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AN EXTENSION OF ROSEN’S THEOREM TO NON-IDENTICALLY
DISTRIBUTED RANDOM VARIABLES'

By L. H. KoormaNs

University of New Mezxico

1. Introduction and summary. In [5], B. Rosen showed that if
{Xpk=1,2,---}

is an independent sequence of identically distributed random variables with
EX;= 0and Var X; = 0,0 < ¢ < w andif S, = Xy + - - - + X, then the series
Sean ' (P(S, < 0) — 1) is absolutely convergent. This theorem was moti-
vated by a result of Spitzer [6] who, under the same conditions, established the
convergence of this series as a corollary to a result in the theory of random walks.
Rosen’s theorem was generalized by Baum and Katz [1] who showed that if
EX, = 0and E |X;|"** < « for 0 < a < 1 then

nan TIPS, < 0) — i < w.

These results led to the study of series convergence rate criteria for the central
limit theorem and a partial solution of this problem was obtained for the case of
identically distributed random variables in [2]. A more complete solution has
been recently obtained by Heyde [4].

The first study of series convergence rates for P (S, < 0) in the case of inde-
pendent but non-identically distributed random variables was made by Heyde
[3]. Based on an extension of Rosen’s theorem utilizing certain uniform bounds on
the characteristic function of the X;’s he concluded the absolute convergence of
the series D aan TP (P (S, < nfz) — L) for —0 < 2 < w and 0 £ p <
11 — a), 0 £ a < 1, thus obtaining what he termed small deviation con-
vergence rates. In the present paper two more extensions of Rosen’s theorem to
independent but non-identically distributed random variables are given under
different hypotheses than Heyde’s. The first (Theorem 1) reduces to Rosen’s
theorem in the case of identically distributed random variables. The second
(Theorem 2) results in a theorem similar to that of Baum and Katz [1] as re-
quired in Heyde’s small deviation result. This will make it possible to obtain his
conclusion by simply carrying out the last step in his proof. These results are ob-
tained in Section 3. In Section 2 some preliminary results are stated and ex-
amples are given in Section 4 to show that the first two hypotheses of Theorem 1
cannot, in general, be relaxed.

2. Preliminary results. The proof of Rosen’s theorem depends on the follow-
ing inversion theorem [3], [4]:
(1) If X is a random variable with characteristic function ¢ (t) and distribution
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Junction F () such that [Z. (1 + |z|)F (dz) < oo, then for every & > 0 and x,
3lF(+0)—F@—0)] =13
+ 1/2m0 [0 ey (—t) —e ™ y(t)}dt + R(1, z,8),
where
R(,2,8) = [Z.Fdy) [3 [sin (@ — y)t/4] d.

Now, let {Xs:k = 1,2, ---} be independent random variables with character-
istic functions ¢, (¢) and let S, = Xy + -+ 4+ X,. Let F, (x) denote the dis-
tribution function of S, and ¢, () = 117 o (¢) its characteristic function. Then,
by (1),

P(8, < 0) = § = 3{F.(0+) — Fu(0—)} — 3P(8, = 0} — %
= @r)7 [0 [a(—0) — ¥a(D] dt + R(n, 0, 6)
(2) — 3PS, = 0}
=7 [t I [ en() | sin [ Xf arg ou(1)] de
+ R(n,0,68) — 1P(S, = 0),

where R (n, z, §) is obtained from the equation for R (1, z, 6) by replacing F by
F, . It follows that

na TIPS, < 0) — 3| < At X u 0
@) o AT e 1) | sin [0 arg ¢ ()]} dt
+ 2 nan PR, 0, )| + Zaan 4 Ap(s, = 0).

Rosen’s theorem and its extensions are all based on establishing the convergence
of the three series on the right hand side of (3). The convergence of the last two
series depends only on the uniform non-degeneracy of the Xi’s in the following
sense:

Lemma 1. If there exists K > 0 and § > 0 such that for |t < 3, |ex ®|=1 - K¢
uniformly in k,
then

(i) if I, is any interval on the real line of length not exceeding n*,0 < p < 1
then P (S, e 1,) < Cn} where C is a constant tndependent of I, and n,
(ii) sup, P (S, = a) £ On~* where C is tndependent of n,

(1) for every ¢, 0 < € < %, there exists a constant C, wndependent of n and x, such
that |R (n, z, 8)| £ Cn*™2,
Thus, for 0 £ a < 1

(iv) 2 man R, 0, 8)| < o, and
V) 2nan PP (S, = 0) < o.

Proor. Parts (i) and (ii) are proved exactly as in (4], noting that the proof
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depends only on the bound |¢,(t)] < (1 — K&*)" for |¢| < &. Part (iii) follows
from (i) exactly as shown in [1]. Parts (iv) and (v) follow immediately from
(ii) and (iii). (Takee < 3(1 — &) in (iii).)

In the identically distributed case, the condition of Lemma 1 is satisfied for
any non-degenerate random variable ([4]). Thus, the finiteness of ¢° in Rosen’s
theorem is needed only to guarantee the convergence of the first series on the
right hand side of (3) when @ = 0. The corresponding conditions required in the
non-identically distributed case are given in Theorem 1.

3. The extensions of Rosen’s Theorem. The basic result of the paper is the
following theorem.

Taeorem 1. Let {Xip:k = 1, 2,---} be an independent sequence of random
variables with distribution functions Fy (), variances o’, and characteristic func-
tions ¢ (t) and assume EX, = 0,k = 1,2, --- . Let S, = X1+ -+ + X, . If

(A) a* is uniformly integrable with respect to Fr, , k = 1,2, - -+ |
B)o'zd >0,k=1,2--,and

(C) there exists a Borel measurable function B(t) and a § > 0 such that
[Tm ¢i(t)| < B(t) for |t| < 8,k = 1,2, -+~ , and [o (B(t)/f') dt < oo, then

Z:=ln_1|P(S,, <0) — 3 < .

Note that in the case of identically distributed random variables this reduces
to Rosen’s theorem. We will need the following lemmas to establish Theorem 1
and succeeding results.

Lemma 2. If [2|*** 4s uniformly integrable with respect to Fy , k = 1,2, - -+, for
0= a<l,then

(i) there exists M < oo such that for all 3,0 = 8 < a,

[ |=[***Fy(dx) < M,  uniformly in k,

(i) |x12+ﬁ s uniformly integrable with respect to Fr, k = 1, 2, --- | for every
3,0=8<a,

(iil) there exists & > 0 such that for |t| < §,
@) W+ aOf S 1 - Rea(t) < 30" + A (0),

where ai (t) and A (t) are functions for which
limsoar (t) = limg,o Ax(¢) = 0, uniformly in k.
Proor. (i) By hypothesis, there exists M > 2 such that
[ aisar—pt et 2 Fy(de) £ 1,  uniformly in k.
Then,
[ 2[Fi(dx) £ [ja1cmnricre o PF, (dx)

-l— flx]>(M__1)1/(2+«x) |x|2+°‘Fk(dx) é M.
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(ii) follows from the inequality
Jiaism 2P Fr(dz) = M [ou 2" *F (d2).
(i) It is easily seen that there exists §, 0 < & < «/2 such that
12 <1 — cosz = 32° for |z| < 6. Thus,
ifltzlga (tz)'Fi(dz) < f|tz|§6 (1 — costx)Fy(dz)
= % [iwizs (@)'Fr(dz),
which implies
%a‘k2t2 — —}t2 f|,|>5/|t| .’E2Fk(d$) é 1 — Re go.k (t) —_ fltzl>6 (1 — COS tx)F’k(dx)
= %0762152 - %t2 f|x|>5/|z| $2Fk (dx)
Thus, (4) holds with
ak(t) = t_2 f[¢z|>3 (1 — COS tCL')Fk (dx) — if[zp,;/“[ szk (dx)
and
Ar@t) =t f[tz|>5 (1 — cos tx)Fi(dr) — % [1os5n16 €°Fx (d2).

Now, ¢ [jwss |1 — costa| Fy(dz) < 1 [(a1sana 2°Fr (dz), because |1 — cos z|
< 2%/2 for all . Thus, (iii) follows from (ii) with 8 = 0.

Lemma 3. If [x[*™ is uniformly integrable with respect to Fr , k = 1,2, - -+ | for
somea,0 = a < 1, then

limeao Im @ (¢) /67 = 0,  uniformly in k.
Proor. The well known inequalities

[sinz — 2| < % || for |z =1

lIA
[\
2

for |a| > 1

imply [sinz — z| £ 22" forallz, 0 £ a < 1. Since EX;, = 0 for all k, the follow-
ing inequalities are valid for [¢| < 1:

|Tm g () /2|
= |[Z, ((intx — tx)/£7*)F; (da)|
[au<an (sinte — t|/[t[T*)Fie(dx) + [log>0 (Jsin te — ta|/|tT)F) (dz)
U™ Jia1sua 2 Fr(de) + 2 [iasya |of™* Fr(dz)
" [ e Fi(de) 4 2 [asya el Fi(de)
IM Y 4+ 2 [asya |27 Fy (da).

The result now follows from the hypothesis of the lemma.
Lemma 4. If Conditions (A) and (B) of Theorem 1 are satisfied, there exists K,
0 < K < « and § > 0 such that for || < 8,

lex (t)] < 1 — K&, uniformly in k.

2+a

A IIA - HIA

I\
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Proor. Let by (1) = [Im ¢ (¢)|/¢*. By Lemma 2,
lee )] = [Re @ ()] + [Im o ()] < 1 — 20 — au () + by ()2

for sufficiently small values of |¢|. However, it follows from Lemmas 2 and 3 with
o = 0 and Condition (B) that there exists 8 > 0 and 0 < K < o« such that
for || < 8, 30" + ax(t) — by (t) = K uniformly in k.

We are now in a position to prove Theorem 1.

Proor or THEOREM 1. Because of Lemmas 1 and 4 it suffices to establish the
convergence of the first series on the right hand side of (3) with a = 0. Now, by
Lemma 2, Re g (t) = 1 — 108" — Ay @), o £ M and Ay(t) > 0ast—0
uniformly in k. Thus, there exists 6 > 0 and 1 < €' < « such that for |¢| < &,
Regy(t) = 1/C. Thus, since [sinz| < |z| and |are tan z| < |z| for all ,

lsin (207 arg @i (1)) < 2.1 |arc tan [Im ¢ (t)/Re e @] = € 207 |Tm o (1))

=nCB (t) for |t| < &, where & is the minimum of & and the & of Condition C).
Now, take § = minimum of 8" and the 6 of Lemma 4. Then,

Saan T [0t (IT1 lee @)])Isin (7 arg i (¢))] dt
SCr 0t v (1 — K&)'B(t)dt
= CEn) " [§ B@)/f)dt < o.

In Section 4 we will show that Conditions (A) and (B) are sharp in the sense
that examples violating exactly one of the conditions can be constructed which
satisfy Condition (C) and for which the conclusion of Theorem 1 is false. Neither
of these two conditions is necessary since the conclusion of the theorem is trivially
true for any independent sequence of non-degenerate, symmetric random vari-
ables for which P (X; = 0) = 0. It is easy to construct such sequences which
violate Conditions (A) and (B) simultaneously. On the other hand, we have not
been able to establish that Condition (C) is sharp in the same sense. However,
Condition (C) s sharp in the sense that it is a consequence of a slightly strength-
ened version of Condition (A): :

Lemma 5. If [2** 4s uniformly integrable with respect to Fy, , k = 1,2, --- | for
some a > 0 then for every ¢ > 0 there exists 6 > 0 such that Condition (C) s satzs-
fied for [t| < 8 with B(t) = e|t|*™

Proor. This follows immediately from Lemma 3.

This allows us to establish a theorem resembling that of Baum and Katz [1]:

TuEoREM 2. If |2|**" 4s uniformly integrable with respectto Fy, kb = 1,2, ..
for some v, 0 < vy S land if > = o > 0 untformly in k, then for every o,
0=a<y,

man TP P(S, < 0) — | < w.

Proor. Because of Lemma 2 (ii) and Lemma 5 all of the hypotheses of
Theorem 1 are satisfied. Consequently, the proof again reduces to establishing
the convergence of the first series on the right side of (3). By the same steps as in
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the proof of Theorem 1 we have
8 =2 nan T [o (1 len ()])lsin (227 arg en (1)) dt
= @O [0t 2onant @ — KE£)'B(¢) dt.
But, by an Abelian theorem used in [1],
Do an Tt < 011 — w) e for 0 =u <1
Thus,
<O @C) [otr N(KE)Y PR () dt < C" [ot ™ dt by Lemma 5,

where ¢ = ('¢/nCK"~“"?.

Since a < v, the last 1ntegra1 converges, thus § < .

A new version of Heyde’s small deviation convergence theorem can now be
obtained as a Corollary to Theorem 2. The proof is due to Heyde [3] and, being very
brief, is included for completeness.

CoroLLARY. If |z|**" is uniformly integrable with respect to Fy , k = 1,2, - -
for some v, 0 < v £ 1 and if o = o > 0 uniformly in k, then for every o,
0<a<7vy,everyp,0 =p< 1 —a)/2andeveryz, —o <z < x,

wan TIPS, < n’) — 3 < .
Proor. If 2 < 0, [S, < n"z] C [S, < 0landifz > 0, [S, < n"z] C [S, < 0]

u [|S.] < nfz]. Forany p,p < p < (1 — a)/2, there exists N = N (p, x) such that
forn = N, [|S.] < nfz] C [|S.] < n°/2]. By Lemma 1 (i), P(|S.| < n’/2) =<

Cn®*. Thus, taking N = 1 for z < 0,
ZO;=Nn—(1—a/2) |P<Sn < npx) _ %| < °:=Nn—(lfa/2) |P<Sn < 0) _ %l
+ 2w wn TPP(S,| < n7/2) < o,

since D w_wn TP < forp < (1 — a)/2.
This theorem is not true even in the case of identically distributed random
variables for p = 3, @ = 0 and z & 0. It was shown in [2] that if

Var (X;) = 1, E(X) =0,

)

then
Swan T |P(S, < niz) — ®(x/o,)| < o

when @ is the standard normal distribution function and {o,} is a certain sequence
of positive numbers such that ¢, T 1 asn — . Consequently,

Dowan M P(S, < niz) — &

will diverge for all £ 0. Thus, one cannot in general extend the Corollary to the
casep = (1 — a)/2.

4, Examples. In this section we establish by two examples that Conditions
(A) and (B) of Theorem 1 cannot in general be relaxed.
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ExampLE 1. In this example Conditions (A) and (C) of Theorem 1 are satis-
fied but Condition (B) is violated and the conclusion of the theorem is false. Let
v satisfy ¥ < v < 1 and let 6, = 'y’k ', Tt follows that H;f;l o, = . Let

{Yi:k = 1,2, ---} be an independent sequence of random variables with the
following two-point distributions:

=1- 5k If r = Bk
=0 otherwise.

Then, E(Y)) = 0 and Var (Y;) = 8&(1 — &) — 0 as k — . Thus, Condition
(B) is violated. If £(¢) is the characteristic function of Y , a simple calculation
establishes that

8(1 — 6,)6:(¢)t’/6  where |6:(t)] < 1.

I

Il

Thus,
Tm &(¢)| < |¢'/24

uniformly in &, and Condition (C) is satisfied. Condition (A) is satisfied trivially
since the Y,’s are uniformly bounded random variables. To see that the con-
clusion of Theorem 1 is violated by this sequence, note that if ¥, < 0,
k=12 --- n,thenV, =Y, 4+ --- + Y, < 0. Thus,

PVa<0)2[tP(Yi<0)=[[foe>vy>3% forall =,
and it follows that
Tran (VA< 0) — 3 2 (v — 1) Tian™ = .

ExampLE 2. In this example Condition (A) of Theorem 1 is violated, yet
o < 2 for all k, while (B) and (C) are satisfied. Again, the conclusion of the
theorem is false. This shows that the uniform integrability of z* is required—a
uniform bound for the variances is not sufficient.

Let {A(n)} be a sequence of positive real numbers such that ;=" h(k) < h(n)
for n = 2, 3,---. Let {Z;} be a sequence of random variables such that
{Yr, Zy:k = 1,2, ---} is an independent family of random variables, where
{Yk} is the sequence defined in Example 1, and such that the Z,’s are symmetri-
cally distributed with the following probability function:

P(Z, = z) = 1/2h%(k) if *= —hk) or h(k)
1—1/p%k) if z=0

I

=0 otherwise.

Now,let X = Zy + Y,k =1,2,--- . ThenS, = X1+ - + X, = U, + V,,
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where U, =214+ ---+Z,,V, = Y1+ -+ 4+ Y,. Note that [U, = 0 and
V. < 0] €[S, < 0]. Thus,

P(S, <0) = P(U, = 0)P(V, <0).

But by the construction of the Zy’s, U, = Oif and onlyif Z;, = 0,k = 1,2, - - - , n.
Thus,

P(S. < 0) = [[IF P(Z, = 0)]P(V, < 0)
= [[IF a = 1/8%(&)IP(V, < 0).

By selecting the h(n) sequence sufficiently rapidly increasing and by taking
h(1) sufficiently large we can guarantee that.

117 (1 — 1/R%(k)) = ¢ for % <e<1.
Then,
P(S, <0) — 12 ¢P(V, <0) —+),

where ' = 1/2e. It follows that 2 < 4" < 1 and by selecting the v of Example 1
such that v > v we have

P(S,<0) —%=ey—4)>0.

Thus, 2 ne1n " [P(Sy < 0) — & = .

Now, Var (Z;) = 1, thuso,’ = Var (X3) = 1 + 6,(1 — &). Thus, 1 £ o> < 2
and Condition (B) is satisfied. However, it is easily checked that forevery M > 1,
[reou ©°Fx(dz) = (h(k) — 1)%/h*(k) for h(k) > M + 1. Since h(k) —
as k — o, Condition (A) is violated. Finally, to establish Condition (C) it
suffices to note that the characteristic function, ¥(t), of Z; is real. Thus, if
ox(t) is the characteristic function of X,

Tm i (8)] = (D) [Im &(8)| < [¢/24,
as in Example 1.
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