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UPPER AND LOWER PROBABILITIES GENERATED BY A RANDOM
CLOSED INTERVAL!

By A. P. DEMPSTER

Harvard University

0. Summary. Within the class of models producing upper and lower prob-
ability systems, as discussed in Dempster (1967a), a simple and important sub-
class may be characterized by random intervals on the line. Detailed expressions
are given here for the upper and lower probabilities of a general fixed closed
interval determined by a general random closed interval. Such random closed
intervals occur in the applications of the general class of models to statistical
inference described in Dempster (1966, 1967b, 1968). The illustration given here
concerns inference about binomial p and stresses the flexibility allowed in the
introduction of prior information.

1. Introduction. Suppose that U and V are random variables such that
U £ V with probability one. U and V may be viewed as determining a random
closed interval [U, V] on thereal line. Loosely speaking, the probability distributed
over the half-plane of (U, V) points divides into three parts relative to any
Borel set A on a real line: (i) probability associated with intervals [U, V] C A4,
(ii) probability associated with intervals [U, V] € A where 4 is the complement
of A, and (iii) probability associated with intervals [U, V] having non-empty
intersections with both A and A. The first part consists of probability which
necessarily relates to outcomes in A and will be called the lower probability of
A and denoted by P4(A4). The second part cannot relate to any outcome in 4
while the third part may relate either to A or to A. The sum of the first
and third parts is the largest amount of probability which may relate to outcomes
in A and will be called the upper probability of A and denoted by P*(A). Note
that, if U = V with probability one, the random interval reduces to a random
point and the part (iii) above vanishes, so that P*(A) = P4(A) = P(4)
where P(A) is the ordinary probability that the random point lies in A.

The theory just outlined is a specific instance of a general theory which was
described in Dempster (1967a). In general, upper and lower probabilities are
defined over subsets of a space S by a multivalued mapping I' from X to S
where X is a space having an ordinary probability measure u over a class of
subsets & . In Dempster (1967a) the case of finite S was emphasized. Here S is
the real line, and the subsets I't < S are closed intervals for each z ¢ X. For
present purposes the points of X which lead to a common interval [U, V] are
an equivalence class, and hence X may be identified with the half-plane of points
(U, V) where U =< V. In these terms the multivalued mapping I' carries the
point (U, V) in X into the closed interval [U, V] C S.
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In many of the applications of models of this type to statistical inference, as
proposed in Dempster (1966) and pursued in Dempster (1967b, 1968), the role
of S is played by a k-dimensional parameter space and the subsets I'z are con-
vex sets. Since convex sets are intervals when & = 1, the theory of this paper
paves the way for some further examples concerning inference about a single
parameter. The case of binomial p is used here as a simple first illustration.

2. Some details. The upper and lower probabilities of any Borel set A may
be formally expressed as

(2.1) P*(A) = Pr{[U, V]n A = &}
and
(2.2) Py(A) = Pr{[U, V] c A}.

Emphasis will be laid on the computation of P*(4) and P+(A4) when A4 is a
closed interval [a, b]. It is easily seen that

(2.3) P*(Ja,b]) =1 — Pr{U>b —Pri{V<al

and

(2.4) Py(la, b)) = Pr{U = a,V = b}.
Another important set of probabilities is defined by

(2.5) Q(A) = Pr{[U, V] D 4}

which for closed intervals [a, b] may be written

(2.6) Q([a,b]) = Pr{U < a,V = b}.

These probabilities do not have a direct meaning like P*(A4) and P4(A) rela-
tive to an uncertain outcome on the real line. However, they are technically
important in the envisaged applications because they obey a simple product
rule for the combination of the information in independent samples ( Dempster
(1967a)).

From (2.4) and (2.6) it is clear that knowledge of P« ([a, b]) for all (a, b)
or of Q([a, b]) for all (a, b) determines the joint distribution of U and V and
thence determines P*(A4) and P4(A4) for any Borel set A. A similar remark
does not hold for P*([a, b]) which is determined solely by the marginal distribu-
tions of U and V.

For the technical reason given above, the function

(2.7) H(u,v) = Q(u,0]) = Pr{lU =,V = ¢}

for —o < u < v < o, is the preferred form of the bivariate c¢df of U and V.
By Stieltjes integration, one may find from H(u, v) the marginal distributions
of U and V which are conveniently characterized here by the modified cdf’s

(2.8) F(u) = Pr{U > u}
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and

(2.9) G) = Pr{V < v}.
Note, however, that

(2.10) H(u,u) + F(u) + G(u) =1

so that only one of the margins need be determined from H (u, ») by integration.
In terms of the functions F, G and H one may write

P*([a, b)) = 1 — F(b) — G(a)

(2.11) = H(b,b) + G(b) — G(a)
= H(a,a) + F(a) — F(b),
and
Py([a, b])
(2.12) =1— F(b) — G(a) — H(b, b+) — H(a—, a) + H(a—, b+)

= F(a—) — F(b) — H(b,b+) + H(a—, b+)
G(b+) — G(a) — H(a—,a) + H(a—, b+).

The equivalence of the three right sides follows from (2.10) or its extensions
involving different inclusion or exclusion of boundary points. Note also that

(2.13) P*(la, b)) — Pu(la, b]) = H(b, b+) + H(a—, a) — H(a—, b+).

In the special case of an absolutely continuous distribution of (U, V), the
marginal density functions of U and V are respectively

(2.14) Hi(u, u) = (8/0u)H(u, v)]o—s and Hi(v, v) = — [(8/00)H(u, 0)]ucs,
and convenient formulas are
(2.15) P*([a,b]) = H(b,b) + [2Hy(t, t)dt = H(a,a) + [LHi(t, t) di, and
(2.16) Py([a,b]) = [oHi(t, t) dt — [H(b, b) — H(a, b)]

= [V H,(t,t) dt — [H(a, a) — H(a,b)].

I

It might be sometimes necessary to compute upper and lower probabilities
of intervals which are open at one or' both ends. The appropriate form-
ulas are simple modifications of those given above, and are not written out
here. If the distribution of (U, V) is absolutely continuous, the probabilities
are the same regardless of whether the intervals are open or closed.

A different possible extension would be to allow the random interval deter-
mined by (U, V) to be some mixture of open and closed intervals, allowing in
general a different mixture of the four types of interval for each (u, v). The com-
plications entering with such a formulation seem to outweigh its immediate
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usefulness, and it is not pursued in detail here. Again the previous formulas
remain valid in the presence of absolutely continuous (U, V).

3. Binomial sampling. Some formulas for inference about binomial p which
were first given in Dempster (1966) are rederived here following the more
general methods of this paper. Suppose that Z denotes an observable, taking the
values 0 or 1, where the long run frequency of 1 is an unknownpon0 = p = L
A random variable W uniformly distributed on (0, 1) is supposed to underlie
each observation Z where

Z=0if p<WZ1
(3.1) =1 i 0=W<p
=0 or 1 if W=np.

An observation of Z = 0 implies that 0 < p < W, thus creating a random
closed interval [0, W] of p values governed by the uniform distribution of W.
If the interval is denoted by [U, V] as in Sections 1 and 2, then

(3.2) H(u,v) =Pr{U=u,V=v=1-—0v

for 0 < u < v = 1. Similarly, an observation of Z = 1 leads to the random
closed interval [W, 1] for which

(3.3) H(u,v) = u,

generated by (3.2) or (3.3) are conditional probabilities, given the observations
Z = 0or Z = 1, respectively.

If n independent observations are made, yielding n — r 0’s and r 1’s, then the
rule for combining independent sources of information as given in Dempster
(1967a, 1968) implies that the combination will again be based on a random
closed interval whose H(u, v) is proportional to the product of the H (u, v)
for the individual sources. In other words, a binomial sample with r 1’s in n
trials yields a system of conditional upper and lower probabilities for Borel sets
of p values, governed by

(34) H(u,v) = Ku'(1 — )",

for 0 < w < v < 1. The systems of upper and lower probabilities relating to p

where K is a normalizing constant and 0 < w < v < 1. The normalizing constant
is found by characterizing that distribution over the triangle 0 = v = v = 1
for which Pr {U £ u, V = v} = Ku'(1 —v)"". Three cases need to be considered:
r=0,7=mnand 0 < r < n. If r = 0, the distribution is concentrated on the
line segment u = 0,0 < v < 1 and has the beta density Kn(1 — »)" " along the
line segment. If = n, the distribution is concentrated on the line segment
0 = u £ 1,v = 1 and has the beta density Knu™" on the line segment. If 0 <
r < n, the distribution is absolutely continuous over 0 = u < » =< 1 and
has the density Kr(n — r)u" (1 — )" which is the density of the rth and
(r + 1)st order statistics of a random sample of size n from a uniform (0, 1)
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population. It follows that
(3.5) K = () for n=1 and 0 =17 = n.
Formulas (2.15) and (2.16) may now be applied for 0 < r < n to yield
P*([a, b)) = (V1 =) " +nllrl(n —r — D)7 fo (1 —8)" " dt
(3.6) = (:)a’ (1 —a)™”"

+ 0l = D — )7 fat7 (1 = )" dt,
and
P*([a, b])

all(r — D(n — D) 2070 — )" dt — (O — a’](1 — b)"”
lfrt(n —r — DI for(1 — )" dt

= (a1 —a)"" = (L =b)"].

The cases 7 = 0 and r = n require separate handling, but it is easily checked that
(3.8) P*(la,b]) = Pr{V=a} = (1 —a) if r=0

(3.7)

I

=Pr{U <b} =b" if r=mn, and
P.(la,b])) =Pr{V=>bl=1—(1—-b" if a=0 and r =0
(3.9) =0 if a>0 and r=0

=Pr{U=2a}=1-—24" if b=1 and r=mn
=0 if b<1 and r =n.

Another convenient approach is to use the first line of (2.11), noting that the
marginal distributions of U and V are given by

F(u) = Pr{U > u}
(3.10) =all(r — Din — NI [t@ — )" 7adt  if r >0
=0 if r=0,
for0 £ u =< 1and

G(v) = Pr{V < v}

(3.11) =nllrt(n—r— D758 =" dt  if r<mn
=0 if r=n,
for 0 < v £ 1. Alternative forms for (3.10) and (3.11) are
(3.12) F(u) = D00 (w1l —w)™™ if r>0
=0 if =0, and
(3.13) Q) = D e WA —0)*™  if r<n

0 if r = n.
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Formulas (3.12) and (3.13) together with (2.11) provide a convenient route for
computing P*([a, b]). Having P*([a, b]), one may compute Ps([a, b]) from
(2.13).

NumericaL ExaMPLE. Suppose that 6 successes are observed in 10 trials.
What are the upper and lower probabilities that .25 < p =< .75 where p is the
long run frequency of success?

F(75) = 230 (3°)(.75)(.25)"™ = .0781
G(.25) = > 2% (2(.25)%(.75)* = .0035,
from which
P*([.25,.75]) = 1 — .0781' — .0035 = .9184.
From (2.13),
P.([.25,.75]) = P*([.25, .75]) — ()(.75)%(.25)* — (3)(.25)%(.75)*
+ (3°)(.25)°(.25)*
= .9184 — .14600 — .01622 + .00020
= .7564.

4. Prior information. The inferences just given do not formally incorporate
prior information about p. But sometimes prior information may be com-
mensurate with sample information, and then to ignore it would be unrealistic.
If prior information about p is available and if it may be expressed in terms of a
distribution over sets of values of p, then the prior information may be treated
as a source of information independent of the sample observations and therefore
combinable directly with the sample observations. Indeed, even the analysis of
Section 3 which made no mention of prior information may be viewed as a combi-
nation of the sample information with a trivial form of prior information, namely
the ‘“informationless” prior assignment of unit probability to [0, 1] for which
H(u,v) =1lon0=u=v =1

Another limiting form of prior information is the familiar prior distribution of
the Bayesian statistician. In this case, the prior information is expressed in
terms of a random interval [U, V] where U = V with probability one. Consider
a discrete prior distribution where

(4.1) Pr(p =pi) = fi,

for7 = 1,2, - -- . The associated H (u, 1;) function is very simple, namely,

(4.2) H(u,v) =f; if (u,v) = (pi, pi) for 1=1,2,---,
=0 otherwise,

for 0 < u = v £ 1. Combination of this source with the sample information
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(3.4) leads to
(4.3) H(u,v) = K'f,fp[(l —p)" if (u,v) = (pi,ps) for ¢=1,2, ---,
=0 otherwise.

From (4.3) it is clear that the result is the familiar Bayesian posterior distribution.
Continuous prior and posterior distributions may be approached as limiting
forms of the discrete case just given.

The chief aim of the present section is to illustrate the notion that more
flexible forms of prior information may be useful. Consider a hypothetical ex-
perimenter engaged in screening drugs for their efficacy in treating a controlled
condition experimentally induced in rats of a-specified population. Suppose that
each animal provides a binomial response, i.e., positive effect or no effect, and
that the experimenter is willing to define an effective drug as one which would
produce 75 per cent positive responses in a large sample of rats. Each drug is
therefore postulated to have an unknown p and the question, often to be asked
of a very small sample, is whether or not p = .75. The experimenter might be
willing to formalize his past experience by asserting that he would expect at
least 1% and at most 10 % of the drugs to be effective. He might not care to
differentiate among the set of drugs to be screened. And he might not care to
render prior judgments all along the p scale, but only on whether or not p = .75.
The prior information thus described could be expressed formally as

Pri{[U, V] = [0, .75 — ¢} = .90,
(4.4) Pr {{U, V] = [.75, 1]} = .01,
Pr {[U, V] = [0, 1]} = .09,
which implies that
(4.5) P*p z .75) = .10 and Pulp = .75) = 0L
Consider the slightly more general form of prior information where
Pr{[U, V] =[0,cl} =,
(4.6) Pr{[U, V] = [d, 1]} = B,
Pri{(U, V] =1[0,1]} =~

for given ¢, d, o, B, vy satisfying0 < ¢ <d £ 1, 20,820,y 2 0, «
B + v = 1. The H(u, v) function determined by (4.6) over the triangle 0
u < v £ 1is given by

I
I\ +

H(u,v) = a4+ v if v
B+y if u

= v otherwise.

IIA

4

d

Il

(4.7)

1\



964 A. P. DEMPSTER

Combining this with the sample information (3.4) yields
H(u,v) = K'(a +v)()uw'(L — )" if v

=c
(4.8) =K'@B+O1 =) i wzd
= K'v(Mu'(1 — )" otherwise,

over0 = u=v=1
The next task is to give a simple characterization of the distribution defined
by the cdf (4.8). First consider the case 0 < r < n. From (4.8)

(4.9) lime.o {H(u, ¢) — H(u, ¢ + ¢)} = K'a(})u'(1 —¢)",

for 0 £ u £ ¢ < 1, which shows that the line segment (u, ¢) for 0 < u =< ¢
carries weight K, (/)¢'(1 — ¢)* distributed according to the density
K'ar(H)u™ (1 — ¢)"". Similarly the line segment (d, v) for d < v < 1 car-
ries weight K'8(}) d'(1 — d)* " distributed according to the density
K'8(n — r)(2)d"(1 — »)" . No isolated points and no other line segments
carry positive probability, but the triangle itself carries a continuous bivariate
distribution whose density function is formed by differentiating the expressions
in (4.8). By integrating these bivariate densities it may be checked that the three
subregions0 = 4 v =c¢,d = u =v = 1,and [u,v] n[c, d] # &, carry weights

K'(a + v) XM — o™ K@ + m) X () d'(1 — &)™ and
K9l = X (D1 = o™ = i () a1 — a7,

By summing the two linear pieces and the three planar pieces and setting the
total equal to unity, one finds that

(410) K = [a20o ()1 — )" + B ()d(1 — )" + 4%

If » = 0, four pieces of probability may be distinguished, namely, K'a(1 — ¢)"
on the point (0, ¢), K'8(1 — d)" distributed continuously along the line seg-
ment (d, v) ford £ v £ 1, K'(a + v)[1 — (1 — ¢)"] distributed continuously
along the line segment (0, v) for 0 < v =< ¢, and K'y(1 — ¢)" distributed con-
tinuously along the line segment (0, v) for ¢ < v =< 1. Similarly, if » = =, the
four pieces of probability are K'8d" on the point (d, 1), K'ac® distributed con-
tinuously along the line segment (u, ¢) for 0 < u < ¢, K'(8 + v)[1 — d"] dis-
tributed continuously along the line segment (u, 1) ford < » < 1, and K'vd"
distributed continuously along the line segment (u, 1) for 0 = u = d. Formula
(4.10) remains valid in the cases 7 = 0 and r = n.

It is now a straightforward exercise to compute upper and lower probabilities
for any interval [a, b] of values of p. Only one of the unfortunately many cases
will be given in detail, because of its role in the hypothetical drug screening
example used to motivate the prior information (4.4). By assigning the various
pieces of probability correctly, it is easily checked that

(411) Pu(d, 1)) = K'BCY (1 — )" + (B + 7) 225 ) &°(1 — )]
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while
(4.12) P*([d, 1]) = Px(ld, 1])
+ K[l — 2t (DA —o)" " — 205 () d"(1 — )",

for 0 < r < n and K’ given by (4.10). Formulas (4.11) and (4.12) also apply
when 7 = 0 or r = n if sums with empty ranges are set to zero.

In the example d = .75 and ¢ = .75 — ¢ or, in other words, ¢ is regarded as d
in the limit approached from below. Formula (4.12) may be simplified in such a
situation to read

(4.13) P*([d, 1]) = Px([d, 1]) + K'y(7) d'(1 — &)™

NumERICAL ExampLe. Using ¢ = .75- and d = .75, the prior information
(.4) and n = 6 the following upper and lower probabilities of an effective drug
were computed from (4.10), (4.11) and (4.13).

r P*([.75, 1]) Py([.75, 1])
0 .000024 .0000024
1 .00047 .000069

2 .0038 .00080

3 .0177 .0053

4 .0553 .0236

5 .1420 .0867

6 .3843 .3228

For comparison, the case o = 8 = 3 was computed. This means prior probabilities

of 1 for effective and for not effective.

r P*([.75, 1) Py([.75, 1))
0 .0002 .0002
1 .0046 .0046
2 .0364 .0364
3 .1497 .1497
4 .3594 .3594
5 .6062 .6062
6 .8489 .8489

Finally, the case v = 1 of no prior information is displayed.

P*([.75, 11) Py (.75, 11)

r

0 .0002 0.0

1 0046 .0002
2 0376 .0046
3 1694 .0376
4 4661 1604
5 8220 .4661
6 1.0 8220

The prior information used in the first set of inferences loads the scales away
from [.75, 1], relative to the third set, as might be expected. Thus the experi-
menter who trusted his prior information could reject a drug even with 4 positive
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responses out of 6 and have at most a 6% chance of error. Without the prior
information, rejection of a drug with 3 positive responses out of 6 corresponds to
an upper 17 % chance of error.

The second set of inferences incorporates rather neutral prior information.
The coincidence of upper and lower probabilities is a consequence of the general
fact that, if one source provides P*(A) = P4(A) for some event A, then P*(4)
= P4(A) still holds after combination with further independent sources. As
might be expected from neutral prior information, the coincident probabilities
of the second set lie between the upper and lower probabilities of the third set.
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