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ABSTRACTS OF PAPERS

(Abstracts of papers to be presented at the Annual meeting, Madison, Wisconsin, August 26-30,
1968. Additional abstracts appeared in the June and April tssues.)

4. Trucated bivariate Poisson distributions. MuNIR AHMAD and MaAsAsHI
Oxamoro, Iowa State University.

The truncated univariate Poisson distribution fx () = p(z)/P(T), x e T, where T is a
subset of nonnegative integers, p () = e~6=/z! and P(T) = D_zer [p(#)], has been studied
by several authors by imposing different kinds of restrictions on the range of X. In this
paper some of the special cases of the bivariate correlated Poisson (BCP) distribution have
been discussed and their parameters estimated by the method of maximum likelihood and
the method of moments. It has also been shown that in a bivariate distribution the marginal
truncated (MT) distribution is equivalent to the truncated Ir;arginal (TM) distribution
if and only if the variates are independent. The estimation of parameters of the truncated
BCP distribution has been investigated under various types of truncation. Various re-
currence relations of the truncated BCP distribution have been obtained. (Received
29 April 1968.)

5. The central limit theorem in R, ¥ = 1, and normal approximation to the
probabilities of Borel sets. R. N. BHATTACHARYA, University of California,
Berkeley.

Let X™, n =1,2, .-+, be a sequence of independent random vectors in R*, k = 1, each
with zero mean vector, and covariance matrix I, the k X k& identity matrix. Let 8,(” denote
the sum of the absolute sth moments of the co-ordinates of X, and 8,(n) = (D_riB:")/n.
If P, is the distribution of (X® 4 ... 4+ X®)/n} & is the standard k-dimensional normal
measure, and B,, » = 1, 2,.--, is an arbitrary sequence of Borel sets in RF,
then [Py(B,) — @(Ba)| < [ax(k, )BGV/C(n) + (a2(k)/eo)B3is ™ ()1/nt + as(k)gn-
(as(k, 6){334?“) (n)n~%), where a1 , a2 , a; , as , as well as b’s appearing below, are constants
depending only on the indicated arguments, & > 0, ¢ is a positive constant, and ga(e) =
sup; @@ (B + 7))¢), 0 < € < e ; here B, + z is the translate of B, by %, d(B, + z) is
the boundary of B, + 2, and (0(B. + %))¢ is the eneighborhood of d(B. + z).
Also, )

[Pa(Ba) — ®(Ba)l < [ba(k, 8)845™ (n) + (Ba(k)/0)B345 ™™ (n)]/mb

+ ha (b (k)B345 TP (n) log (n + 1)]/nd),
where h,(e) = ®(0(B»))¢), 0 < ¢ < & . These extend some previous results of the author
(Ph.D. thesis (1967), Univ. of Chicago, and Bull. Am. Math. Soc. 74, (1968) 285-287). Of
particular interest are the cases, (a) B, = B for all n, where B is a ®-continuity set, and

(b) ®(8B,) converges to zero. These results are proved by the same methods as used in
the first reference cited above. (Received 10 April 1968.)

6. The central limit theorem in R*, k = 1, and asymptotic expansion for the
probability of a Borel set. R. N. BuaTracHARYA, University of California,

Berkeley.
Let X, n = 1,2, ---, be a sequence of independent random vectors in R%¥, &k = 1,
each with mean vector zero, and covariance matrix I, the & X k& identity matrix. Also,
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f® is the characteristic function of X, and 8, is the sum of the absolute sth moments
of the co-ordinates of X®. Suppose (i) sup,B8,” < o« for some integer s = 3, and (ii)
sup, lim Supjs|., [f (¢)] < 1. If P, is the distribution of (X® 4+ -+ 4 X™)/nt, & is the
k-dimensional standard normal distribution, and u, is the usual Edgeworth expansion of
P, in terms of ® and its derivatives, then (P, — u.)(4) = o(log n)*2n~(==2/2 uniformly
over all Borel sets A such that ® ((04)¢) = de, 0 < € < & , d and ¢ being two given (arbi-
trary) positive constants; for any set B, B is the boundary of B, and B¢ is the e-neigh-
borhood of B. More generally, if B, ,n = 1, 2, --- , is an arbitrary sequence of Borel sets
in R*, then | (Pn — pn)(Ba)| £ c1(n)A(Basn)n= (D12 + |u,| ((8Bg)?*e), where ci(n) — 0
as n — «, A is Lebesgue measure in R¥, ¢, = 2a" for an appropriate constant a, 0 < a < 1,
lun| denotes the total variation of u, . One may replace A(Bn) above by min{A (Bax),
[log (n + 1)]*/2}. These results extend, and are proved much the same way as some previous
results of the author (Ph.D. thesis (1967), Univ. of Chicago, and Bull. Am. Math. Soc. T4,
(1968) 285-287). (Received 10 April 1968.)

7. Estimation of a certain functional of a probabili‘ty density function. G. K.
BuarracEARYYA and G. G. Roussas, University of Wisconsin.

A key functional which occurs in the expressions for the asymptotic efficiency of many
nonparametric tests and rank estimates is A(F) = f °_°w f*(z) dz, where F is the unknown
cumulative distribution function of the population with density f(z). In the present work,
Parzen’s method of estimation of density function is used to construct a class of estimates
for A(F) based on a single sample from F (z — ), where 0 is an unknown location parameter.
The procedure is extended to the case of several samples. Some large sample properties,
like asymptotic unbiasedness, consistency in the mean square, etc. are investigated for
the proposed class of estimates. (Received 31 May 1968.)

8. Characterization of a class of distributions. K. C. CraNDA, University of
Florida.

Let X1, -+, X, be a sequence of n iid random variables and let g (z) be a function of
z such that > 24 {g(X:) — g(X)} is distributed independently of X = > fi X./n. If
g(z) = 2? it is well known that X: has a normal distribution. It has been demonstrated by
the author that if g(x) be a rational function of the form p(z)/q(z) where p () is a poly-
nomial of degree < 2 and ¢(x) is a polynomial of degree < 1, then depending on the nature
of the coefficients of p(z) and ¢(x) the distribution of X; will be either normal, or inverse
normal. The author is presently investigating the situation where g () is a rational function,
being a ratio of two polynomials of arbitrary degrees and will present his report at a sub-
sequent stage. (Received 9 May 1968).

9. On the exact distributions of Votaw’s criteria for testing compound sym-
metry of a covariance. P. C. Consuwr, University of Calgary.

Consider a sample (1, %2, "+, %nj, j = 1,2,++, p + ¢q) of size n = p + ¢ from
the (p + ¢) stochastic variables which are distributed normally. Defining the covariance
18| , where S is the sum of products matrix which may be partitioned into Ses , Sear , Sts ,
Sus and Sep , Votaw (1948) defined the likelihood ratio statistic for testing the compound
symmetry of the matrix by L = |S| [{Sea + ® — 1)8aar) (Sss + (¢ — 1)Sser) — PgSas} -
(Sas — Saar)?"1(Sss — Sper)e1] and derived the expected value B (L?!/H). Roy (1951) proved

,that the expected value could be expressed as the product of a number of gamma quotients
and that the distribution could be obtained in the form of an infinite series. Consul (1966),
(1967) has obtained the exact distributions of some likelihood ecriteria by applying the in-
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version theorem and operational calculus. The same method has been used in this paper
to obtain the exact distributions of Votaw’s likelihood criteria for (i) p = ¢ = 2, (ii) p = 3,
g=2,({li)p=¢g=38,@{v)p=25,¢g=2and (v) p =5, ¢ = 3. (Received 16 May 1968).

10. On the asymptotic theory of least squares estimation in segmented regres-
sion: identified case (preliminary report). PAur I. FEDER and Davio L.
SYLWESTER, Yale University and University of Vermont.

For fixed n consider the regression model Xp; = u(tns ; 0) + €nst=1,--- , 0,0 = tps =

- = twn = 1. The e, are iid rv’s with mean zero, variance ¢2, and finite 2 4+ § moment.
The function u (¢, 8) is continuous, but has different parametric forms on intervals [7;_1 , 7;),
0<7n <+ <7 £ 1. It is assumed that p(f; 8) conforms to a linear model within
each segment [7;_1, 7;) and that the 7;’s are unknown. Since the residual sum of squares
function may not possess any derivatives with respect to the 7’s, one cannot directly apply
classical techniques to derive asymptopic distribution theory (as n — «) for the least
squares estimates and Wilks-Chernoff type test statistics. In this paper it is shown that
by deleting relatively few observations, the problem can be transformed into a new prob-
lem in which classical methods are applicable. Asymptotic distribution theory is discussed
for the new problem by classical techniques and it is shown that the results are also valid
in the original problem. Results analagous to the usual normal theory and x2-type distri-
butions are derived. (Received 27 May 1968.)

11. Structural analysis for the first order autoregressive stochastic process
(preliminary report). M. Sariuvn HaqQ, University of Western Ontario.

In a first order autoregressive stochastic process, the autocorrelation parameter p can
be treated as a parameter of the error variable of a structural model and the model can be
treated as a conditional structural model (Fraser, Amer. Math. Soc. (1967) 1456-1465).
Or alternately the error variable can be made parameter-free by a suitable transformation
depending on p and the resultant transformed model can be treated as a structural model.
In both the cases the orbit of the responses or the transformed responses depend on the
auto-correlation parameter p. For known value of p the inference concerning the structural
parameter 9 is based on the conditional structural distribution of the parameter 6. For
unknown p, a mode of inference concerning the parameter p has been studied based on the
residual likelihood for the orbital statistic. It has been found that the inference depend
on the statistic r = Y, (@2 — &) (x: — %)/, (x;: — %) where z,, --- , &, , are the re-
sponses and Z the sample mean, and the error variable follows normal distribution and the
model is a simple location model. The extension of the results for the generalised location
model has also been studied. (Received 31 May 1968.)

12. Test for several regression equations. E. H. INsELMaNN, Frankford Arsenal,
Philadelphia.

This paper deals with a generalization of C. G. Chow’s test for comparison of two re-
gression equations. The extension contained herein involves the comparison of & regression
equations. The derivation of the test is simplified by using lemmas due to F. M. Fisher.
The test statistic for the comparison is a chi square distributed variable similar to that
Jf Chow. A test is also determined to compare subsets of coefficients. (Received 16 May
1968.)
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13. Maximum likelihood estimation of multivariate covariance components.
JeroME Krorz and JosepH PurTER, University of Wisconsin, Madison.

Maximum-likelihood estimators of multivariate components of variance and covariance
are derived for the balanced one-way layout. The model, in terms of p-variate observation
row vectors X, , 18X, =u+ b;+wi G=1,---,J;k =1,---, K), where g is a fixed
mean vector, and b;:N (0, ;) and w;x:N (0, =,) are independent. Denoting x.. = Z;Zxx;z/
JK, ;. = Zx/K, Sy = K2;(x;. — x..) (% — X..), Sy = Z;ZXe — %;.) Xix — X;.)
and S; = S; + S,, let C be a matrix such that S,/JK = CC’ and S;/JK = C diag
(dy, -+, dp)C’. The maximum-likelihood estimators of the parameters are i = x.. , £y =
C diag(er, --- , €,)C’ and £, = S,/JK — £;, where e, = max(0, Kdn — 1)/(K — 1).
(Received 12 May 1968.)

14. Distribution of products and quotients of independent Bessel function
random variables. SaMuEL Kotz and R. SriNtvasan, Temple University.

A number of papers have been devoted in recent years to the distribution of products
and quotients of independent random variables. Comprehensive bibliography till 1963 is
given in a monograph by J. D. Donahue (1964), (Clearinghouse for Federal Scientific and
Technical Information, Department of Commerce, AD-60-3667). The most recent papers by
M. D. Springer and W. E. Thompson (1966), SIAM J. Appl. Math. 14 511-526, Z. A. Lom-
nicki (1967) J. Roy. Statist. Soc. Ser. B. 29 513-523, and A. M. Mathai and R. K. Saxena
(1966), Metrika 11 127-132, solve the problem for classes of distributions including normal
and gamma distributions. In the present paper, using the technique of the Mellin trans-
forms, explicit expressions are derived for the distributions of the product (and the quo-
tient) of independent Bessel function random variables. As particular cases, distributions
of the product (and the quotient) of exponential, folded Gaussian, Rayleigh, chi-squared,
gamma, randomized gamma, non-central chi-squared, and several other positive inde-
pendent random variables are obtained. (Received 1 May 1968.)

15. W statistic in covariate discriminant analysis. AumED Zoco MEMON and
Masasar Okamoro, Towa State University.

Assume that the samples (€11, -+ , ¥wv,) and (@21, - -+ , &2n,) drawn from the p-variate
normal populations 71N (u1 , Z) and m2: N (uz , Z) are independent and that the multivariate
observation z comes from one of these populations. Let % , Z> and S be the minimum vari-
ance unbiased estimates of the unknown parameters u; , 2 and =. Cochran and Bliss (1948)
and Cochran (1964) consider the situation in discriminant analysis where the discriminators
x are correlated with other normally distributed characters y having unspecified parameters.
They use this additional information in modifying the Anderson classification statistic
W =[x — (& + £)]'S~1(Z: — &) by changing z to # — By in W, where B is the estimate
of regression matrix of z on y. The procedure of classification according to the resulting
discriminant function is to classify x into m if its value = 0 and to m if its value < 0.
This paper investigates the effect of covariates on discrimination of the observation by
deriving the probabilities of misclassification which arise due to the use of the modified
W criterion. (Received 29 April 1968.)

16. On the distribution of the Z statistic in discriminant analysis. AuMED
Zogo Memon and Masasat Okamoro, Iowa State University.

. The statistic Z = (N1/(N1 + 1)) (& — &)'S7H(z — &) — (Vao/ V2 + 1)) (@ — &)'S7"
(z — %) is a criterion proposed by Kudé (1959) and John (1960) in discriminant analysis
for classification of a multivariate observation x into its correct population when the ob-
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servation is known to have come from one of the two p-variate normal popula-
tions 71:N (u1, Z) and m:N(uz, =). The samples (x11, -, zwv,) and (@, -+, Ton,)
drawn from m; and 7, are assumed to be independent of each other. #: , Z; and S are mini-
mum variance unbiased estimates of the unknown parameters u; , p2 and =. The sampling
distribution of Z for small samples appears to be extremely complicated for the purpose
of numerical use. A large sample approach has therefore been employed in this paper in
determining an asymptotic expansion with respect to N;~1, No7! and n~! where = is the
total number of degrees of freedom used in estimating the covariance matrix =. Further,
the two kinds of probabilities of misclassification which arise due to the use of this criterion
under the procedure of assigning the observation z to =1 if Z < 0 and to m; if Z > 0 are
also derived. (Received 29 April 1968.)

17. The distribution of weighted linear combinations of cell frequency counts
when the cell probabilties are not equal. C. J. Park, University of
Nebraska.

Assume that n objects have been randomly distributed into N cells. Let p; denote the
probability that an object falls in the sth cell. Let s; denote the number of cells with ¢
entries. It is shown that the asymptotic distribution of weighted linear combinations of
ss, e W= D rowss;is asymptotlcally normal when n and N tend to infinity with n/N —
a, 0 < a < o, and w;’s and p;’s satisfy condition that Z,=o (npk)’(v') syt converges
umformly and absolutely for every fixed k = 1,2, --- ands, ¢ =0, 1, 2, --- in a neighbor-
hood of @ , 0 < ax < o where limg,, 2ps = ax . In the proof a generating function is used.
(Received 3 May 1968.)

18. The distribution of weighted linear combinations of cell theory frequency
counts: two samples from continuous distributions. C. J. Park, Uni-
versity of Nebraska. (By title.)

Let Xy, X@, *-+ , X be the order statistics of a random sample from a continuous
distribution F(z). Let I; = (X¢_iy — X»,7=1,2, --- ,n+ 1, with Xy = —0, Xay1) =
4. Let 41, Y2, -+ , Ym be a random sample from a continuous distribution G'(y), and

s denote the number of I;’s with & y,’s. Under the assumption F(z) = G(x), it is shown
that the weighted linear combination of s;’s, i.e., W = D 7= w;s; , i8 asymptotically normal
when m and n tend to infinity with m/n — «, 0 < a < », and w,’s satisfy condition that
Z:;o (/@1 + z))we»t converges uniformly and absolutely for every fixed s and ¢ in a
neighborhood of «. (Received 3 May 1968.)

19. Some striking properties of binomial and beta moments. MoRRIS SKININSKY,
Brookhaven National Laboratory.

Let M, (n = 1,2, ---) denote the convex body of n-tuples (c1, -, cs) Wwith

= [y zido(x),s=1,2, -+, n, where o varies over the class of all probability measures
on the Borel subsets of the unit interval. For the moment sequence (¢1 , ¢z , - -+ ) correspond-
ing to a o in this class, write »n(c1, C2, **) = €n,

vat(c1, €2, +++) = min (di(c1, ++* Cao1, d) & Mal.

Take R, = v,,+ ~ 0", Pn = (vn — v2~)/Ra . THEOREM. Let N be a positive integer, 0 < 6 = 1.
c* (N, 0) = 270 (7/N)i6i (1 — 0)”“’ 1=1,2, -+ .ca* (N, 0) = (c*(N, 0), -+, ca*(IV, 0)).
T hen pZi-l(gZe—I(N 0)) = 0 p21(§21(N 0)) = Z/N7 1= 1) 2: Tty N. RZm(Q;‘m_l(N, 0)) =

N2+t (Mymi(m — 1)1[6(1 — 0)]"', Romi1(Comi (N, 8)) = N2 (N ymI(m + 1)1[6(1 — 6)]™,
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m = 1,2, ---, N. The process of proof of this theorem and the result itself combined with
previously obtained results (‘“‘Extreme nth Moments for Distributions on [0, 1] and the
Inverse of & Moment Space Map’’ to appear December 1968, J. Appl. Prob.) upon which
it is based yield several families of identities involving Stirling numbers of the second kind.
TureoreEM. Let ¢é;(a, b) denote the tth moment of a beta distribution with parameters a, b > 0.
tn(a, b) = (&a(a, b), ---, én(a, b)). Then p2i(ée(a, b)) = /(@ + b + 2 — 1),
D2iga(Eeiq1(a, b)) = (@ +7)/(@+ b+ 2),2=0,1, --- . Two general theorems are given.
The first exhibits the connection between two {p,} sequences whose corresponding distri-
butions on [0, 1] are symmetrically related. The second exhibits the invariance of the {p,}
sequence under the standard 1-1 mapping that takes the class of all distributions on [0, 1]
onto the class of all distributions on some finite interval. (Received 8 April 1968.)

20. Asymptotic expansions of the distributions of the likelihood ratio criteria
for covariance matrix. NARIAKI SUGIURA, University of North Carolina.

Asymptotic expansions of the non-null distributions of the likelihood ratio tests based
on a random sample from multivariate normal population for (1) equality of covariance
matrix to a given matrix, (2) equality of mean vector and covariance matrix to a given
vector and a given matrix, (3) sphericity, are derived with those of null distributions for
problems (1) and (2). Non-null distribution of the likelihood ratio test for (4) equality
of several covariance matrices is also obtained. Unbiasedness of these test criteria were
discussed in the previous paper (Abstract, Ann. Math. Statist. 38, (1967) 1937), which will
appear in this Journal. Monotonicity property of the power function of the modified likeli-
hood ratio test for the problem (1) was established by H. Nagao (J. Sci. Hiroshima Univ.
31 (1967) 147-150). (Received 16 May 1968.)

21. When do minimum variance estimators coincide? Donarp H. Taomas,
General Motors Research Laboratories, Warren. (Introduced by Andre
G. Laurent.)

Considerable interest has recently been shown in the question of when ordinary least
squares estimators (OLSE’s) coincide with best linear unbiased estimators (BLUE’s) in
the linear model ¥ = XB + ¢, where Y is an n X 1 vector of observables, X a known n X p
matrix of rank » < p, 8 a p X 1 vector of parameters, and e an n X 1 vector of ‘‘errors”
with E(e) = 0 and E(ee'!) = 62V. This paper presents necessary and sufficient conditions
for BLUE’s corresponding to two different assumptions on V to coincide. For example,
if the two assumptions are V = Vy and V = V3, respectively, (where Vi, Vs may be any
two positive definite symmetric matrices) then a necessary and sufficient condition for all
BLUE’s under the first assumption to coincide with the corresponding BLUE’s under the
second assumption is that the column space of X be spanned by r linearly independent
eigenvectors of V,V;~! (or ViVy1), alternatively, that the column space of V,V~1X is
identical with the column space of X. When V; = I (or Va: = I) these conditions reduce
to known ones concerning the coincidence of OLSE’s with BLUE’s. Hence, design matrices
can be constructed which lead to minimum variance estimators independent of which
hypothesis on the covariance matrix is assumed. (Received 8 April 1968.)

22. Stochastic absolute stability of stochastic automatic systems. Camris P.
Tsoxos, University of Rhode Island. (Introduced by Edward J. Carney.)

Consider the stochastic automatic system

W) i e) = A ) + bt @) with ot ©) = (€t @)X (¢ ©);



1366 ABSTRACTS

where X (¢; ») is an n X 1 vector whose elements are random variables, 4 (w) isann X n
matrix whose elements are measurable functions, b(w) and C ({; w) are n X 1 vectors whose
elements are measurable functions, ¢({; w) and f(¢; ») are scalar functions and (C X)
denotes the scalar product in the Kuclidean space. This system can be easily reduced into
the stochastic integral equation of the convolution type of the form o (¢; w) = h(t; w) +
fo' k(t — 7; w)e(e(r; w)) dr. The objective of this paper is to investigate the stochastic
absolute stability properties of system (1) utilizing V. M. Popov’s frequency response
method [V. M. Popov, “On the absolute stability of nonlinear control systems”’, Avtom.
¢ Telemekh., 22, 8 (1961)]. The results in this paper are more general than the recent work
of T. Morozan, [Morozan, T., The method of V. M. Popov for control systems with random
parameters. J. Math. Anal. Appl. 16 (1966) 201-215]. (Received 3 May 1968.)

23. Density estimation by orthogonal series. GEorrrY S. WaTsoN, The Johns
Hopkins University. (By title) .

Given a random sample @ - -+ &, from the density f(#) = D anen(z) Where {on ()}
is an orthogonal basis, the estimator fo* (z) = D A (1) Gmem () Where an = 71> i1 on (1)
is suggested. f,* () will be a minimum integrated mean square error estimator in its class

M(n) = a/am? + var (en(z))/n.

These estimators are related to the kernel estimators discussed by Watson and Leadbetter
(Ann. Math. Statist. (1963) 34, 480-491). (Received 31 May 1968.)

24. Sufficient conditions for the almost admissibility of formal Bayes estimators
under squared error loss. JamEs B. Zipexk, University of British Columbia.

Explicit conditions for the admissibility of formal Bayes estimators (which are obtained
like Bayes estimators, but respect to a o-finite prior, II) are known in only a few special
cases in which are prescribed the form of the underlying distributions and the function
of the parameter being estimated. The author has obtained sufficient conditions for the
almost admissibility (admissibility a.e. [II]) of such estimators in the problem freed of
these restrictions where the parameter space is a subinterval (joining 6; and 6., say) of
the real line and loss is squared error. In essence, these conditions assert the almost ad-
missibility of the estimator in question provided f do/[r(0)h(6)] = = if f w(0)p(6)do =
whenever these integrals are over (c, 62) or over (61, ¢), where ¢ ¢ (61, 62), p is the risk
of the estimator, II has density =, and h is a function summarizing the relevant aspects
of the problem. Although % depends on II, in special cases considered, it is bounded by a
function which is independent of the prior. These special cases include that of Karlin,
‘“Admissibility for estimation with quadratic loss’’, Ann. Math. Statist. 29, 411-415, of the
estimation of the mean of the one dimensional exponential family (when, as is usually
the case, his estimator is formal Bayes), where the bound is 1, and that of estimating a
single unknown location parameter. These results are a refinement, in the case considered,
of an argument of Stein, ‘‘Approximation of improper prior measures by prior probability
measures’’, Bernoulli, Bayes, Laplace, Anniversary Volume (1965) Springer-Verlag, New
York. (Received 24 May 1968.)
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(Abstracts of papers to be presented at the European meeting, Amsierdam, Netherlands,
September 2-7, 1968. Additional abstracts appeared in the April and June issues.)

5. Bayesian stratified two-phase sampling results: & characteristics. NorRMAN
DrarEr and IRwiN GurTtMAN, University of Wisconsin.

The authors have obtained some results concerning the optimum allocation of sampling
effort among k strata at the second phase of a two-phase sampling procedure, using infor-
mation obtained from the first phase (see Draper and Guttman, Biometrika 56 (1968)). One
variable (or characteristic) was involved. Two different approaches were employed: A
Bayesian posterior analysis and a Bayesian preposterior analysis. Two different allocation
methods were derived and illustrated with some numerical examples, for cases where some
or all of the nuisance parameters were unknown. In this paper we extend our results above
to the case of k characteristics. We propose three criterions and use them to solve the allo-
cation problem, again using both posterior and preposterior analysis. The cases of stratum
weights known and unknown is also discussed. (Received 12 May 1968.)

6. Automatic classification of samples using an electronic computer (preliminary
report). ErRwin FaBER, Deutsches Rechenzentrum, Darmstadt.

By automatic classification we understand the division of a sample into g different groups
using an automatic procedure. Let a sample of m objects with » different variables be given.
The question is, from how many populations the sample is taken, and how many elements
belong to a certain population. A heuristic method, based on a procedure of P. Thm, will
be presented which separates the sample into g different groups. This is accomplished with
the aid of an appropriate function which is attached to every element of the sample space.
The maxima of the sum of these functions characterize the groups. The procedure to trace
out the sample groups requires extensive calculations, therefore a FORTRAN-program
for a digital computer has been written. To reduce the number of variables of a problem,
low-dimensional sub-spaces are used that change from iteration to iteration. Experiences
with this program will be described. (Received 3 May 1968.)

7. Some numerical results to R. Borges’ approximation of the binomial dis-
tribution. FriepricH GEBHARDT, Deutsches Rechenzentrum, Darmstadt.

R. Borges has shown that a certain beta-transform of the binomial distribution yields
a normal distribution with an error term O (1/n) while the commonly used transformations
(arc sin-transform, log-transform, no transformation) have error terms O (n~%) (except for
p = 0.5 with O(1/n)). Numerical calculations show the superiority of Borges’ approxima-
tion even for p = 0.5. For large n and p not too small, it is also better than the Camp-
Paulson approximation. For given n and p < 0.5, the maximal error e is essentially a func
tion of np (for np = 5, e &4 0.012/np). A table is computed to facilitate the beta-transfor
mation. (Received 3 May 1968.)

8. Asymptotic properties of the optimal restricted Bayesian double sampling
plan. SgrEN JoHANSEN, Institute for Matematisk Statistik, H. C. Qrsted
Institut, Copenhagen.

We consider double sampling plans for attributes with specified linear cost function
and prior distribution, and define the optimal plan, as the one that minimises the expected
regret function R. Under suitable conditions on the prior distribution and the cost func-
tion, we prove that R is of the order of N2/5(In N)'% where N, the batch size, tends to
infinity. (Received 3 May 1968.)
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9. On estimating the accumulative distribution. MomamEp A. H. TAnA, Uni-
versity of Alexandria.

Having N observations of a random variable X, the emperical distribution function
Fy () = /N where 7 is the number of observations less than or equal to z, is used mostly
to estimate the unknown distribution function F (z). Two minimax procedures are used to
estimate this function, and both of them lead to the estimate Sy(z) = (2¢ + 1)/ 2N + 2).
Some of the optimal properties of these estimate are discussed. (Received 31 May 1968.)

(Abstracts of papers not connected with any meeting of the Institute.)

1. Continuous time Markovian sequential control processes. S. S. Currco-
PEKAR, The Florida State University.

We consider a stochastic system with a finite state space and a finite action space. Be-
tween actions, the waiting time to transition is a random variable with a continuous dis-
tribution function depending only on the current state and the action taken. There are
positive costs of taking actions and the system earns at a rate depending upon the state
of the system and the action taken. In contrast to R. A. Howard [Proc. Internat. Statist.
Inst. (1963) 625-652], we allow actions to be taken between transitions. A policy for which
there is a positive probability of an action between transitions involves ‘‘hesitation’’. For
any policy S, the criterion of interest is I(S), given by

I(8) = lim infy., Y ey E(in(S))/ D Ne1 E(Ta(S))

where ©,(S) is the income earned under the nth action and T,(S) is the time spent
under the nth action. It is shown that there exists a non-randomized stationary policy
that is optimal in the class of all policies for which the actions taken form a sequence.
‘“‘Hesitation’’ can be eliminated if the waiting time distributions are exponential. Howard’s
policy improvement method can be used to obtain an optimal policy. The costless actions
case was reported, ibid., Abstract No. 2, 970 38 (1967). The costly observations case will
be reported later. (Received 9 May 1968.)

2. A characterization of the normal law on Hilbert space. Morris L. EaTon
and P. K. PaTHAK, University of Chicago and University of Illinois.

Let & be the characteristic funetion of a probability measure u on a real separable Hilbert
space H. Suppose that g satisfies the functional equation g(y) = J[i* [6(Biy)les where
a; > 0, B; is a bounded Hermitian operator on H with a bounded inverse, and suppose
there exists a N such that 0 < Ao < 1 and —Xo = B; = NI, 2 =1, -+, k (£ is in the
sense of positive definiteness). In this paper it is shown that: (i) the characteristic func-
tion g is infinitely divisible; (ii) if Y :* @;B:? = I, then £ corresponds to the normal dis-
tribution on H; (iii) if D_i* a; < 1, then g corresponds to the distribution degenerate at

0 ¢ H. In the special case when k¥ = 1, some representation results are obtained for non-
normal situations. (Received 1 April 1968.)

3. On a scheduling problem in sequential analysis. SyLvaiN ExrEreLD, New
York University and University of California, Berkeley.

The usual sequential decision problem of choosing between two simple hypotheses Hy
dnd H, , in terms of 4, ¢, r, v, is reconsidered when there is a time delay, assumed to have
a known exponential distribution, in obtaining observations. The problem, at any time
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is whether to stop and choose between Hy and H; , or to continue and decide on how many
further tests to schedule. Cost assumptions are made involving testing, time until a final
decision and the usual losses due to decision errors. Bayes procedures are studied. The
information, at any time, can be described by (n, =) where = is the current posterior proba-
bility of Hy and » the number of results outstanding from tests already scheduled. It is
shown that possible decision changes should be made only when test results are obtained.
When the stopping rule is a SPRT procedure there is a bounded function z(w) such that
the optimal testing schedule quantity, y(n, #) = max [0, z(x) — n]. In the general case,
various results about the optimal stopping region, in the (n, =) plane, are derived, and
it is proven that the optimal procedure terminates with probability one. Also, it is shown
that there exists functions z1(r) < 2e(r) < M < « such that if (n, =) is a continuation
point y(n, 7) = z1(zw) — nif n < z1(r) and y(n, 7) = 0if n = 2z2(w). (Received 27 May
1968.)

4. A fiducial distribution in survey-sampling. V. P. GopaBmE, University of

Waterloo.

Let a unit 7 be drawn at random from a population of N units ¢ = 1, --- | N, with equal
probability of drawing for each unit. Now if X;,¢ = 1, --- , N, denote the unknown variate
values associated with the units ¢ = 1, --- , N respectively, our problem is to make certain
inference about the unknown X = (X,, ---, Xy) on the basis of the data (¢, x), where
1 as before is the unit drawn and z is the observed value of X associated with the unit 7.
We can write the likelihood function as Prob((¢, ) | X1, -+ , Xn) = 1/N if X; = z and
0 otherwise, for 2 = 1, ---  N. (I). Thus the vector X = (X, ---, Xn) plays the role

of a parameter. If nothing is known the parametric space is entire Euclidean space Ry ,
X e Ry . Now let X(X) = ZIN X;/N. We assume the parameter X belongs to a subset
Ry* (Ry* C Ry) defined by Ry* = {X:— o0 < X(X) < »,X; =X+ Y;,where (Y, -+, Yw)

is any permutation of a fized vector (Y1*, --- , Ya*)}. (II). It is shown that the likelihood
function in (I) above implies that Prob(z = X;) = 1/N 4 =1,.-- N, and hence if X =
(X1, -+, Xy) € Ry* in (II) above, we have the fiducial distribution of X given the data
(4, z),as Prob(X =2 — Y*) =1/N,s=1, ---, N. (III). This fiducial distribution would

obviously be valid #f and only if the unit 7 was drawn at random with equal probability
of drawing to all the units. On the other hand the distribution given by (III) above can
also be obtained as a Bayes posterior on the basis of the data (7, #) when the prior on
the parametric space By* in (II) above is given by £(X) = ¢(X). y(Y), ¢ being the uni-
form distribution on (—w, «) and ¢(¥Y) = 1/N! for all the permutations of the fixed
vector (Y, --- , Yx*). However this Bayes posterior unlike the fiducial distribution in above
paragraph is independent of randomisation, i.e. the Bayes Posterior would be the same
whether the unit 7 is chosen at random with equal probabilities to all units or it is chosen
any other way. The same result is generalised for arbitrary size sample, using ancillary
statistic. (Received 12 April 1968.)

5. On symmetry of the product of two random variables and their independence.
D. V. GokHALE, University of Poona.

Let S(0) be the class of random variables (rv’s) having a distribution symmetric about
zero. Consider two rv’s X and Y such that one, say X, belongs to S(0). Then independence
of X and Y implies that the product XY belongs to S(0). The converse is not true in general.
However, it is shown to be true under some conditions, in many models for dependence
like the bivariate normal distribution, the regression model and models proposed by Konijn

»[Ann. Math. Statist. 27, (1956) 500-515], Gokhale [Ph.D. Thesis (1966), University of Cali-
fornia, Berkeley] and Farlie [Biometrika 60, (1963) 499-504]. Thus if X belongs to S(0), a
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test of symmetry of XY is a conservative test of independence of X and Y, while the two
are equivalent under suitable conditions. In particular, distribution-free tests of symmetry
can be used. Asymptotic efficiencies of such tests are studied. The sign-test, for example,
is simple and controls the probability of false rejection even when the distributions of
(X:, Y;)in asample depend on 7. Examples are given where this sign-test has larger asymp-
totic efficiency than the usual tests of independence based on the product-moment or rank
correlations. (Received 23 May 1968.)

6. Asymptotically nonparametric tests of symmetry in univariate populations.
Suuramite T. Gross, Harvard University.

In this paper a class of rank tests for the hypothesis of symmetry in univariate popula-
tions against the alternative of positive or negative skewness is proposed. It includes
Gupta’s test (Ann. Math. Statist. (1968)) as a particular case. The test statistics are of
the form > 7 J(R:/N + 1) where R; --- R, denote the ranks of the n positive sample
deviations from the median among the N absolute sample deviations from the median.
The sample is of size N from a continuous cumulative distribution function F. The score
function J on (0, 1) is assumed to satisfy regularity conditions of Govindarajulu et al.’s
type (Fifth Berkeley Symposium). When the population median is not known, the devia-
tions are taken from a consistent estimate of the population median. In that case the
tests are not asymptotically distribution free under the hypothesis but can be made so by
proper studentization. Asymptotic comparisons of these tests with Gupta’s test and the
skewness test based on the coefficient of skewness are made under different models for the
alternative. Some small sample calculations of power and efficiency using Monte Carlo
methods are in progress. Extensions to the analogous multivariate problem are being con-
sidered. (Received 8 April 1968.)

7. Distribution of Wilks’ A in the noncentral linear case. A. K. Gupta, Purdue
University and University of Arizona.

In this paper, the exact distribution of Wilks’ likelihood ratio criterion, A, in the non-
central linear case, i.e. when the alternative hypothesis is of unit rank, has been obtained
giving explicit expressions for the same for p = 2(1)5 and general f; and f» . Earlier, K. C. 8.
Pillai and A. K. Gupta, [to appear in Biomeirika], using convolution techniques, have de-
rived the exact distribution of A for p = 3(1)6 in a finite series except when p and f, are
both odd, in which case it is given in infinite series form. Using the same techniques the
results of the present paper have been derived. (Received 29 April 1968.)

8. On characterizations of the gamma distribution. W. J. Harr and Gorpon
Smons, Stanford University.

Let S, be the cumulative sum of n iid random variables, and $, the o-field generated
by {Sn, Suy1,---}. If the rv’s (or their negatives) have a gamma distribution
then {Z, = S,7/E(S:"), Sx ;'s = 1} is a reverse martingale sequence for any positive r. That
is, E(Zn | Sny1) = Znq1a.8.for n = 1. These reverse martingales find applications in sequen-
tial analysis. In this paper the converse is proved for any integer » > 1, and this provides
a characterization of the gamma distribution; in fact, it is sufficient that the reverse mar-
tingale sequence have finite length 7. Another characterization is also proved, extending
the case r = 2 to non-identically distributed rv’s. Roughly stated, it asserts that if X2/
(X 4 Y)? and Y2/ (X + Y)? each have constant regression on X + Y, then the independent
rv’s X and Y (or else —X and —Y) have gamma distributions with common scale parame-
ter. (Received 20 May 1968.)
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9. Estimating partial derivatives of an unconditional multivariate density
(preliminary report). P1-Era Lin, Columbia University.

Let a sample space X and parameter space Q each be subsets of R?, Euclidean p-space.
We make the usual Empirical Bayes assumptions of the sequence (X;, 61), -+, (Xa, 6a),
and assume further that, given 6, , X, has a multivariate density function of the form
f(z|6) = B(8)h(z)e?’=. Denote by f(x) the unconditional density of X, . The existence and
continuity of the mth partial derivatives of f(z) with respect to the th component of z,
denoted by d;™f(x), is established. By a method related to that used by Parzen (dnn.
Math. Statist. 32, (1962) 1065-1076) for the univariate case, consistent estimators of the
d;mf(x) are derived. Their rates of convergence, in terms of bias and mean squared error,
and their asymptotic multivariate distributions are obtained. It is also shown that for
any 0 < e < 1, it is possible to construct estimators which have rate of convergence of
the order of n~(~9 in terms of mean squared error. As an application, let X be a p-variate
normal random vector with mean 6 ¢ @ and known positive definite covariance matrix =.
The hypothesis considered is H:6'=71¢ < c, ¢ being a constant. Assume that 6 has an un-
known priori distribution 7 (). With an appropriate loss function, the test function ob-
tained is shown to be asymptotically optimal in the sense of Robbins (Ann. Math. Statist.
35, (1964) 1-20). (Received 24 April 1968.)

10. Random caps on a sphere. Roger E. MiLes, Australian National Uni-
versity.

Prob {N independent uniformly distributed equal circular caps, of angular radius ¢,
on the surface of a sphere have at least one common point} = 1 — Prob {N independent
uniformly distributed equal circular caps, of angular radius = — ¢, on the surface of a
sphere completely cover the surface} = (¥)[¢ (sin236)¥~2 sin 20 do + 2(¥) [§ (sin2ko)V—3.
sin%0dg (N = 2,3,--+ ;0 = ¢ < w/2). This extends the known result for ¢ = =/2, but
leaves open the case 7/2 < ¢ < = (see Gilbert [Biometrika 52, (1965) 323-330]). The final
expression is also equal to 1 — Prob {/N independent isotropically distributed equal ‘‘thick
great circles’’, of angular thickness 7 — 2¢, on the surface of a sphere completely cover the
surface} (N =2,38,--+ ;0 = ¢ = =n/4), leaving open the case 7/4 < ¢ < /2. (Received
16 May 1968.)

11. Delaunay triangles and probabilities of coverage and concentration for
Poisson discs. Roger E. MiLEs, Australian National University.

Consider the Poisson point process of intensity p in E2. The (a.s. ergodic) pdf for the
associated Delaunay triangles (cf. Rogers [“Packing and Covering’’, Cambridge Univ.
Press (1964), Ch. 8]) is (1) f(r, 0,¢) = (167/3)p%*® exp (—mpr?) sin 6 sin¢ sin(6 + ¢) (r = 0;
620,620,604 ¢ = 2r), where r, 6, ¢ are the circum-radius and 2 interior angles. Sup-
pose a discof radius R is constructed about each particle as centre. Then (1) and extreme
value theory yield, for X C E?, the asymptotic values as |X| — « of (2) P{every point
of X is covered by at least ¢ dises} (¢ = 1, 2, ---), and (3) {no point of X is covered by
more than j dises} (j = 1, 2, ---). The substitution p = N/|X| yields approximations for
N independent uniform dises in X; the additional substitution |X| = 47 extends validity
to circular caps of small angular radius R on a sphere. Despite significant dependence,
edge and other effects, comparison of (2) with ¢ = 1 with Gilbert’s [Biometrika 52, (1965)
330] simulation taking X as a disc of radius 3R shows only roughly 109, discrepancies in
N value for his 5 coverage probability estimates. (3) with j = 1 agrees with Efron [Ann.
Math. Statist. 88, (1967) 298]. Extensions are immediate to 1(!), 3 or more dimensions.
(Received 24 May 1968.)
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12. Some new results in the mathematical theory of phage-reproduction.
PreM S. Puri, Purdue University.

In the theory of phage reproduction, the mathematical models considered thus far
(see Gani, J. (1965), J. Appl. Prob. 2, 225-268) assume that the bacterial burst occurs a
fixed time after infection, or after a fixed number of generations of phage-multiplications,
or when the number of mature bacteriophages reaches a fixed threshold. In the present
paper, such hypotheses of fixed thresholds are abandoned in favour of a more realistic as-
sumption: Given that until the time ¢ the bacterial burst has not yet taken place, the oc-
currence of the burst between ¢ and ¢ + At is treated as a random event, the probability
of which is f(-| t)At + o(At), where f is a non-negative and non-decreasing function of
the number X (¢) of vegetative phages and of Z (¢), the number of mature bacteriophages
at time ¢. More specifically it is assumed that f = b ()X (¢) + ¢ (¢£)Z (¢) with b(t), ¢(t) = 0.
Here X (t) is assumed to be a linear birth and death process and Z (t) corresponds to the
number of deaths until time ¢. One of the problems considered here is the joint distribution
of X7 and Zr , the numbers at burst of vegetative and mature bacteriophages respectively.
The distribution of Zz is then fitted to observed data due to Delbriick [J. Bactertology 50,
131-35 (1945)]. (Received 8 April 1968.)

13. Discrete dynamic programming with sensitive optimality criteria (pre-
liminary report). ARTHUR F. VEINOTT, JR., Stanford University.

Consider a discrete time parameter Markovian decision process with finite action set
A, available in state s(=1, --- , S). Set F = X,.14, . Let 7(f) and P (f) be respectively the
one period S-vector of rewards and S X S sub-stochastic transition matrix when f ¢ F is
used in a period. For g, f1, fo, -+ in F,let # = (f1, fa,--+) and ¢° = (g, g, ++*) be re-
spectively a policy and a stationary pohcy Let P¥(x) = P(f1) --- P(fy) and p > —1 be
the interest rate. Define V,(7) = Z]=0 A + p)iPi(x)r(fiz) (for |o] small enough) and

VEN (r) = 205 62V ()Pi (m)r (fi1) where 6.5V (j) = i (%) (4" (F1)%, N, n = 0.
It is shown that ZN_Q PN(x) < « for all = if and only if ZN=-0 P(g)¥N < » forall geF.
This is assumed in the sequel in discussions of D, and Q.~. Let

= {f:lim inf oy [p| ™[V, (f°) — V()] Z 0 all =}

and Q% = {f:lim infy,, NV, () — V.2 (x)] 2 0allx},n = —1,0,1, --- , and D,* =
(f:V,(f°) — V,o(x) =2 0, all 7 and 0 < £p < p* for some p*}. It is shown here that D,* =

Q.* and Dt DO DEfor n=—1,0,1,--+, and Dig_, = Dy = - -+ = D* with all these
sets being nonempty. A generalized policy improvement method is devised for finding an
element of D, n = —1,0,1, , 28 — 1. The proofs exploit the following new representa-

tions: V,(f*) = (1 + p)anl p"yn(f) for all small enough p > 0 and
Vn-l (fw) v,=—-l n—w )yl(f) - P(f)N+nyn(f)7

where

y=(f) = P*(P) r(f), P*) = limy.,(N+1)"10 0P ()5, ya(f) = (=1)=H (f)»* for
n20,and H{f) = [I — P(f) + P*(f)I"* — P*(f). Analogous results are developed for
the continuous time parameter case. (Received 25 April 1968.)



