 — (42 + 1)(ji + 1))
that

E[Siin — Suil < kE(Z°) + 35K°E(Z*) + 90K')/n’.

Now [izjs — (4 + 1)1 + 1)/n" = d(pr, p2), 1/n = d(p1, ps) except possibly
ifs, +1=4%ands + 1 =4 (incases + 1 = t,andj; 4+ 1 = j; the term vanishes
so there is no problem), E(Z%) = O(n*™), and E(Z*) = o(n*"). Hence

E[S“'1+1:i1+1 - Siz-izls = 90[d(p1 ) p2)]2+6[E(Z6)/n3_5 + E(Z4)/n2~s + 2]
and there exists a constant M’ independent of p; , p;, and n such that
E[X,'(p1) — X' (p)I° = M'[d(py, pa)I"".

The remaining cases that must be considered are @ < %2, j1 > Jo; 01 < 12,
j1 = ja;and 4 = %, J1 < j». Each can be handled in a manner similar to that
above. The subcase of 4 = 42,71 < jo wherej1 + 1 = j; and the subcase of 41 < 2,
j1 = j» where 44 + 1 = 4, do not allow the use of Minkowski’s inequality and we
must return to the technique used in the first case. All other situations reduce to
those mentioned by symmetry.

4. In this section we prove Theorem 1. From Lemmas 2 and 4 we see that for
every e > 0 there exists a compact set E of C such that r,(E) > 1 — efor all n.
Thus for ¥ > 0 there exists elements fi, -- -, fi in C such that

P{min; <j<x MaXeper [ Xa' (2, ¥) — fi(z, 9)| <3v} 21 — ¢

where X,'(z, y) is the process related to r, as in Lemma 4. Furthermore, if o,
and B, are defined as in (3.1) and X,(z, y) is the process related to u, asin (1.1)
then

P{ma‘x(x,u)eYan,(xy y) — Xa(x, y)| > Bu} S o
so for n sufficiently large we have
P{min g; <& MaX gyer [ Xn(@, ¥) — filz,y)| <7} 21— 2e

Using the results of [6], p. 170, we see that sufficient conditions for {u,} to have a
limit point have been demonstrated.

Hence {u,} converges weakly to u if the finite-dimensional distributions of u.
converge to those of u. However, the convergence of the finite-dimensional
distributions is an immediate application of the standard central limit theorem
after noticing that f0 = 2o < ;1 < - < H =1L, 0=p<n< -+ <y =1,
and AASf = f(zs, y;) — f(&s, Yia) — f(@ia, ¥5) + f(@ia, yia) for 4, j =
1, - -+, k then the A;A;f are independent Gaussian random variables with mean
zero and variance (x; — %:1)(y; — yj—1). Here, of course, the distribution of
AA;f is taken with reference to the measure p on C.

5. We now turn our attention to the calculation of the characteristic function
of [ [+f (=, y) drdy. Let {a;} 1 < 4,j < «» denote a sequence of independent
Gaussian random variables each with mean zero and variance one. Let
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K(s, t; 2, y) = min (s, ) min (¢, y) and consider the eigenvalue problem

(5.1) M(s, t) = [ [vK(s, t; 7, y)u(z, y) dody.
Then the set of functions ®(s, t) = 2 sin [(20 — 1)3ws] sin [(2j — 1)3x],
5,j = 1,2, -- -, form a complete orthonormal set for £,(Y) and are solutions of

(5.1) when \;; = [(26 — 1)(2j — 1)7*/4]%
The stochastic process {X(s, ¢):0 < s, ¢t < 1} is defined as follows:

X(s,t) = 200 2 7a (s, s
Then X(s, t) is Gaussian with mean zero and its covariance function is
E{X(87 t)X(x7 y)} = Z:'o=1 Z?_lkifl’ij(s, t)fbt,(x, y)

Using Mercer’s theorem we see that E{X (s, t)X(z, y)} = K(s, t; z, y). Hence
X (s, t) is the process of Yeh which induces the measure x on C' and with prob-
ability one

[ v [X(s, )P dsdt = D7 2 ra Nijed?s.
Thus for «* < /32
Efexp [’ [ [+ X*(s, ¢) dsdt]} = E{exp [u’ 2271 251 hisdil}
= T IT50 Blexp Wi iodil}
= [Tl n — 2uihgg™
where the last two equalities are a result of the fact that the a;;’s are independent

Gaussian random variables with mean zero and variance one. Since A;; =
(2 — 1)(2f — 1)37"]”* we have

I IT5 i — 20 = T17ecos [2(2)%/ (26 — 1)a]
and hence we find
(52) Efexp W’ [ [+ X%(s, t)dsdt]} = TIi-lsec {2(2)u/(2n — 1)x}}}
for 0 < v’ £ #'/32.

Now (5.2) holds for all real u in —2°/4(2)! < u < 7°/4(2)! and the right-
hand member is single-valued and analytic in the complex u-plane if this plane
is slit along the real axis from (— w0, —#/4(2)!) and from (7*/4(2)}, ). We
choose the branch which is positive for u real and —=°/4(2)* < u < 7°/4(2)*.
Hence (5.2) holds for all complex u where the integral exists and is an analytic
function. Since

lexp [u® [ [+ X*(s, t) dsdi]] = exp [(Re u?) [ [+ XP(s, t) dsdi]

we see that the integral exists for all complex u such that Re w’ < #*/32. Further-
more, since exp {u’ [ [y X*(s, t) dsdt} is an analytic function of u in Re u® <
7'/32 an application of Morera’s theorem assures us that the left-hand side of
(5.2) is analytic for Re u’ < #*/32. Letting u’ = , v real, we find
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(5.3) Efexp{w [ [v[X(s, ) dsdt}} = JI5- {sec2(2)(w)/(2n — 1)x}i}

for —o < v < .
It appears that the inversion of (5.3) is not simple. We do, however, note the
following. Let Z(¢),0 < ¢t £ 1, denote the Wiener process. Then for — o < v < «

(5.4) Efexp {iv [3 Z°(t) dt}} = [sec (2w)*]}

as is shown in [1], p. 217. (Actually, Cameron and Martin have (5.4) without the
2 appearing but this is simply the result of a different normalization for the
Wiener process) and in (4], p. 293, the distribution of f 0 Z*(t) dt is given. Let
{Z.},n = 1,2, ---, be independent random variables where Z, has the same
distribution as 4 f 0 Z¥(t) dt/(2n — 1)*". The next result is now immediate.

THEOREM 2. The random variable ffy [X(s, )’ dsdt has a distribution iden-
tical to the distribution of Y ey Zn .
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