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1. Introduction and summary. In [5] Karlin and McGregor analyzed a class
of linear growth birth and death processes admitting a representation formula of
the transition probability function in terms of classical orthogonal polynomials.
Birth and death processes belong to the category of reversible stochastic processes
(see [12] and [13]). In this case by invoking the spectral resolution of the identity
for Hermitian operators one achieves the representation formula of Karlin and
MecGregor described in [3] and [4]. This theory is mostly restricted to the case
of one-dimensional birth and death processes and diffusion processes. Some
special higher dimensional birth and death processes motivated by certain appli-
cations in studies of population growth are reversible. For these processes there
are representation formulae for the transition probability function that can be
explicitly determined. In [9] and [10] Karlin and McGregor develop a discretized
version of the classical technique of solving Laplace’s equation in terms of spheri-
cal harmonics. This paper applies their method to determine the representation
formula for the transition probability function of two two-dimensional (Sections 2
and 3) and the corresponding higher dimensional (Sections 4 and 5) linear
growth birth and death processes. In each case the representation formula is
expressed explicitly in terms of semi-direct products of classical orthogonal poly-
nomials somewhat reminiscent of such products of spherical harmonics. In the
Appendix the properties of the orthogonal polynomials are summarized and the
method of derivation of the explicit form of the representation formula is out-
lined.

2. A two-dimensional linear growth process. In this section we shall examine
a two-dimensional linear growth birth and death process. We shall assume that a
population of two distinet genotypes exists and its growth is governed by sto-
chastic fluctuations to be described here in detail. The size of the population at
any time ¢ is adequately described by the random vector X (t) = (U (t), V (¢)).
The conditional probability that the population size changes during the time
interval (s, s + ¢) from (m, n) to (m', n') will be denoted by

@.1) Pt (m,n), m,n')) = P(X(s'+ t) = ', n')|X(s) = (m, n)}

independent of s. Thus the transition probability function is assumed to be
stationary in time. In order to make X (¢) a birth and death process we assume
that during an interval (¢, ¢ 4+ k) of infinitesimal length & > 0 only four types of
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changes are possible in the population, namely, an increase or decrease by at

most one in either genotype. More precisely, we assume that

P(h; (m,n), m',n')) = M(m,n)h + o(h) ifm =m+ landn' =n

= N(m, n)h + o(h) ifm =mandn =n+1
=m@m,n)h + o) ifm =m—1landn =n

ue(m, n)h + o(h) ifm =mandn =n—1

1 — M(m, n) + N0m, n) + wm(m, n)

+ wa(m, n)lh + o (k)

. ! !’
fm =mandn = n

2.2)

Il

= o(h) otherwise

where M (m, n), \a(m, n), w1 (m, n) and pz (m, n), usually called the infinitesimal
birth and death rates of the process, are constant in time. When these rates are
linear functions in m and n (the present sizes of the population of the two
genotypes), we call X(¢) a (two-dimensional) linear growth process.

An example of such a two-dimensional linear growth process is a population
of type A and type a genes. In each time interval (¢, ¢ 4 &) of infinitesimal length
h a birth or a death of a gene of either type may occur with probability propor-
tional to the number of genes of that type alive in the population. Each individual
gene born, however, may mutate to the other type with probability « for a type
A gene to type a and with probability 3 for a type a gene to a type A. In this case,
we have

Mm,n) = 1 —a)n + Bn, N(m,n) =am+ (1 —B)n
and
:ul(my n) = m, #2(m7n) = n.

Another example of a two-dimensional linear growth process is the one dis-
cussed in detail in this section. The probability of a birth of an individual of
either genotype is assumed to be proportional to the total number of individuals
in the population. The probability of a death of an individual of either genotype,
however, is assumed to be proportional to the number of individuals of that
genotype alone. More precisely, the infinitesimal birth and death rates of this
process are given by

M@m,n) = (m+n+1)p,  N@mn)= (m+n+ 1)
(2.3) and
pi(m, n) = m, pe(m,m) = n

where p > 0 and ¢ > 0 are constants.
The main result of this section is a representation theorem for the transition
probability function defined by formula (2.1).
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Taeorem 2.1 (Representation Theorem). If X(¢) 4s a two-dimensional
linear growth birth and death process whose infinitesimal birth and death rates are
defined by (2.3), then the transition probability function of X(t) is given by the
formula

24) Pt (m,n), (', "))
= H(m,7 ’ﬂ,) Z(I.Z/) e_“f(x, Y;m, n)f(”: Y; m,7 nl)p (13, y)

Here the functions f(x, y; m, n) are so-called semi-direct products of various or-
thogonal polynomials; namely,

f@ysmn) = @éus(l—2)A — @+ ) 52+ 1;p +q)
Kn@,p@+ @), M) if p+qg<1

(2.5) =GP+ ) " uw(ly —2)p + ¢ — 1)
—@+1s2+1 @0+ QDK pl + ¢)7 M)
if p+g>1

= L:;{-—a;(y - x)Km(xy p, M)

where M = m + n.

Here ¢i(z) is the Meizner polynomial of the indicated parameters, L (2) s
the assoctated Laguerre polynomial of parameter x, and K;(2) is the Krawtchouk
polynomial. All three are defined in detail in Appendiz 1.

The weight function TL(m’, n') and the spectral measure p (z, y) are given by

(2.6) Mim,n) = p"", with M =m+n
and
p@y) = Y@+ — @+ @@ +9)" Fp+g<1
@27) = e +o™ - @+ o T
ol + )T ifp+g¢>1
="y —2)* @) (p/e)° fp+qg=1
where y and k are closely associated through
@8) y=ct+l- @+ ip+ag<i

tp+q¢)+ @+q—-—1)E+1) difp+qg>1

The summation Yy n formula (2.4) stands for a double summation over all
non-negative integers x = M and all possible values of y as k runs over all non-
negative integers when p + q # 1. In the case p + q = 1, the summation over y is
replaced by the integral [; dy.

Proor. Define the matrix, A, of the infinitesimal birth and death rates, with
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elements
a((m,n), m',n)) = (M + 1)p iftm' =m+ landn' =n
= (M + 1)q ifm =mandn’ =n+1
=m ifm =m— landn' =n
2.9) =n if m' =mandn’ =n — 1

= [+ 1)+ q) + M]
ifm =mandn’ =n

=0 . otherwise
where M = m + n.

Then the transition probability function is the unique solution (see [3] and [4])
of the differential equation
(2.10)  (d/dt)P(t; (m, n), (m', n'))

= Z:’b”,n”=0a((m) n)» (’I’I’L”, n”))P (t; (7’)1/”, n”); (m, ’ﬂ))
with initial conditions
(2.11) P©O; (m,n), (m',n)) = Smmbnm .
Direct substitution of the representation formula (2.4) in (2.10) and (2.11)
proves Theorem 2.1.

Although the above proves the representation formula (2.4), it leaves the
actual derivation of the functions f(z, y; m, n) obscure. This, in fact, is accom-
plished with the aid of the spectral resolution of the identity of Hermitian
operators. The procedure is outlined in Lemma 1 of Appendix 3.

In order to derive a generating function formula for the transition probability
function, we first present two generating function formulae for the functions
f(x, y; m, n). This is done in

LemmA 2.1. If we define the generating functions

Gi(u, 0) = Daa S @, g3 m,n) CFw® Jor Jul <1, fo <1
and
Ga(vr, 00) = Lo f @, y3m, n) (""" Jor ol <1, foo] <1
where f(x, y; m, n) and k are as defined in (2.5) and (2.8), respectively, then the
following generating function formulae are valid:
Gilu,w) = 1 —w) ™A +u —wp+a)7)
Q=g u—wp+g))" i p+g<l1
P+0™A w0+ 0+ ) —w)
A= @+Q@u+w)" f p+g>1

no closed form if p+q=1

(2.12)
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where M = m 4+ n, and
G, ) = 1 — @ +2)) A — u+vw)+)™)"
- n) i pte<l
A— @+v)@+™) 0 = @+ )
=) ptg>1
exp (— (@ — @) (o + w)[1 — @ + »)]7)
A= 0+ o)) —gpn)®  f ptg=1

Proovr. These generating function formulae are derived by direct computation
from the generating function formulae of the Krawtchouk, Meixner and Laguerre
polynomials (see (9), (10), (18), (19), and (24) of Appendix 1).

Next we present formulae for the generating function of the transition prob-
ability function when p 4 ¢ # 1.

TueoreM 2.2. If we define the generating function

G(t; v, va) = D mr im0 P (t; m, n), m', n' Vo™ v for || <1, | <1,
then

(2.14) G(t; 01, 02) = AB~¥ D"

where A, B, C and D are functions of t, v, and v» . Namely, with

P=p+4+¢q Q=[1-P|

Il

(2.13)

(2.15) E=¢% F=1-E,
U=pn+qu and V =1 — 1y
we have
A =P™Q if P<1
= P™QE if P>1;
B=1—PE—FU if P<1
(2.16) =P —FE—-FU if P>1;
C =PF+qQe'V— (P—EVU if P<1

— PF 4+ ¢Q¢™V — 1 — PE)U  if P> 1;
D =PF —pQe'V — (P — E)U if P<1
— PF — pQe™V — (1 — PE)U 4 P> 1.

Proor. The theorem follows by direct computation from Theorem 2.1'and

Lemma 2.1.
The generating function formula (2.14) may be used to compute the means and
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higher moments of the process. As an example, we compute
E[U@)|X(0) = (m,n)] = [8G (¢ v1, 1)/0v1] [0 -
Note first that for »; = v, = 1 we have

B =4Q if P<L1 and C =D = PQ if P<I1

=QF if P>1 =PQE if P>1
Also, if prime denotes derivative with respect to v, we have:
B = —pF, C =¢'—p®P—E i P<I1
=q¢Qe " —p(l —PE) if P>1
and
D' = —pQet —p(P — E) if P<1
= —pQe ™ — p(l — PE) if P>1.
Since
@ = G[— (M + 1)B'/B + mC'/C + nD’/D],
we obtain

EU@®)|X0) = (m,n)]
= (PQ)'[(mq — np)Qe * + MpQE + pPF] if P<1
= (PQE)'[(mg — np)Qe ™ + MpQ + pPF] if P> 1.

Similarly, we may compute the mean of V (¢). Thus, the mean of the total popu-
lation size is:

EU®) + V(¢)|X0) = (m,n)] = ME + PQ'F if P<1
= ME*+ PQ'E'F if P> 1.

To examine recurrence we select state (0, 0) and compute P (¢; (0, 0), (0, 0))
to find

Pt (0,0), (0,0))
=[l— @+l — @+gexp (—[1— @+ if p+g<1

= ¢+ D7 ' if p+qg=1
= @+e¢—Di@+@exp (p+qg— 1) — 1" if p+g>L

From here we have
fSP(t; (0,0), (0,0)dt = » if pt+g<l
= if p+qg=1

=hnlp+¢P+eg—1)"1<w if p+g>1
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and
lime. P(¢; (0,0), (0,0)) =1—(+g¢q) if p+g<l1
=0 if p+g=1
=0 if p4+g¢>1.
Thus we may state
Turorem 2.3. If X(t) 2s a two-dimensional linear growth birth and death process
whose infinitesimal birth and death rates are defined by (2.3), then the process is

positive recurrent, null-recurrent or transient according asp +q¢ < 1,p + q = 1,
orp +q> 1.

3. The associated two-dimensional absorpti(;h process. If the process studied
in the previous section is “reversed,” we obtain a process with infinitesimal
birth rates

3.1) Mim,n) =m + 1, Nm,n) =n-+1
and infinitesimal death rates
(3.2) mim,n) = (M + 1)p, wim,n) = (M + 1)g,

where M = m + n. This is obviously an absorption process, since from any
integer point (m, 0) or (0, n) along one of the non-negative coordinate axes ab-
sorption may occur with probability ¢(m + 1) or p(n 4+ 1), respectively.

The results obtained for this absorption process are analogous to the ones pre-
sented for the original two-dimensional linear growth process and are sum
marized in the following theorems and lemmas.

TrrEOREM 3.1 (Representation Theorem). If X (¢) is a two-dimensional linear
growth birth and death process whose infinitesimal birth and death rates are defined
by (3.1) and (3.2), respectively, then the transition probability function of X(¢) is
given by formula (2.4). The functions f (x, y; m, n) are again semi-direct products of
orthogonal polynomials:

f@, y;m,n)
= " ue(y — @+ 1A = P+ )" — 1;
e+ 20+ OKn@p0+ ), M) if p+g<l1

33) = G CED® 4+ O bua( — @+ 1))
PHe—17 = @+1)2+2 0+ ) DKn@ip0+ ), M)
if p+g>1
= )P L@ — x — 1)Kn(z; p, M) if p+gq=1

where M = m + n. .
The weight function II(m, n) and the spectral measure p(x, y) are given re-
spectively by

(34) H(m,n) = (M + 1)@ )p"g"T"
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and
oz, y) = @+ DT+ O~ @+ F"
@@+ )T i pt+g<l1
(3.5) =@+ + )™ - @+ 7T

@+ ) i ptg>1
exp (—ly — @+ 1y — @+ DI @D (0/q)*
if p+g=1

where y and k are assoctated through
36) yYy=C+LH+0L-@+Ik+1) & p+qg<l1
p+de+D)+@+eg—-Dk o p+g>1

Proor. Define the matrix A of the infinitesimal birth and death rates with
elements

a((m,n), m',n’))

=m-+1 f m =m+1 and n =n
=n-+1 it m =m and n =n+1
(3.7) =M+ 1)p if m' =m—1 and 2 =n
= (M + 1)g if m' =m and n' =n—1
= —[(M + 2)
+ M +Dp+9] if m=m and n =n
=0 otherwise

where M = m -+ n. Then the proof of Theorem 3.1 is accomplished by direct
substitution of the representation formula in the differential equation (2.10) with
initial conditions (2.11).

The actual derivation of the functions f(z, y; m, n) is outlined in the proof of
Lemma, 1 of Appendix 3.

LemMa 3.1. If we define the generating functwns

Gru, w) = 2w f@y;mn) @+ 1) W for Jul <1 and |w| <1
and

Go(vr, 1) = Dm0 f (@, Y3 my, n)o™" for |w| < 1 and | < 1

where f(z, y; m, n) and k are given by formulae (3.3) and (3.6), respectively, then
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the following generating function formulae are valid:
G (u, w)
=T '(m,n)Q — w) ¥
@8) M+ u—wp+ TL-—pu—we+¢7 " f p+g<l
=1 (m,n)(p 4+ @)™ (1 — w) ™)
N+ @+O@—w)"L— @+ )@ ut+w)]" if p+g>1

= no closed form if p+qg=1
where M = m + n and ;
Gz (1)1 ’ ’02)

= [1 — (po + qu)]
M=+ @)+ Tla@m—n) o p+g<l1
3.9) =11 — (o + @)@+ ¢ T
A= o+ @)lg@ — ) i p4g>1
=exp (—[y — @+ Dl m + @) 1 — (oo + qu))™)
A= o+ @) g — )" i pt+g=1

Proor. The derivation of these formulae is analogous to that of (2.12) and
(2.13).
TaEOREM 3.2. If (ignoring absorbing states) we define the generating function

G(t;v1,0) = 2mrmrma P (m,n), (m', n" )T , 0" o™ v,™
for [v] < 1, |vo] < 1, then

(3.10) G(t; v ,0,) = AB-¥Hcmpr
where
(3.11) A = H_l(m, n)P—MQ2e—(l+Q)t

and B, C and D as well as P, Q, E and F are the same as defined by (2.16) and
(2.15), respectively.

Proor. The derivation is analogous to that of formula (2.14).

Formula (3.10) may be used to compute absorption probabilities of the process.
For example, the probability of absorption

P{UG) = —1|X(0) = m, n)
= 2 w=op®@ + 1P (m,n), 0,7))
pG(t;0,q)
0 (m, )P ™pe ™' (1 — e ™1 + pg e ™")" provided P = 1.
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Finally, we present a theorem that connects the eigenvectors f(z, y; m, n) of
the original two-dimensional linear growth process discussed in Section 2 with
those of the associated absorption process of this section. For this purpose we
change the notation of the latter functions from f(z, y; m, n) to f*(z, y; m, n).
Similarly, an asterisk will be added to the notation of the weight function as well
as the spectral measure of the absorption process.

Tureorem 3.3. Let f (x, y; m, n), IL(m, n) and p (x, y) denote the functions defined
in Section 2 by formulae (2.5), (2.6) and (2.7), respectively. Further, let
@, y;m, n), I*(m, n) and p* (z, y) denote the functions defined in this section
by formulae (3.3), (3.4) and (3.5), respectively. Then we have the following rela-
tionships:

@ ymon) = M+ DI@m,n)@ — @ —1))7

(3.12) Iof,y — 1;m + 1,n) + ¢f(x,y — L;myn + 1)
— @+ Of@,y — 1;m,n),

(3.13) T*m,n) = [((M + DI (m, n)]"

and

(B14) '@y =g '@+ @+ 1)@+ Ly+p+q—1).

Proor. Formulae (3.13) and (3.14) are obvious. Formula (3.12) follows from
the consecutive application of formula (2) of Appendix 1 for the Krawtchouk
polynomials and then either formula (14) or (15) of Appendix 1 for the Meixner
polynomials or formula (22) of Appendix 1 for the Laguerre polynomials, de-
pending on whetherp +¢ < 1,p+¢> l,orp + ¢ = 1.

4. An (N + 1)-dimensional linear growth process. In this section the two-
dimensional linear growth process is generalized to (N + 1)-dimensions. We con-
sider a population of N + 1 genotypes. The number of individuals of each geno-
type is a random variable dependent on time and will be represented as a compo-
nent of the (N + 1)-dimensional random vector X (¢). The range space of X(t)
is then the set of all (N + 1)-dimensional vectors m with non-negative integer
components mg, my , - -+ , my . The transition probability function

(4.1) P@;m,m’) = P{X(s+t) = m'|X(s) = m}

is assumed to be stationary in time. We further assume that X () is a generaliza-
tion of the linear growth birth and death process of Section 2;i.e., we assume that
for small h > 0 '

P(h;m, m")
= (M + 1)pih + o(h) if m=m-+e for j=0---,N
4.2) = msh + o(h) if m=m-—e for j=0,---,N

=1—[(M+ 1)P + M]h + o(h)
if m=m
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= o(h) otherwise.

Here e; denotes an (N + 1)-dimensional vector whose jth component is one and

all others vanish, thus, e.g., e = (1,0, ---,0)and e, = (0,1,0, ---,0), ete.
Further
4.3) M =2 Tomi, P=2Yop:

and the p;’s are positive constants.

The generalization of Theorem 2.1 is the following:

TurorEM 4.1 (Representation Theorem). If X (t) #s the (N + 1)-demensional
linear growth birth and death process defined above, with infinitesimal birth and death
rates as given in (4.2), then the transition probability function has the representation

44) P m, m') = Om') Xew ¢ & y; m)f x y; m)o(x, y)
where f (X, y; m) s the semi-direct product of orthogonal polynomials. Namely,
& y;m) = @)ouey (W —ax)(L — P) 52y + 1; P)
‘R p,m) o P<1
)P~ (Y — @x) (P — 1)
— @y + 12y + ;P HRE;p,m) o P>1
= Lt ey (y — 2y)X (x; p, m) if P=1

4.5)

Here, ¢:(2) and L"(z) are the Meixner and Laguerre polynomials, respectively, de-
fined i Appendiz 1; X (x; p, m) s the Krawtchouk polynomial of order N intro-
duced in Appendiz 2 and so called because it has many of the properties of ordinary
Krawtchouk polynomials. The weight function II(m) and the spectral measure
o (X, y) are given by

(4.6) H(m) = (mg, emy )P0 -+ DA™
and

(4'7) p(X, y) = (a:l—azo,{c}-\( VEN—EN —1 )7" (xN y Y P) H?’r_l (ijl/ijj)rj_rj_l

where

r(ay,y; P) = ()1 — PyHPF i P<1
4.7 = (M@ — pytp i P>1
=Y (y — )@y ) i P =1
Here, 20 = 0,x = (%o, 21, -+, Zy) and y and k are closely associated through
(4.8) y =ay+ (1 — Pk if P<1

Piv+ P—1)0k+1) o P>1.
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The summatiom in formula (4.4) stands for an (N -+ 1)-tuple summation over all
possible values of y as k runs over all non-negative integers and all integer values of
Xy, -, Ty suchthat xjy £ x; £ M, forj =1, -+, N where M; = > emi,
forj =0,--+,N (with My = M) when P £ 1. In the case P = 1 the summation
over y is replaced by an integral f:N dy.

ProoF. Define the matrix A of the infinitesimal birth and death rates, with
elements

(M + 1)p; if mM =m-+e for j=0,---,N

a(m, m’)

Il
o
=

. 14 .
m; if m =m —e; for j

=M + 1)P + M]

. !
if m =m

Il

4.9)

Il

=0 otherwise.

Then the transition probability funetion is the unique solution of the differential
equations

(4.10) @/d)P (t; m, m’) = D> pa(m, m”)P(¢;m”, m)
with initial conditions
(4.11) PO;m,m') = 6(m,m') = Smymg - Omymy’ -

Direct substitution of the representation formula in (4.10) and (4.11) proves the
theorem.

The actual derivation of the functions f(x, y; m) is the generalization of the
procedure applied in the two-dimensional case. In the course of the proof of
Lemma 1 of Appendix 4 we give an outline of this derivation.

The (N + 1)-dimensional generalizations of the generating function formulae
of Section 2 are given below in Lemma 4.1 and Theorem 4.2.

LemMma 4.1. If we define the generating functions

Gr(, w) = 2 F X, 45 1) (o100, ooy 1)
NN TN for u] <1, fw] <1
and
Go(V) = 2m [ (% Y5 m) (o, ™y 0™ o+ 04", for |v] < 1,

whereu = (Wo, Ur, +++ , Uy) Withug = 0, v = Vo, v, ,vn),and f(x,y; m)
and k are as given by (4.5) and (4.8), respectively, then the following formulae
hold:

G1 (u, w)
=1 —w) U+ uy — P7w)™
(4.12) TS+ wjs — P7w — D, PP ™ if P<1

P —w) ™ ™[ + Puy — w)™
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J0S 0+ Py — w — 20, PP )™ if P>1
= no closed form if P=1
and
Go(v) = (1 — 2 o) %@ — PEY Y p)F
0% @ — piPi 205wy fP<1
(4.13) = (1 — P Vo) ¥ — SN 0)*
T @ = PPt 20w P> 1
= (1= 22500) ™ exp (— (y — 2m) (T 00 — 21 00)™)
T @5 = piPih 2S5 0s)7 P =1
where P; = ZLopiforj =0,1, -+, N (with Py = P).

Proor. These generating function formulae follow from those of the Krawt-
chouk polynomials of order N (see Theorem 4 of Appendix 2) and similar rela-
tions for the Meixner and Laguerre polynomials (see formulae (18), (19), and
(24) of Appendix 1).

Next we derive generating function formulae for the transition probability
function. Thus we have the following:

THEOREM 4.2. If we define the generating function of the transition probability
Sfunction

Gt v) = 2w Pt;m,m )™ - o™ | for |v| <1,
where v = (vg, ++-, vy), then
(4.14) G(t; v) = AB ML 0m
where with the notation
(4.15) P=2%p, Q=[1-P, E=¢&%
F=1—-E and U= po

we have
A = P™Q ifP<1
= PMQE if P> 1;
(4.16) B=1-—PE —FU ' fP <1
=P —E—FU ifP > 1;
C;=PF — (P + Q¢ — E)U + PQe'; ifP <1

=PF — (14 Q™ — PE)U + PQe™,; ifP>1.

Proor. Combining the two generating function formulae of Lemma 4.1 re-
sults in formulae (4.14) and (4.16) through the use of Theorem 4.1.
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As in the two-dimensional case, the generating function formula (4.14) may
be used to compute the means and higher moments of the process.
To examine recurrence we compute that

P({0,0) = (1 —P)(1 —Pe™H™?  ifP<1
= ¢+ 17" ifP=1
= (P — 1) (P ™ — 1) if P> 1.
Since this is the same result as that obtained for the two-dimensional linear
growth process, we have the equivalent of Therem 2.3:
Traeorem 4.3. If X(¢) is an (N + 1)-diémensional linear growth birth and death
process whose infinitesimal birth and death rates are defined by (4.2), then the

process 1s positive recurrent, null-recurrent or transient according as P < 1, P =1
or P > 1.

5. The associated (N + 1)-dimensional absorption process. The absorption
process discussed in Section 3 may be generalized to (N 4 1)-dimensions. The
infinitesimal birth and death rates are given by

P(h;m,m') = mj + Dh + o(h) ifm =m +ejforj=0,---,N
(M + 1)psh + o(h)

Il

(5.1) ifm =m —e;jforj=0---,N
=1—[M + N)+ (M + 1)PIh + o(h)
ifm =m
= o(h) otherwise

where the same notation is used as in (4.2). This is obviously an absorption
process, where integer points along the coordinate axes form ‘‘lines” of absorp-
tion. The results for this process are summarized in the following theorems and
lemmas.

TuroreMm 5.1 (Representation Theorem). If X (¢) s an (N + 1)-dimensional
linear growth birth and death process whose infinitesimal birth and death rates are
gwen by (5.1), then the transition probability function has the representation (4.4).
The functions f (x, y; m) are now given by

fx y;m) = [(zy + DI m)]™
buay((y — N — zy)(1 — P — L8+ 2; P)

‘X (x;p,m) if P <1
(5:2) = [(@s + DI (m)] P~

oy (W — N —ax) (P — 1) — (@n+1);25 +2;P7)

‘X (x; p, m) iy P >1

= [(M + DI @)Ly (y — N — 23)% (x;p, m)
ifP =1
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where ¢;(z) and L;"(2) are the Meixner and Laguerre polynomials, respectively,
defined in Appendiz 1, and X (x; p, m) s the Krawtchouk polynomial of order N
introduced in Appendix 2. The weight function II(m) and the speciral measure
p(x, y) are now given by

(5.3) T(m) = [(M + 1) (ng, - my )P0™ <+ DA™
and
G4) % Y) = Grmoo aymayy r@x, ¥ P (Pica/piPy)™
where
rlov,y; P) = (V) — Pyweph P <1
(5.4") = (VY — pThy=vepE dP>1
=e¢ V(@Y — N — o)™ (@ + DN TP =1
Here, xo = 0,x = (%o, -+, xx) and y and k are closely associated through
(55) y=N+azy+ 1 —-P)(k+1) ifP <1
=N —1+4+P@ev+1)+ P—-1k P>1.

Proor. Define the matrix A4 of the infinitesimal birth and death rates with
elements

a(mm') =m;+1 ifm =m+ejforj=0--,N
= (M + 1)p; ifm =m —e;forj=0,---,N
(5.6) = —[(M + N) + (M + 1)P]
ifm" =m
=0 otherwise.

Then the transition probability function is the unique solution of the differen-
tial equations (4.10) with initial conditions (4.11). Direct substitution of the
representation formula proves the theorem.

The actual derivation of the function f(x, y; m) is outlined in the proof of
Lemma 1 of Appendix 4.

Luvmma 5.1. If we define the generating' functions

Gi(a, w) = Dxy) S Y3 M) Gy Moy, ) (VY7100 L gy PN N1
for Jul <1, |wl <1,
and
Go(v) = 2mf @ y;m)™ - vg™ for |v| <1

where u = (uo, Ui,y *°°, uN) thhuO = O) v = (1)071)17 ) vN) andf(x, yym)
and k are as gien by (5.2) and (5.5), respectively, then the following formulae
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hold:
Gi(w,w) =T (m)(1 —w) ™A + uy — wP™ )™
g0 @+ v — wP™ — ipiPhu)™t P <1
(5.7) =0 m)1 —w) PP 4 uy — w)™
Je P+ win — w — 2 plPihiw)™ T if P> 1
= no closed form if P =1
and
Go(v) = (1 — Thopws) (1 = P7 Zlopa)*
D% s — piPy 2iZspwd)™ ifP <1
=1 — P X Lopw) #TN (A — 2 opwi)*
(5.8) 04 s — piPia 22 pws)™ 5 ifP>1
=01 - Zi};opﬂ)i)_(“’m
cexp (— @y — N — aw)(Xopos) 1 — 2Zopoi)™)
TN s — piPia 2 pws)™ 5 P =1

where P; = X i_opiforj = 0,1, -+, N (with Py = P).

Proor. These generating function formulae follow from those of the Krawt-
chouk polynomials of order N (see Theorem 4 of Appendix 2) and similar rela-
tions for the Meixner and Laguerre polynomials (see Appendix 1).

TuroreM 5.2. If we define the generating function of the transition probability
function

Gt;v) = 2omPt;m,m )T (m )™ - o™ for |v] <1

where v = (v, ++-, vx), then

(5.9) G@t;v) = AB YL c™

where

(5.10) A =T (m)P Qe V!

and B and C; as well as P, Q, E, F and U are as defined by (4.16) and (4.15),
respectively.

Proor. The proof is analogous to that of Theorem 4.2.

As in the two-dimensional case the generating function formula (5.9) may
be used to compute the absorption probabilities of the process.

Finally we have the following generalization of Theorem 3.3:

TueoreM 5.3. Let f(x, y; m), II(m) and p(x, y) denote the functions defined in
Section 4 by formulae (4.5), (4.6) and (4.7), respectively. Further, let *(x, y; m),
n*(m) and o* (x, y) denote the functions defined in this section by formulae (5.2),
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(5.3) and (5.4), respectively. Then we have the following relationships:
(A1) ffxy;m) = M + DI@m) @y — @y — N)™
[2pf (%, y — N;m 4 &) — Pf(x, y — N; m)],
(5.12) " m) = (M + DIm)7,
(6.13)  and p*(x,y) =px+E, y+ P —N)

where E is an (N + 1)-dimensional vector with all its components equal to one.
Proer. For all cases of P we may write

f&xy — N;m) = ¢ M)XK (x;p,m)

where ¢ (M) is a function of N, zy, y and P as well as M. Then, by Theorem 1
of Appendix 2, we have

2o %,y — N;m + e) = ¢ (M + 1) 2 LopiX (x50, m + e:)
=yM + 1)P(M —ay+1)(M + 1)
-K (x; p, m).

Thus, to prove formula (5.11) we must show that

(5.14) Plim(zy — (y — N))'I(M —ay + )Y (M + 1) — (M + 1)y (M)]
=" (M)

where ¢* (M ) is defined through

& y;m) = ¢* (M)X(x; p, m)

for all cases of P. But equation (5.14) is equivalent to formula (14) or (15) of
Appendix 1 for Meixner polynomials according as P < 1 or P > 1. When
P = 1, equation (5.14) is equivalent to formula (22) of Appendix 1 for Laguerre
polynomials. Formula (5.12) is obvious and (5.13) may be proved directly by
comparing formulae (4.7) and (5.4).

Appendix 1. The Krawtchouk, Meixner and Laguerre Polynomials. In this section
we summarize the definitions and some basic relationships of the classical
Krawtchouk, Meixner and Laguerre polynomials.

The hypergeometric function is defined by (see [1])

oF1(a, b5 ¢;2) = Dieo (a);(0);((c)ig)) %’
where (@); = a(a + 1) --+ (@ + 7 — 1). Then
1) Kn@) = Kn(@;pp + @), M) = oF1(—m, —z; —M; ® + ¢)q ")

defines the Krawtchouk polynomials, where p > 0, ¢ > 0 and m < M are non-
negative integers ([2] and [14]).
The following two relations may be obtained for the Krawtchouk polynomials
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from two of the well-known relations of Gauss between contiguous hyper-
geometric functions (see formulae (38) and (35) on page 103 of [1]):
@) PKnu@;p(® + ), M + 1) + ¢Kn@; p(p + )7, M + 1)
=@+ —z+1)M + 1) Kn(@;pp + ¢)7M)
and
3) mEna(@;p@+ ¢, M—1) +nKn(e;plp+ ), M —1)
= MKn(;p(p + ¢)7, M)
where M = m + n. -
The Krawtchouk polynomials satisfy ([5], [7]) the recursive relations
4) —2Kn@) =mgp + ¢) " Kna(@) + ng(p + ¢) Knn(z)
—mg®@ + )7 + (@ + ¢) 1Kn ()

where M = m + n.
The Krawtchouk polynomials are also known to satisfy orthogonal and
dual orthogonal relations ([7]):

5) DMK (@)K @)p(x) = ST
and

6) A K (@)K ()L = 8000 (0 ()™
where

) In = (u)p"q",

®) p@) = g Y@+ ™

and M = m + n. There are two generating functions associated with the Krawt-
chouk polynomials ([2] and [14]):

9) DA Kn@) O = (L +u)"(1 — gp u)"
and
(10) Dm0 Kn(@)Gov™ = (L +0)" (1 — gp )

where M = m + n.
Next we define the Meixner polynomials as

(11) $i(2) = ¢i(z; B,v) = 1Fa(—3, —2;8;1 —~ ")

for 8 > 0and 0 < v < 1, although it is more customary (see [2]) to take (8):
times the above function as the definition of Meixner polynomials. In [5], Karlin
and McGregor find the Meixner polynomials (11) as the solutions of recursive
equations and thereby entering the representation formula for the one-dimen-
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sional linear growth process. In particular, the recursive equations
(12) —2Qi(z) = G+ B — INQia(2) + (@ + 1)pQin ()
— [+ D+ @+ B8 — NQ:(2)
are satisfied by
(13) Qi) = ("FMgilel — N — (8 — 1); 8 07") i\ < u
= CTDET BN — w7 = 18 ) if p <

We further have the following relations for the function ¢:(z; 8, v) (see page
85 of [11] and formula (38) on page 103 of [1]):

(14) bina (2 B8;7) — di(zB57) =287 (1 — v (e — 1; 8 + 1; v);
(15) $ua (2 857) — v i@ 85v) = B + 2)87° (1 — v )die; 8 + 15 7).

The orthogonality relations and generating functions of the function ¢;(z; 8; v)
as given in [2] and [5] are as follows:

(16) 2odile; B3 7)o (585 v) CHEW (U — v) = 60o/ (MY

a7) 2 0i(z5 85 1)0: @5 85 v) (7 = 6w/ CHEY (L — )P,
Further

(18) Do ¢i(z; B; ’y)(z+‘3_l)sz = 1 —syH)'a — ) for ls] < 1
and

(19) Dodilz; 8; )P Y = @ — sY 7)Y — )¢ for ls|] < 1.

Finally, we summarize the formulae to be used in this paper concerning the
the Laguerre polynomials. These are defined in [2] and [14] as

L @) = 2oum0 (G53) (—2) )7
Then the function
(20) Qi(z) = Li" ()
turns out to be the solution to the recurrence relations (see [5])
@) —2Q:i(z) = (G + 1)Qiu() + (@ + a)Qia(e) — 2 + « + 1)Qi(2).
We also have the relations (see [2])
(22) @+ DLiak) — G+ a+ DLSE) = (—2)L" ().

The orthogonality relations and generating functions are (see [2], [5], and
[14]):

(23) Jo L& @)L () 2" (T (e + 1)) dz = 6,0 (5%)
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and
(24) D toL@)s = (1 — s) " “Pexp (—zs(l — s)) for |s| < 1.

There are no simple “dual” orthogonality or generating function relations avail-
able for the Laguerre polynomials.

Appendix 2. The Krawtchouk Polynomials of Order N. In this section we shall
generalize the Krawtchouk polynomials to higher dimensions. We give the
following:

DeriniTiON. Let x = (X, -+, 2v) and m = (mo, -+, my) be (N 4 1)-
dimensional vectors of non-negative integer components such that z, = 0 and
2iy = x; < Mjforj=1,---, N, where M; = > omiforj =0, ---,N. Let
p = (po, -+, p~) bea vector of positive real numbers and P; = > opiforj =
0, ---, N. Then the function

(1) K(X;p, m) = Hﬁ;l Jflﬂljj—_1l)(2fl—j1)—l
Koy yajy @ — Tja; PiaPi™ My — w54)

is called the Krawtchouk polynomial of order N.

Note that this function is actually a semi-direct product of N ordinary Krawt-
chouk polynomials and for N = 1 reduces to an ordinary Krawtchouk poly-
nomial.

This definition will be justified by showing that all the properties listed in
Appendix 1 of ordinary Krawtchouk polynomials have natural extensions valid
for Krawtchouk polynomials of order N. As a generalization for formulae (2)
and (3) of Appendix 1, we first prove the following:

TuroreM 1. The Krawtchouk polynomials of order N satisfy the relations

@) XYopXx;p,m+ ;) = Py(My — oy + 1) (My + 1)K (x; p, m)
and
(3) Z?{:‘]mﬂ(’,(x; p,m — ef) = ]VINSC(X, P, m)

where e; denotes the (N + 1)-dimensional vector whose ith component is one and
all others vanish.

Proor BY InpucTION ON N. For N = 1 these equations reduce to formulae
(2) and (3), respectively, of Appendix 1. To facilitate our induction proof it will
be helpful to indicate the dimensionality ‘of vectors through the use of super-
seripts. Thus, let x¥ = (%, -++, zy), m" = (mo, --+, my), and p" = (po,
-+, py). Further, we shall use the abbreviated notations

x = x@&;p", m");
Y (e:) = ®&";p", m" + e');

KV (—e;) = RE";p", m" —e").
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From the definition directly we have the recursion formula
(1,) x = (zN)(MN“)——IKMN—xN(xNH — N, PNPN+1, My — $N)CK’,

Next we assume that formula (2) holds for N and proceed to prove it for N + 1.
Using the recursion formula (1) and the induction assumption, we have

0 pak ™ (es)
= (OB K@ p(0 + )7 m 4+ 1) Ziopik” (es)
+ pan®” ™ (eni1)
= GO K@@ + ) m o+ 1)
+ gKn@;p@ + @) m + n + 1R
where we have temporarily put
T = Tyyr — Ay, M = My — zy, n = My, P = Py and ¢ = pyu.

Then by formula (2) of Appendix 1 and the recursion formula (1) again we
obtain

Yok ™ (e) = Pyp(Myys — vy + 1) (Myyn + 1)7%5™,

This completes the proof of formula (2). The proof of formula (3) proceeds
along similar lines. We omit the details.
Next we generalize the recurrence relations (4) of Appendix 1 by stating
TueoreM 2. The Krawtchouk polynomials of order N satisfy the recursion
relations

4) P(My — ay)X(x; p, m) = Z§j=opmj3€(x; p,m + e — ej).

Proor BY INnpucTiON ON N. For N = 1, equation (4) reduces to formula (4)
of Appendix 1. In proving formula (4) for N + 1, assuming it valid for N we
shall make use of the notation introduced in the proof of Theorem 1. First,
through the use of recursion formula (1") we have

S = Z?";‘;lo pamX" " (i — e;)
= G OB HER @) 2T im0 pmX (e — €;)
+ maa My + 1) My — o 4+ 1) Kpya (@) 2o pik” (e:)
+ v My — ax)My Kua (@) 2-5-0m; &Y (—e;) + muypwnKn @)K
where Kun@) = Ku(z;p( + ¢)7,m + n)
= Kuy—oy @1 — on; PuPyb1, My — an).

Next we apply the induction assumption as well as both equations of Theorem
1. Then

8 = GHER)K (pmKa@) + pnKnn@) + gnKna@) + @Ka (@)},
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Finally, we use the recursion formula (4) of Appendix 1 of ordinary Krawt-
chouk polynomials. Then

S=CGENEEHTX @+ O +n — 2)Ka(@)
= P(MN+1 ot xN+1)5<: +.

This completes the proof of the theorem.

As generalizations of the orthogonality relations (see (5) and (6) of Appendix
1) and the generating function formulae (see (9) and (10) of Appendix 1) for
ordinary Krawtchouk polynomials, we have the following theorems.

TuEOREM 3. The Krawtchouk polynomwls of order N satisfy the orthogonality
relattons .

() YK (x, p, m)XK (x; p, m')p(x) = &(m, m )y

and dual orthogonality relations

(6) 2a%(x;p, m)RE;p, m)n = 8(x,%)(p(x))™

where m denotes the N -dimensional vector m = (mo, -+, my—1) and
@) (M) = (uorimy)P0™ * -+ ™,

@®) p(X) = (oymsomay—sn_ ) PV 17 (Pjma/psiPy)" "
WD (g my) = M/mo! -+ - my! being the multinomial coefficient.

TuroreM 4. The Krawtchouk polynomials of order N possess the following
generating function formulae:

_4x X (x; p, m) (xl—xo,mgN—xN 1)“ . uNN_xN '

= @4 u)™ I @+ wjm — 2 pPius)™ ™t for Jul < 1
and
28K (X5 P, M) (moormy J0G° - ORET
= (o) VT 5 — piPia 221500)" 7 for v < 1

wherew = (Uo, +++, Uy) Withuo = 0 and v = (v, ---, vy) withoy = 1.
The proofs of Theorems 3 and 4 may be carried out by induction in a routine
manner and are omitted here.

Appendix 3. Derivation of the Functions f(z, y; m, n).

LevMma 1. Let A be the matriz of infinitestimal birth and death rates defined by
etther formula (2.9) or (3.7). Thenasx = 0, --- , M, y is gien by formula (2.8)
or (3.6), respectively, and k runs over the mon-negative integers, the fumctions
fx, y; m, n), given by formulae (2.5) or (3.3), respectively, form a complele set
of orthonormal eigenvectors with eigenvalues —y for the matriz A when p -+ q % 1.
For the case p + q = 1 the same statement holds with the difference that y must
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take values = x continuously. Thus, we have the orthogonality relations

Z(z,y)f(x, Yy; m, n)f(x) Y; m,y n')p(x, y) = 6m.m'6n,n'/n(m7 n)
When p + q # 1, we also have the dual orthogonality relations

Z:.n=0f(xy Yy;m, n)f(xly y,7 m, ’I’I/)H (’I’I’L, n) = 69?,9?'62/,1!'/9 (x; y)

where the weight function TL(m, n) 1s given by formula (2.6) or (3.4), respectively,
and the spectral measure p(x, y) s given by formula (2.7) or (3.5), respectively.

Proo¥. Let II(m, n) be defined by either formula (2.6) or (3.4). Then the
elements of A satisfy the symmetry relations

1) a(m,n), @, 0/ )Nm, n) = a(n',n'), (m, n))IL@, n').

Next we consider the space & of all complex valued functions f(m, n) of pairs of
non-negative integers (m, n) such that D _m.—olf(m, n)|’I(m, n) < « and
define the inner product

(£, 9) = 2w (m, n)g(m, n)I(m, n)
for all f, g ¢ F. Further, we introduce the linear transformation ¢ = Af in § as
g(m7 n) = Z(m’,n’) a((m7 n)) (’I’)’L,, n,))f(ml7 n,)

for all f £ 5. Due to the symmetry relations (1) this transformation is Hermitian
with respect to weights I (m, n), i.e., (4f, g) = (f, Ag). Because of the Her-
mitian property matrix A possesses a complete set of orthonormal eigenvectors.
The method of finding the eigenvectors (and eigenvalues) of A is based on the
classical technique of separation of variables. The technique is demonstrated
here for the matrix 4 as defined by formula (2.9). We find we must solve the
equation

—yftm,n) = M + Vpfon +1,n) + M + 1)gf(m, n + 1)
2) +mfm—1, n) + nfim, n —1)
—[MM+1)® + ¢) + M]f(m,n).
We use the technique of separation of variables as suggested by [9]. Let
@) fm,n) = Quy)g(m,n), with M =m +n

where the functions on the right hand side depend only on the parameters in-
dicated through their notation. Then with a, and bs defined such that

@ pgm—+1,n) +qgm,n+1) = aug(m,n),
mg(m_lyn) —l—ng(m,n—l) = ng(myn))
we have, from equation (2),

6) —¥Qu) = M + 1)au@ui1(¥) + buQu- ()
— [+ 1)@+ @) + MQu ).
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From equations (4) we have
axburg@m, n) = plim +1)g(m, n) + nglm+1, n—1)]
+amgm—1L,n+1) + @+1)gm,n)]
and
6) amabug(m,n) = mlpg(m,n) + qgg(m — 1, n+ 1)]
+nlpgm+1,n—1) 4 gg(m, n)].

From the last two equations we obtain axbyi1 — au—by = p + ¢ or solving
recursively

) ayby = (@ + ¢)(m —2)

where z is an arbitrary constant. Substituting (7) in equation (6), we obtain
after rearrangement

—zgm,n) =mgip+q) 'gm—1,n+1) +nglp+¢) gm+1,n—1)
— mg(p+q)" + np @+ ¢) 1 g0m, n).

Comparing this with the recursive relations (4) of Appendix 1 valid for the
Krawtchouk polynomials, we find that

®) g(m,n) = C(@; M)Kn(z;p@ + 0), M)

with C (x; M) an arbitrary function of z and M andm = 0, 1, - -+, M. With this
solution ay and by can be evaluated. In fact, if we substitute solution (8) in
in equations (4) and then compare them with formulae (2) and (3) of Appendix
1, we find that

©) av=pP+oWM -2+ 1)/(M +1) and by =M
provided we choose

Cla;M+1)/Cla; M) =C@x; M —1)/C(x; M) =1

The functionC (x; M) may indeed be chosen such if, for example, C (x; M) =
C (z) independent of M. For simplicity we choose

(10) Ca;M)=C) =1

Next we put (9) in equation (5). Thex} after rearrangement we have

(1) —ly— @+ 9)2Ru) = @+ )M — 2+ 1)Qun(¥) + MQua(y)
— M -2+ D@+ ¢ + MQuy).

Depending on whether p 4+ ¢ £ 1 or p 4+ ¢ = 1, we compare this equation with
the recursive equations (12) or (21), respectively, of Appendix 1 satisfied by
the Meixner or Laguerre polynomials, respectively. Thus we find the solution of
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(11) as follows:
Q) = ous(ly — )0 — @ + )52+ 150 + ¢)

fp+qg<1
(12) = @)@+ )™ duae(ly —2)p + ¢ — 1)7
— @+ 152+ 15 0+
ifp+g>1
= Ly—(y — ) ifp+qg=1

where ¢;(z) and L.;*(2) are the Meixner and Laguerre polynomials, respectively,
defined in Appendix 1. N

Finally, we put formulae (8), (10), and (12) in equation (3), and thereby
the expressions for the eigenvectors f(m, n) = f(x, y; m, n), given by formula
(2.5), are verified. The procedure to verify formula (3.3) by the same technique
is only slightly different from the above development. The formula for the
spectral measure p (z, y) (see 2.7) or (3.5)) may now be verified by direct com-
putation based on the orthogonality of the Krawtchouk, Meixner and Laguerre
polynomials as given by formulae (5), (16), and (23) of Appendix 1. Similar
statement is valid for the proof of the dual orthogonality of the eigenvectors
when p 4+ ¢ # 1.

Appendix 4. Derwation of the Functions f(x, y; m).

LemmA 1. Let A be the matriz of infinttesimal birth and death rates defined by
either (4.9) or (5.6). Then as zi, ---, xy take integer values such that x;; <
x; £ Mjforj =1, ---, N (with xo = 0), y s given by either (4.8) or (5.5),
respectively, and k runs over the non-negative integers, the functions f(x, y; m),
gwen by either formula (4.5) or (5.2), respectively, form a complete set of ortho-
normal eigenvectors with eigenvalues —y for the matriz A when P £ 1. For the
case P = 1 the same statement holds with the difference that y must take values =xy
continuously. Thus we have the orthogonality relations

2ol y; m)f(x, y; m)elx, y) = 8@m, m')/I(m).
When P = 1, we also have the dual orthogonality relations
2ol y; m)f(x, s m)II@m) = 8@x, x)84/0(x, y),

where the weight function I (m) zs given by formula (4.6) or (5.3), respectively,
and the spectral function p(x, y) s given by formula (4.7) or (5.4), respectively.

Proor. Let II(m) be defined as in formula (4.6) or (5.3), respectively.
Then the elements of matrix A as defined in (4.9) or (5.6), respectively, satisfy
the symmetry relations

(1) a(m, m,)n (m) = a(m,’ m)n(ml)'

Next we consider the space § of all complex valued functions f(m) such that
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Doalf@m)I(m) < « and define the inner product
(f,9) = 2onf(m)j @) (m)

for all f, g ¢ ¥. Further, we introduce the linear transformation ¢ = Afin § as
gm) = > a(m, m )f(m’) for all f¢F. Due to the symmetry relations (1)
this transformation is Hermitian with respect to weights II(m), i.e., (Af, ¢)
= (j, Ag). Because of the Hermitian property, matrix A possesses a complete
set of orthonormal eigenvectors. The method of finding the eigenvalues and
eigenvectors of A is sketched here for the matrix defined by formula (4.9). We
must solve the equation

@) —yfm) = M+ 1)2Lopifm + e) + 2 iom;f(m — e;)
— [P(M +1) + M]f(m).

As in the two-dimensional case, we employ the technique of separation of
variables. Let

®3) fm) = Qu(y)g(m)

where @ (y) depends on m only through M and g(m) is independent of y.
Substituting (3) in equation (2), the procedure is completely analogous to that
of the solution of the equation for the two-dimensional case as given in Appendix
3. Thus, by choosing a and by such that

4) 2opigm+te) =axgm) and 2 omig(m—e;) = bug(m)
we have that Q. (y) must satisfy
G) —yQuy) = M+ 1)auQu+1(¥y) + buQu-(y)

—[P(M+1) + MQx ).

From equations (4) we obtain the equation

6) aubyig(m) = Z?{f=opzmjg(m + e; —e;) + Pg(m)
and, then, solving recursively, we find that
(7) (leM+1 =P(M —$N+1)

where zy is an arbitrary constant. Substituting (7) in equation (6), we have
P(M —ay)g(m) = 2 3j0pm;g(m + e; — e;).

According to Theorem 2 of Appendix 2, the solution is

8) g(m) = C(xy; M)X(x;p, m)

where C (zy ; M) is an arbitrary function of zy and M only, and X (x; p, m) is
the Krawtchouk polynomial of order N introduced in Appendix 2. Then a, and
bu are evaluated as

9) ay =PM — a2y +1)M + 1) and by =M
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after arguing as in Appendix 3 that we may choose
(10) Clay;M)=C(xy) = 1.
Next we put (9) in equation (5). Then, after rearrangement, we have
—(y—Pey)Quy) = P(M — 2y + 1)Q@un1(y) + MQu(y)
—[PM =2y + 1) + MIQu(y),

This equation is identical to equation (11) of Appendix 3, and thus its solutions
are given by (12) of Appendix 3 with the obvious notational changes that x = zx
and p + ¢ = P.Using these solutions as well as (3), (8), and (10), the expres-
sions for the eigenvectors f(m) = f(x, ¥;m), as given by formula (4.5) of Section
4, are verified. This procedure is only slightly varied when solving for the eigen-
vectors of A as defined by formula (5.6). The correct expressions for the spectral
measure p (X, y) (see (4.7) and (5.4)) may now be verified by direct computa-
tion based on the orthogonality and dual orthogonality relations of the
Krawtchouk polynomials of order N as presented in Theorem 3 of Appendix 2
and similar formulae for the Meixner and Laguerre polynomials given in
Appendix 1.
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