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1. Introduction and summary. Let X, Xs, - - - be independent and identically
distributed random variables whose common distribution is of the one-parame-
ter Koopman-Darmois type, i.e., the density function of X; relative to some
o-finite nondegenerate measure of F on the real line can be written as

f(z, 0) = exp (6z — b(0)),

where b(8) is some real function of the parameter 6. Consider the hypotheses
Hy, = {6 = 6} and H; = {§ = 6} where 6, < 6 and 6, 6; are in Q, the natural
parameter space. We want to decide sequentially between the two hypotheses.
Suppose 1(0) is the loss for making a wrong decision when 6 is the true parame-
ter and assume 0 < I(0) < 1forall and 1(9) = 0if fisin (6, 61), i.e., (6o, 61)
is an indifference zone. Let ¢ be the cost of each observation. It is sufficient to
let the decision depend on the sequence (n, S,), n = 1, where S, = X; + ---
4+ X, . We shall consider the observed values of (n, S,) as points in a (u, v)
plane. Then, for any test, the region in the (u, ») plane where sampling does not
stop is called the continuation region of the test. A test and its continuation re-
gion will be denoted by the same symbol.

Schwarz [4] introduced an a prior: distribution W and studied the asymptotic
shape of the Bayes continuation region, say Bw(c), as ¢ — 0. He showed that
Bw(c)/In ¢ ' approaches, in a certain sense, a region By that depends on W
only through its support. Whereas Schwarz’s work is concerned with Bayes
tests, in this paper the main interest is in characteristics of sequential tests as a
function of 6. In particular, it is desired to minimize the expected sample size
(uniformly in 6 if possible) subject to certain bounds on the error probabilities.
Our approach, like Schwarz’s, is asymptotic, as ¢ — 0. It turns out that an
asymptotically optimum test—in the sense indicated above, is By In W
is a measure that dominates Lebesgue measure. Such a measure will be denoted by
L (for Lebesgue dominating) from now on. Thus, Bayes tests, as a tool, will
play a significant role in this paper.

In order to prove the optimum characteristic of Bz In ¢, some other results,
of interest in their own right, are established. For any W satisfying certain con-
ditions that will be given later, we show that the stopping variable N(c) of
Byw(c) approaches « a.e. Py for every 6 in Q. This result together with Schwarz’s
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result that By (c) In ¢ approaches a finite region, leads to the following results:
(i) for Bw(c), EeN(c)/In ¢ tends to a constant for each 6 in @ and (ii) the
same is true for the stopping variable of By In ¢ . Furthermore, it is shown that
for By In ¢ the error probabilities tend to zero faster than ¢ In ¢ *. Conse-
quently, the contributions of the expected sample sizes of both By In ¢~ and
Bi(c) to their integrated risks, over any L-measure, approach 100 %. Moreover
B., In ¢ is asymptotically Bayes. The last result can be shown without (i)
since it is sufficient to show (ii) and to apply the same argument used by Kiefer
and Sacks [3] in the proof of their Theorem 1. But we show (i) because of its
intrinsic interest and present a different proof using (i). Kiefer and Sacks as-
sumed a more general distribution for X;, constructed a procedure 8, and
showed that it is asymptotically Bayes. Our By In ¢ is somewhat more explicit
than their 8,. We would also like to point out that an example of B, In ¢,
when the distribution is normal, is very briefly discussed in their work.

‘We shall restrict ourselves to a priors distribution W for which sup (mod W)H,
= 6y, inf (mod W)H; = 6, and 0 < W(H, u H;) < 1. The phrase “for any
W? or “for every W” is to be understood in that sense. Any Lebesgue domi-
nating measure satisfies these conditions and also the following type of W that
will be used: the support of W consists of 6, 6, and a third point 6%, 6, < 6* < 6, .
Such a W will be called a 6*-measure, and the corresponding By denoted by
Bg» . From Schwarz’s equations for By it follows readily that B, C By for
every W. In particular, B, C By« . As a consequence, the statement about the
error probabilities as well as others concerning By, In ¢ in the last paragraph,
remain true when L is replaced by 6* or any W. Those geometric characteristics
will be dealt with in Section 2. We shall also show there that dBe« , the boundary
of By (which consists of line segments), is tangent to dB; at some point, and
that if 6" is such that b (6%) = (b(6:) — b(6e))/(6 — 6o) then maxc, v insy,
U = MaAX(y,v) in By* U.

Let the ray through the origin and with slope equal to EyX; intersect 4B,
at (m(6), m(0)E,X;). In Section 3, after proving lim..o N(¢) = « a.e. Py,
we show lime.o N(¢)/In ¢ = m(0) a.e. Py and lim,.o EeN(¢)/In ¢ = m(8).
It is shown in Section 4 that supe in z, u #, Ps (error | By In ¢™) = o(cln¢™?).

The main results are given in Section 5. We first show that after dividing by
¢ In ¢, the difference of the integrated risks of B, In ¢ and Bw(c), for any W,
tends to zero. It follows from this result that Bz In ¢~* asymptotically minimizes
the maximum (over 6 in 2) expected sample size in F(c¢), a family of tests whose
error probabilities are bounded by maxi—, Ps; (error | By In ¢'). The precise
statement is given in Theorem 5.1. A sharper result under a stronger hypothesis
is given in Theorem 5.2 which states that By In ¢ ' asymptotically minimizes
the expected sample size EsN for each 6, §p < 6 < 6;, among all procedures of
F(c) for which EsN/In ¢ * and EeN/In ¢ * are bounded in c.

2. Geometric properties of asymptotic Bay’es continuation regions. We shall
first look into someggeometric characteristics of dBw , the boundary of Bw,
for any given W, and then shall show some relations betwen B and B« .
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Schwarz [4] has shown that By = By n B; (both By and B; also depend on W)
where B;, ¢ = 0, 1, are first defined as

(21) Bi = {(u, v):s(v/u) £ 4 + Supsinm; (mod W)(8v/u — b(6))},
where for any k,
(2.2) s(k) = suppina (mod W) (6k — b(8)).
Then he shows that, equivalently, B; can be defined as
(2.3) By = {(u, v):0/u > ko, s(v/u) £ u™ + w/u — b(6)},

By = {(u,v):0/u < ki, s(v/u) < u "+ 6w/u — b(6)},
where &, and k; are defined as follows:
(24) k > kyiff s(k) > supeinm, (mod W)(8k — b(8)),

k < kyiff s(k) > supeinn, (mod W)(6k — b)6)).

If 6° = inf (mod W)(@ — H,), ¢ = sup (mod W)(Q — H,), it can be easily
shown k; = [b(8°) — b(6:)]1/[6° — 6;],%2 = 0, 1. Let

(2.5) E* = [b(6:) — b(60)}/[6: — 6o]-
The strict convexity of b implies

(2.6) ko < kX < k.
It is clear that if W is an L-measure
(2.7) ko = b'(60), ky = b'(61).

And that if W is a §*-measure

(28) ko= [b(6") —b(8))/[6* — 6,  Fu=[b(6) — b(6")]/16: — 67].
For any fixed k, let 8(k) be any number satisfying

(2.9) s(k) = 6(k) — b(0(k)).

6 (k) depends on W and may not be unique. If it is not, there are exactly two

possible values. Some of the properties of 8(k) that we shall use are stated in
the following lemma.

LEmmaA 2.1, If Iy < lp then
1) 0(h) = 0(L)
(i1) for any @ < 6(ly),

(L)l — b(6(k)) — al -I-.b(a)] — [6()L — b(8(k)) — ak + b(a)] > O

Proor. (i) Suppose 8 > 6 and let (k) = (6 — )k — b(6') + b(6) so that
q(k) is strictly increasing in k. Thus, if I, > Iy , then (6" — 6)l; — b(¢") + b(8) =0
implies (6' — €)1, — b(8") + b(8) > 0. That is, if 6’ — b(6') = 6l — b(9),
then 6'l, — b(6') > 6, — b(6). It follows 8(k) = 6(L).
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(ii) It follows readily from the definition of 6(k),
0(L)l: — b(0(L)) = 6(h)le — b(6(h)),

That is
8 = 0(k)l — 6(l)l: — b(6(k)) + b(8(h)) = O.

We have
[0(12)12 - b(e(lz)) —aly + b(oz)] - [o(ll)ll - b<0(ll)) —al + b(a)]
= (0(lhy — &) — L)+ § > 0,

This completes the proof of the lemma.
It follows from (2.3) that dBw consists of two curves given by:

(2.10) v/u > ko, s(v/u) = w4+ 0w/u — b(6),
v/u < ky, s(v/u) = w4+ 0w/u — b(6);

or

(2.11) v/u > ke, u = [s(v/u) — 6w/u + b(6)] 7,
v/u < ki, u = [s(v/u) — 6w/u + b(6:)]7,

where s(-) is defined in (2.2). The first curve in (2.10) or (2.11), denoted by
3By, is called the upper boundary, the other dB; the lower boundary. Define
ray(k) as the ray through the origin-of the (u, ») plane and making a slope k&
with the positive u-axis. Since for each k, s(k) is unique, so if & > ko (respec-
tively k < k;) ray(k) intersects 0B, (respectively dB;) at a unique point, say
(uo(k), kuo(k)) (respectively (ui(k), kui(k))), where using (2.11),

wi(k) = [s(k) — 6.k + b(6:)] 7, i=0,1.

By (2.4) and (2.9),if k > ko, 6(k) > 6o ,s0 by Lemma 2.1 (ii), s(k) — 6k + b(8)
is increasing in k. Thus ue(k) is decreasing in k. Similarly w;(k) is increasing in
k. Consequently, the two boundaries meet at a point (m*, v*) that satisfies

(2.12) MaX(u,v)in By U = m*.

Solving the two equations of (2.10), we find

(2.13) v m* =k
where k¥ is given by (2.5). So
(2.14) m* = u(k*) = w(k").

It then follows
(2.15) wue(k) £ wm(k) if k=k* and (k) =2 m(k) if k= [

If we let my be the u-coordinate of the intersection of ray(k) with By, then
my = min (ue(k), wi(k)); so we have from (2.11) and (2.15)
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(2.16) my = uo(k) = [s(k) — Ok + b(60)]" if k = K*
= w(k) = [s(k) — 6k + b(6)]™" if k < K"
Also, there will be no loss of generality if we rewrite (2.3) as
(2.17) By = {(u, v):0/u = k*, s (v/u) £ v + 6w/u — b(6o)},
Bi = {(u,v):v/u £ k¥, s (v/u) £ w™ + 6w/u — b(6)}.
If W is an L-measure, it can be seen that b’ (6(k)) = k. It is known that b”
is a positive function so the inverse of b’ exists and is 6(-), where 6(-) is de-
fined in (2.9). Thus, in this case if () is given, (2.10), the equations of the

boundaries, can be expressed explicitly.
Next we shall consider the case where W is are*-measure. By (2.4) and (2.6)

s(v/u) = supe=gye0,0, (0v/u — b(8)) = w/u — () if v/u < ko

(2.18) =0"/u — b(6") if ko < v/u <k
= Ow/u — b(6) if v/u = k.

Thus 8B, consists of the two following line segments:

Lo:0w/u — b(6) = w4+ 0w/u — b(6o), v/u > ki,

L:6"/u —b(6") = u™ + 0w/u — b(6), ko <v/u<k,
and 9B, consists of

L : 0v/u — b(8) = u™ 4+ 6w/u — b(6y), v/u < k,

L:0%/u — b(6%) = u™ + 0w/u — b(6;), ko = vju<k.

For any L-measure L and arbitrary W, as
Supsine (mod L) (6v/u — b(8)) = supeine (0v/u — b(8))
= SUpsine (mod W) (6v/u — b(8)),

it follows from (2.3) that the following theorem holds.

TuEOREM 2.1. If L 4s an L-measure, for any W By C By . In particular,
B, C By..

COROLLARY 2.1. MaX(,v)in 5y, % < MAX(u,0) in 5y* Ue

Let the wu-coordinates of the intersection of ray(k) with 9B, and 0B be
u(k) and m(k) respectively. By Theorem 2.1, u(k) < m(k). The following
theorem tells when the equality holds.

THEOREM 2.2. If k = b'(6%), then

u(k) = m(k).

Proor. Assume k = k*. The case k¥ < k* is similar. By the strict convexity
of b and (2.8), k < ki. By (2.6), k = k™ imiplies k > ko . Thus, it follows from
(2.18) and (2.16),

m(k) = 16"k — b(6") — 6ok + b(60)]7".



ASYMPTOTICALLY OPTIMUM PROPERTIES OF CERTAIN SEQUENTIAL TESTS 1249

For an L-measure, k = b'(6%) implies 6(k) = 6%, so from (2.16) and (2.9) we
have

u(k) = [0"% — b(6%) — 6k + b(60)]"

Hence the theorem is established.
CorOLLARY 2.2. There exists a 0*, 6o < 0° < 6, such that b'(G*) = k™ where
k* is given by (2.5). Furthermore, for such 6%,

MaX(y,v)in By, Y = MAX(y,v) in By* U.

Proor. Since b'(6)) < k* < b'(6;) and b’ is continuous, there exists a 6* such
that 6, < 6* < 6; and b'(6*) = k*. The second assertion follows from Theorem
2.2 and (2.14).

CoroLLARY 2.3. For any 6, < 6 < 6;, 9By is tangent to 0By, at some point
that lies on ray(k), where k = b'(6').

Proor. Again we assume k = k*. From Theorem 2.2, we know 9By , 0B,
and ray(k) meet at a common point, say, (u’, v'). From the proof of Theorem
2.2 we also know that (u/, v') lies on the upper boundaries of both By and By
and that I, is the line segment of 3By on which (u’, ") lies. It can be easily seen
that the slope of I, is [b(8') — b(60)]/[6' — 6,]. To establish the corollary, we
only have to show that dB, of By, has the same slope at (u’, v'). Multiplying the
first equation of (2.10) by u and then differentiating with respect to u and
noting that b'(6(v/u)) = v/u, we obtain

0(v/u) dv/du + v d6(v/u)/du — b(0(v/u)) — ub'(6(v/u)) d6(v/u)/du
= Gpdv/du — b(6).
Thus,
dv/du = [b(6(v/u)) — b(60)1/[0(v/u) — 6o
Since »'/u’ = b'(§') and 6(b'(6')) = ¢', at (v, V'),
dv/du = [b(8") — b(60)]/[6" — 6o).
This completes the proof.

3. Some asymptotic properties of the sample size. Let w, v be any values of
n, S, respectively, where S, = X; + --- + X, = nX, . Define, as in Schwarz,
for7 =0, 1,

(3.1) Ri(u,v) = fH,. exp [y — ub((i)]l(O)W(df))/fg exp [6v — ub(0)]W(d6),

(3.2) C.(c) = {(u,v):Ri(u,v) = c},
(3.3) C(c) = Co(c) n Cy(c).
Schwarz has shown that for any W ’

(34) C(c) D Bw(c) D C(delnc™),

where d is some positive constant not depending on W. We shall apply this
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result to show in this section that for each 6 in @ lime,g N(¢) = « a.e. Py,
lime,o N(¢)/In ¢* = my, a.e. Py and lim,,o EeN(¢)/In ¢ = my, , where N(c)
is the stopping variable of Bw(c) and m,, will be defined later. The following
assumption is needed in proving Lemmas 3.1 and 3.2.

AssumpTioN A. If Q@ has a finite endpoint, say «, then b(8) tends to « as
6 tends to a. (It can be easily seen that the ©’s for normal, Bernoulli and Poisson
distributions have no finite end points and that geometric and exponential
distributions have finite endpoints but satisfy the assumption.)

Lemma 3.1. If infy b'(9) is finite, then Q is unbounded on the left.

Proor. Suppose that @ has a finite left endpoint, say . Then by Assumption
A,b(6) > o asf | a.Sob () > — as 0 | a, contradicting our hypothesis.

LemMa 3.2. If infy b’ (6) = a, finte, then for each 6,

Py(X, <a) =0, n=12-.."
Furthermore, either Po(X, = a) = Oforn = 1,2, --- , or > Oforn=12,--."
Proor. It is sufficient to show the assertions for X;. By Lemma 3.1, Q is
unbounded on the left. Since b (6) is strictly increasing and bounded below there
exists a sequence 6, | — (n = 1,2, ---) such that lim,,.,b"(6,) = 0. As
EeX, = b'(6) and VoX; = b”(0), by Chebyshev’s inequality, for n = 1,2, -+,
and any positive e
Po(|1X1 — b'(8)] = &) < 1"(6,)/¢
Thus lima.e Pe,(|X; — b'(6,)] = €¢) = 0. But
Po(|X: — b'(0)] Z €) = Po(Xy — b'(0) S —¢)
= Po(X; S b'(0) — €)
= Po(Xl <a-— e).
So limg,e Py, (X1 = a — €) = 0, for any e > 0. Since X; has monotone likelihood

ratio property, for any z, Pa, (X1 £ 2) = Pa,(X; £ z) whenever oy < a3, it
then follows that for every 6,

Po(X1 =a-— E) = lim,._..,,Pon(Xl =a-— e) = 0,

v

implying Py(X; < a) = 0. The second part of the lemma is an immediate con-
sequence of the first part.
We shall say a ray intersects some curve if the ray intersects the curve at a
point different from the origin. A ray (k) may or may not intersect 0B (B for By).
Lemma 3.3 If k satisfies

(3.5) SU..pﬁnn (6k — b(8)) < o,

then ray (k) intersects dB. i
Proor. By the definition (2.2) of s(-), (3.5) inplies s(k) < «. As

8(k) > supeinm; (mod W) (6k — b(8)) = si(k), say,
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for ¢ = 0 or 1, there exists uy, 0 < up < , such that s(k) < wu = + s:(k),
1 = 0, 1, and the equality holds for at least one <. Thus it follows from (2.1)
that (uo , kuo) is on 4B, and the lemma is therefore established.

CoroLLARY 3.1. If k is in the range of b, then ray(k) intersects B.

Proor. This follows from the fact that 6k — b(8) attains its maximum at the
9 satisfying b'(0) = k.

CoroLLARY 3.2. If for some o, Po(X1 = k) > 0, then ray(k) intersects dB.

Proor. P,(X; = k) > 0implies F({k}) > 0. Since for any 6

[ exp (6z — b(6))F(dz) = 1,

we have exp (6k — b(0)) = 1/F({k}) so that supeing (68k — b(8)) < .

REMARK. If sup, b'(6) is finite, results analogous to Lemmas 3.1 and 3.2 can
be established in a similar way.

Let & denote the probability space on which X;, X;, --- are defined, and
Y = {w:win X and for some positive integer n, ray(X, (»)) does not intersect
dB}.

LeMMma 3.4. Po(Y) = 0 for all 6.

Proor. Case 1. infyb’() = — o and supyb’(6) = «. By Corollary 3.1,
9 is an empty set.

Case 2. infy b’ (6) = a, finite, and sups b'(§) = . The only rays which might
not intersect 0B are rays with slopes less than or equal to a.

Py(w:X,(w) < a forsome n) < 2 u-1Po(w:X,.(0) < a)
=0, by Lemma 3.2.
Py(w:X,(w) = a forsome n) £ D ne Po(w:Xn(w) = a)
=0 if Pyle:Xi(w) =a) =0,

by Lemma 3.2. Thus if Ps(w:X1(w) = a) = 0, then Py(Y) = Py(w:Xn(w) < a
for some n) = 0. If Py(w: X (w) = a) > 0, then by Corollary 3.2 ray(a) inter-
sects 9B, and so

Py(Y) = Py(w:Xn(w) < a forsome n) =0

Case 3. inf b'(9) = — o and sup b’(0) is finite. This case is similar to Case 2.

Case 4. Both inf b'(6) and sup b'(6) are finite. The proof for this case follows
from Cases 2 and 3.

Schwarz’s main result is concerned with the asymptotic shape of B(¢) and
C(c). It can be described as follows: If ray (k) intersects 0B at the point A then
ray(k) also intersects both dB(c) and dC(c¢) when ¢ is small, say, at points
P(c) and Q(c) respectively. As ¢ tends to zero, the coordinates of P(c) and Q(c),
divided by In ¢, converge to the corresponding coordinates of A. This result
will be applied in proving some of the following lemmas and theorems. P(¢) and
Q(c) are not necessarily unique, but the uniqueness will not be required in the
following work and we shall therefore assume for simplicity that the intersection
points are unique.
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TuroREM 3.1. If N(c) is the stopping variable for B(c) then for each 6 in Q,
lime,o N(c) = © a.e. Py.

Proor. Suppose w is not in Y, then ray(X.(w)), where n is any fixed positive
integer, intersects dB and therefore also intersects B (c) where ¢ is small. Let m
and u(c) be respectively the wu-coordinates of the intersections. Applying
Schwarz’s result, we have

lime,ou(c)/In ¢ = m.
Thus for any e > 0 there exists ¢ > 0 such that for ¢ < ¢,

(m — e)Inc¢™ = ulc) and n<(m—¢lnch

Consequently n < u(c) for ¢ < c. So the point (n, S.(w)) is in B(c)
for ¢ < ¢o . This result can be readily generalized to: given any positive integer M,
there exists a ¢y > 0 such that for ¢ < ¢y , the points (n, S,(w)),n = 1,2, - -,
M, are all in B(c¢). Therefore for ¢ < ¢, N(¢) > M for the fixed w. Using
Lemma 3.4 completes the proof.

In the following work, we shall restrict ourselves to the values of & such that
ray(k) intersects dB. Let ray(k) intersect 9By and dCo(c) at points with u-
coordinates equal to m; and wi(c) respectively. Schwarz showed that
lim,o us(c)/In ¢ = my . The speed of convergence may depend on k, but we
shall show in the following lemma that the convergence is uniform in some sense.

Lemma 3.5. Let k > ko be fixed, where ko is defined by (2.4). Given € > 0, there
exist ¢g > 0, ca > 0 such that

(i) forc < 1, up(e)/In ¢ < my + eforall &' = k,

(ii) for ¢ < ¢z, mp — € < up(c)/In ¢ for all ko < k' < k.

Proor. (i) From (2.16), m; = [s(k) — 6k + b(8)]". It follows from (3.1)
and (3.2) that ray(k) intersects dCo(c) at a point whose u-coordinate satisfies

(3.6) ¢ = [u,exp[(6k — b(0) Yull(9) W (d)/ [o exp [(6k — b(0))u]W (d6).

Wilog assume ¢ < 1so thatIn¢™ > 0.
Case 1. Suppose W[0', 6(k)) > 0 for all ' < 6(k). Choose a such that 6, <
a < 0(k) and

(3.7) ek — b(a) — 60k + b(6)]™" — mi| < /2.
By the definition of 6(k), 6 in [a, 6(k)) implies 6k — b(8) = ak — b(a), so

(38)  Jaexp[(6k — b(6))ulW(d8) = [ran exp [(OF — b(6))ulW ()

Z exp [(ak — b(a))ulWle, 6(k)).
Also,

(3.9) [0 exp [(6] — b(8))ull(0)W(d8) < exp [(6ok — b(6o) ).
(3.6), (3.8) and (3.9) yield
0 = exp [(8k — b(6) — ak + b(a))ulp(k),
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where p(k) = 1/Wle, 6(k)) > 1 (and < »). So
Inc—Inp = (6k — b(6) — ak + b(a))u,
Inc' 4+ Inp = (ak — bla) — 6ok + b(60))u.
Since ak — b(a) — 6k + b(6) > 0 by the choice of «,

(3.10) u(ne¢™ 4+ Inp)™ £ (ak — b(a) — 6k + b(6)) ™"
As u depends on k and ¢, and p depends on k, (3.10) should be written as
(3.11) w(c)(Inc' + Inp(k))™ = (ak — b(a) — ok + b(6)) "

Suppose k¥’ = %, then by Lemma 2.1 (3), 6(k’) = 0(k), s0 6o < o < 6(k) implies
0o < a < 0(k'). Clearly, Wla, 0(k)) < Wla, 6(k")), so that p(k) = p(k'). Also.
p(k") > 1. Thus

(31.12) 0<Inc 4 Inpk) £lhhc 4+ Inpk).
It can be easily seen that k in (3.11) can be replaced by k', thus
we(c)(Inc™ + Inp(k')) ™" = (ak’ — bla) — 6k + b(6)) 7,
uw(c)/Inc¢ £ (ak' — b(a) — 6k’ + b(6)) (1 4+ In p(k')/In ¢™).
Clearly, ok’ — b(a) — 6ok' + b(60) < ak — b(a) — 6ok + b(6o), and by (3.12)

14+ Inp(k)/Inc =1+ Inpk)/Inc?,
so that

(3.13) uw(c)/Inc £ (ak — b(a) — 6k + b(6)) (1 + Inp(k)/Inc™).
There exists ¢; > 0 such that forc¢ < ¢
(3.14) (ak — b(a) — Ok + b(60)) (1 + In p(k)/In c™)
< (ak — b(a) — ok + b(66) ™" + /2.
Hence for ¢ < ¢, (3.7), and (3.14) yield
ue(c)/In¢™ < my + e

Case 2. The proof for this case is analogous to that of Case 1, with only some
minor changes.
(i1) Choose @8 such that 8 < 6, and

(3.15) mi — /2 < (s(k) — Bk + b(8))™.
Suppose ko < k' < k. k" > ko implies for 6 in [, 65, k" — b(8) = Bk’ — b(B), so
S exp [(6K" — b(6))ull(0)W(d6) = [rp.0,) exp [(6k" — b(6))uli(0) W (d6)
= exp [(BK' — b(8))uly,
wherey = W [B, 6] > 0, since sup (mod W)H, = 6, . Clearly,
faexp [(6k" — b(6))ulW(do) < exp [s(k')u].
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So by (3.6)

¢ = exp [(BK — b(B) — s(k))ulr.
Thus

Inc—Iny z (B — b(B) —s(k))u,

Inc'+Iny = (s(k') — B8k + b(B))u
Choose ¢ > 0 such that for ¢ < ¢, In¢" + Iny > 0. Clearly
s(k') — Bk +b(8) > 0.
Then for ¢ < ¢,
u(ln ¢ 4+ Iny)™ = (s(k) — 8K + b(8)) 7.
Since u depends on k' and ¢, we have
we(e)(Inc' 4+ Iny)™ = (s(k') — Bk + b(B8))™

By Lemma 2.1 (ii), up(¢)(In¢™ + Iny) ™ = (s(k) — 8k + b(8)) ™", implying
(3.16)  ww(c)/Inc™ = (s(k) — Bk + b(8) (1 + Iny/Inc™).
Choose ¢’ > 0 such that for ¢ < ¢”

(3.17)  (s(k) — Bk +b(8)) (1 4+ Iny/Inc) > (s(k) — Bk + b(B))™ — ¢/2.
Let ¢z = min (¢, ¢”). Then for ¢ < ¢, (3.15), (3.16) and (3.17) imply

me — e < uk:(c)/ln C—l.
Hence (ii) and the lemma are proved.

Replacing ko , By, and Co(c) by ki, By, and C;(c) respectively, the following
lemma can be proved in a similar way.

LevMA 3.6 Let k < ki be fixed. Given € > O there exist c; , ¢4 > 0 such that

(1) for ¢ < csuw(e)/Inc' < my + eforall k' < k,

(ii) for ¢ < cymp — € < wer(c)/Inc forallk < & < ky .

ReMARK. To distinguish the intersections of ray(k) with different boundaries,
let wi’(c), we'(¢), e (c), u(c), mi’, m;" and my be respectively the u-coordinates
of the intersections of ray (k) with boundaries of Co(c), Ci(c), C(c), B(c), By, B1
and B. According to this notation, u(¢) in Lemmas 3.5 and 3.6 should be re-
placed by i (¢) and up(c) and m; by my’ and my' respectively. As C(c) =
Co(e) n Ci(e), w*(c) = min (w'(c), we'(c)).

LEmMma 3.7 Gwen € > 0 there exists ¢, > O such that for c< g

(1) up (c)/ln — U (c)/lnc < eforallk = K.

(i) w'(c)/In¢™ — w*(¢)/Inc < eforall kb < k*.

Proor. Only (i) will be proved as the other follows analogously. As we have
seen in Section 2 that mgs = mjs and m;’, m;' are both continuous in %, given
¢ > 0 there exists ! such that &, > I > k* and

‘mzl —_ m;O\ = 6/2



ASYMPTOTICALLY OPTIMUM PROPERTIES OF CERTAIN SEQUENTIAL TESTS 1255
But since m;’ is decreasing in k if & = ko and mj is increasing in k if k < ki, as
shown in Section 2, we have
(3.18) mt — m = /2.
By Lemmas 3.5 and 3.6, there exists 1 > 0 such that for ¢ < ¢
m — /4 < w(c)/Inc™ < mue 4 €/4,
M — /4 < wl(c)/Inc < m}! + ¢/4 forall k* <k <L
Hence for ¢ < ¢,
(3.19) lwe'(e)/In¢™ — w’(c)/Inc?| < e forall K* <k <1
Also by Lemmas 3.5 and 3.6, there exists ¢; > 0 such that for ¢ < ¢,
wl(c)/Inct < m + ¢/4, and
wi(c)/Inct > m! — ¢/4, forall | <k =k.
So it follows from (3.18) that if ¢ < ¢,
(3.20) w(e)/Ine < wl(e)/In¢t forall 1<k = k.

If £ > Kk, it follows from the definition of k; that ray(k) intersects 9B, and is
contained in B;. Thus when ¢ < ¢; for some ¢; > 0, ray(k) intersects 9Co(c)
and is contained in Ci(c). As C(c) = Co(c) n Cy(c),

(3.21) w(e) = wl(c) i k> k.

Hence (3.19), (3.20) and (3.21) imply that if ¢’ = min (¢;, ¢z, ¢;) then for
c<d
wl(c)/Inc — wr(c)/Incét < e for k= Kk

LeMMA 3.8. Given ¢ > 0 and I > Iy , there exists ¢’ > 0 such that for ¢ < ¢ and
Lh=sk=skh,

(i) b = k* smplies my, — ¢ < wi(c)/Inc < my, + ¢

(i) k* = L implies my, — ¢ < w(c)/Inc* < my, + ¢,

(i) I > K* > I implies my — € < we(c)/Inc' < mp* + ¢
where my = min (my, , my,).

Proor. Only (i) will be proved as the others are similar to (i). By Lemmas 3.5
and 3.7, there exists ¢ > 0 such that for ¢ < ¢;, d some positive constant,

(3.22) my, — ¢/2 < w(deIn¢™)/In (deIn ¢,
(3.23) we(c)/In c_’1 <my+e for HhSk=s1.

By Schwarz’s Theorem 1, there exists ¢z > 0 such that for ¢ < e ,Cldelnc™)
B(e) < C(c), so

(3.24) wr(deln¢™) £ wmle) £ w*(c).

By Lemmas (3.5) and (3.7) there exists ¢; > 0 such that for ¢ < ¢;, u; (¢) In ¢
< mi* 4+ ¢ fork = k¥, so there exists 0 < ¢; < ¢ such that for¢ < ¢, k = k*,
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(3.25)  |w*(delnc¢™)/In (delnc¢™)™ — w(deln¢?)/Inc¢| < ¢/2
Let ¢’ = min (¢, ¢, ¢), then for ¢ < ¢/, (3.22), (3.23), (3.24) and (3.25) yield
my — e < ulc)/Inc <my + e for Wkl
THEOREM 3.2 Let uy = E¢X. Then
lim,.o N(¢)/Inc¢* = m,, a.e. Py.

Proor. Assume py > k¥, the proofs for us < k* and p = k* being similar.
Given e > 0, choose ¢ > 0 such that yg — ¢ > k* and

(3.26) Mup—er — Mygrer < €/2.

From Theorem 3.1 and the strong law of large numbers, we have that if w is not
in Y u Z, where Z C X, Py(Z) = 0so that P (Yu Z) = 0, then (in the follow-
ing, N(c¢) is a function of w but for simplicity we suppress the argument w)

limgso Sney /N(€) = po .
Thus, there exists ¢; > 0 such that for ¢ < ¢,
|Swey /N(c) — we| < €, or
(3.27)  infu—echappre ur(c) — 1 < N(c) < SUPuy—e'<h<upre Us(c) + 1.
By Lemma 3.8 (i), there exists ¢; > 0 such that for ¢ < ¢, ,

(3.28) Mypre — €/4 < we(c)/Inc¢™ < My, + €/4,
for up — € < k < ps + €. Choose c; > 0 such that for ¢ < ¢,
(3.29) (Inc¢ ™M™ < ¢/4.

Let ¢’ = min (¢, ¢, ¢5), then for ¢ < ¢/, (3.27), (3.28) and (3.29) imply
Mygrer — /2 < N(¢)/In ¢ < my,—e + /2.
Hence, by (3.26) and the fact that m,, e < m,, < My,_e,ifc < ¢,
IN(¢)/Inc™" — my,,| < e
LemMa 3.9. Given € > 0, there exists ¢ > 0 such that for ¢ < ¢’ and any k,
we(c)/In ¢t < mys + e

Proor. It follows readily from Lemma 3.8 (i) and (ii).
COROLLARY 3.3. Given € > 0, there exists ¢ > 0 such that for ¢ < ¢ and all 9,

N()/Inc™ < mys + ¢ and
EN(c)/In ¢ < mys + e

Proor. The proof follows immediately from the definition of u:(c¢) and Lemma
3.9.
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TrEOREM 3.3. Lim,.o EeN (¢)/In ¢ = m,, for each 6.

Proor. By Corollary 3.3, N(¢)/In ¢ ' is uniformly bounded when ¢ is small.
The theorem is established by applying Theorem 3.2 and Lebesgue dominated
convergence theorem.

Let B In ¢ be the homothetic transform of B when the multiplication factor
isInc’. Let N(B Inc ') denote the stopping variable for a procedure whose
continuatlon region is B In ¢, and let m(c) denote the u-coordinate of the
intersection point of ray(k) with 8B In ¢ . It is clear that for each ¢, mi(c)/In ¢*
= my . Thus Lemmas 3.8 and 3.9 obviously hold also for mi(¢) and Theorems
3.1 and 3.2 hold for N(B In¢ ™). Hence the following theorem, an analogy to
Theorem 3.3, can be proved in a similar way.

TeEOREM 3.4. Lim,,o EsN(B Inc¢ ') /In¢™ = m,, for each 6.

4. Error probabilities. Let By In ¢ * denote the procedure whose continuation
region is By In ¢~' and which accepts H; (respectively Hy) if (n, S.) = (u, v)
lies above (respectively below) 8B, In ¢ (respectively B; In ¢™). By Theorem
2.1, for any W,B, C By so that B In ¢ © By In ¢ . Consequently, for each
6, Py(error | BoIn ¢ ') = Py(error | By In ¢ ). Toshow for any W, Py(error | By In
¢h = o(cInc™), it will be sufficient to show Ps(error |BIn¢™) = o(cInc™),
which will be done in this section.

From (2.17), we have

(41) Boln¢™" = {(u, v):0/u = k¥, s(v/u) < w ™ Inc + 6w/u — b(6)},
Bilnc¢t = {(u,v):v/u £k, s(v/u) £ w ' Inct + 6/u — b(6)}.
If W is an L-measure, then 6(k), defined in (2.9), satisfies b’ (8(k)) = k. Since
b’ is strictly increasing, 6(k) is strictly increasing, so if & = k* > ko, 6(k) > 6, .
Thus, by Lemma 2.1 (ii), if k& = k¥, s(k) — 6ok is strictly increasing in %, i.e.
for v/u = k*, v/u £ kiff s(v/u) — 6w/u < s(k) — 6ok. Define ko(u) such that
s(ko(u)) = w'Inc™ + 6Ooko(u) — b(6). Then for v/u = k¥, v/u < ko(w) iff
sw/u) £ wlnct 4 6w/u — b(6). A similar result holds for 6, . Hence (4.1)
can be written as

(4.2) Bolnc™? = {(u,v):u £ m*Inc¢™, k* < v/u £ ko(w)},
Bilnc¢t = {(u,v):uw £ m* Inc¢?, ka(u) £ v/u £ kY,

where m™ is defined in (2.12).
Before we show that P, (error | By In ¢™) is o(¢ In ¢ ') we shall show a lemma
whose proof follows immediately from the result of Bahadur and Rao [1].
LemMa 4.1. Let 6 in @, if a1 and as are in the range of b’ such that a; > a; > b'(0),
then for a1 < a = a2,

Py(X, > a) < [m(a)]"D/n’,
where D does not depend on a or n and

(4.3) m(a) = exp [—0(a)a 4+ b(6(a)) + 6a — b(6)].
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Proor. Bahadur and Rao [1] showed

(44) Py(Xa 2z a) = I"bu(1 + o(1))/(2mn)},

where In b, = O(1), b, depends on a, and

(4.5) I = I(a) = inf, exp [—at]Me(t) = inf; exp [—at]E; exp [tX].
Putting

(4.6) H(t) = exp[—at]lMe(t) = exp[—at + b(6 + t) — b(8)]

we compute
dH/dt = H(t)(—a + b'(6 + 1)),
CH/d" = H$)[(—a +b'(6 + 0" + 8" (6 + 1))
> 0, since b"(6) > 0 forall 6.
Therefore H is strictly concave. Setting dH/dt = 0 we obtain

(4.7) t = 6(a) — 0.
Hence, by (4.3), (4.5), (4.6) and (4.7),
(4.8) I(a) = inf, H(t) = m(a).

It can easily be seen in the work of Bahadur and Rao that when a; < a < a,, b,
is bounded uniformly both in @ and n. Thus for all @; £ a £ a,, and any positive
integer n,
b1 4 o(1)]/(2n)' < D,  say.

This together with (4.4) and (4.8) establishes the lemma.

We have defined ko(u) such that s(ko(w)) = w 'Inc" + Ooko(u) — b(6). So
Ko(w) is the slope of the ray the u-coordinate of whose intersection with 8By In ¢
is u. Let «’ be any fixed positive number. Clearly,

'sugm*ing? iff * < ko(u) £ ko(u' Inc™).

' In¢
If [x] denotes the largest integer less than or equal to z, then
(49) Whc'l<u=<[m Ine implies E* < ko(w) < ko(w' Inc™) + €,

where ¢ is some fixed positive number small enough so that ko(w In ¢™*) + eisin

the range of b'.
CoroLLARY 4.1. Let 0 < w' < m™ and assume ¢ small enough so that [« In ¢™*] > 1.

Then
ple,u) = 20t ey Poy(Xn > ko(n))-
O(c(Inc¢ ™ = o(clnc™).
Proor. By the definitions of k(u) and s(k), we have
0(ko(u))ko(w) — blO(ko(u))] — Boko(u) + b(60)
= s(ko(u)) — Ooko(w) + b(6)) = v Inc™™.

i
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Thus, it follows from (4.3) using 6 = 6,
(4.10) Im(ko(n))]" = exp[—(n " IncH)n] = c.
By (4.9), (2.6) and (2.7), we can apply Lemma 4.1 to get

ple, ) £ eDm*In¢™ /(v Inc™):

This completes the proof.

In Lemma 4.1, a has to be bounded. We shall use Chernoff’s result [2] to find
a bound for P(X, > a) without the restriction on a. But the bound that we shall
obtain is larger than the one given in Lemma 4.1 when n is large.

Lemma 4.2. If a > b'(6), then

Py( X, > a) £ [m(a)]"™
Proor. According to Theorem 1 in Chernoff’s paper [2],
Py(Xn > a) = [I(a)]",

where I(a) is defined in (4.5). Using (4.8) completes the proof.
COROLLARY 4.2. If u' > 0 and ¢ small enough so that [u’ In ¢™"] = 1, then

Ebi'llnrl] PBO(X,. > ko(n)) = cuw Inct

Proor. The proof follows readily from (4.10) and Lemma 4.2.
TurorEM 4.1.
SUpe in #; Polerror | Byln¢™) = o(cln¢™?), 1=20,1,

Proor. We shall show only the case where z = 0, as the other is analogous. It
follows from (4.2)

Py, (error | B In ¢™)
= Py (w:Xn(w) > ko(n) = k* for somen, 1 £ n £ m*In ¢t
< 2T Poy(Rn > ko(n)).
Given e > 0, choose ' > 0 such that 4’ < e. Then by Corollaries 4.1 and 4.2,
lim,,o Pg,(error | ByIn ¢ ™) /clnc ' 2 04+ o < ¢
so that
Py, (error | ByIn¢™) = o(cln ¢™).
The fact that X, has the monotone likelihood ratio property concludes the proof.
CoroLLARY 4.3. For any W, in particular, 6" -measure,
Sups in m; P(error | Bylnc¢™) = o(clnc¢™), = ¢ = 0, 1.

Proor. The proof follows from Theorems 2.1 and 4.1.

Although Corollary 4.3 is sufficient for Section 5, we shall prove a stronger
result for §*-measures in the next theorem because of its intrinsic interest. Let
6% = 6,00 < 0, < 6, and define R,;(n, S,) as follows:

(4.11) Rij(u, v) = (6: — 0;)v — w(b(6:) — b(6;)), 4,5=0,1,2.
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Set
(4.12) rif(ay, o5 xa) = [Tiaf(an, 6:)/11im (e, 65),
then R.;(n, Sy) = Inr:j(X1, - -+, Xa). It follows from (2.17), (2.18) and (4.11)
Bo = {(u, v):Ruo(u, v) < 1, Rao(u, v) £ 1,0/u = k%,
Bi = {(u, v):Ru(u, v) = —1, Ru(u, v) = —1,v/u < k%,
which yields
Boln ¢ = {(u, v):Rw(u,v) < Inc’, Ro(u,v) < In ¢t ooju = kY,
Biln ¢ = {(u,v):Ru(u,v) = —In ¢, Ri(u,v) = —In L v/u £ K.
Thus
(4.13) Py, (error | BpeIn ¢*) £ Pyy(Rio > In ¢™*) + Py(Rp > In ¢ ™),
Py (error | BesIn ¢™) £ Po,(Rw < —In¢ ™) + P (R < —In ch.
THEOREM 4.2.
Py, (error | BeIn ¢ ') < 2c, i=0,1

ProoF. Suppose we carry on simultaneously three sequential probability
ratio tests (SPRT’s), namely 6 vs. 61, 0. vs. 6, and 6o vs. 6, the first based on
the sequence r10(X1, + -+, X»), the second 1, and the third ry ; and the bounds
for each test are ¢ and ¢ . Then by using the fundamental relations among the
error probabilities and the bounds for a SPRT [5], we have:

for 6y vs. 61, Py,(error) = Pg(Ryp > In chH =1/t
Py, (error) = Py, (Ryp < —In M = ¢

for 6, vs. 6;, Py, (error) = Po(Riy < —Inc¢™") £ ¢;

for 6, vs. 6, Py, (error) = Pgy(Ryo > Inc¢™) =1/ = c.

These results and (4.13) establish the theorem.
COROLLARY 4.4.

I

(2

Ii

SUps in ; (error | Bes In ¢1) < 2, 1 =0, 1.

Proor. This corollary is an immediate consequence of Theorem 4.2 and the
fact that X; has the monotone likelihood ratio property.

5. Asymptotic optimal properties. We have seen in Section 3 that the ex-
pected sample sizes of the Bayes test Bw(c) are asymptotically equal to those
of By In ¢* and in Section 4 that the error probabilities of By In ¢
are o(¢c In ¢*). As shown in Lemma 5.1, these results imply that for any W
the integrated risk of By In ¢ or B, In ¢ is asymptotically equal to that of
Byw(c). Our main results, concerning the optimal characteristics of the expected
sample sizes of By In ¢, are the consequences of Lemma 5.1. Let rw(38) and
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N(8) be respectively the integrated risk (over W) and the stopping variable of
a procedure 8. (Note: in this notation, N(B(c)) is the same as N(¢) used in
previous sections.)

LeMMa 5.1. (1) lime,o [rw(Bw In ¢™) — rw(Bw(c))l/cInc¢t = 0,

(i) limeo [rw(Brln ¢™) — re(Bw(c))l/elne¢™ = 0.

Proor. (i)

rw(Bwln ¢™) — re(Bw(c))l/cIn ¢
= [myun, [Ps (error | By In Y /eln W (do)
— [ moyms [Ps (error | Bw(c))/cIn ¢ ]W(d6)
+ [olEsN(Bw In ¢™)/In ¢ W (d6)
— Ja BN (Bw(c))/In W (d6)
= a1(c) — a(c) + as(c) — aslc) 2 0.

It is sufficient to prove a;(¢) — 0, az(¢) — as(c¢) — 0. By Corollary 4.3, a;(c) — 0.
Since for all ¢, N(Bw In ¢*) £ m* In ¢, where m* is defined in (2.12),
EsN(BwIn ¢)/In ¢ " is uniformly bounded for all § and ¢. So by Theorem 3.4,
(5.1) lime.o as(c) = [om,W(dF).

By Corollary 3.3, when ¢ is small EN(Bw(c))/In ¢ is uniformly bounded.
So by Theorem 3.3,

(5.2) lime.o as(c) = [om,W(d6).
Hence (5.1) and (5.2) imply as(¢) — as«(c) — 0, which concludes the proof for
(1)('11) Let

bi(¢) = [wmoum [Pe (error | BLIn ¢)/c In ¢ W (d6)

bs(c) = [o[EeN(BrInc™)/In ¢ W (d6).
Then,
(6.3) [rw(BrInc™) — re(Bw(c))l/cnc™

= bi(c) — ax(c) + bi(c) — as(c) = 0,

where a, and a4 are defined in (i). It is sufficient to show bi(¢) — 0 and lim (bs(c)
— as(c)) = 0. By Corollary 4.3, b;(¢) — 0. m,, , as defined in Section 3, depends
on W through its support. Let m,'.,, denote m,, when W is an L-measure. As in
(1) it can be easily shown

lim,.o [bs(c) — au(c)] = [a (myy — my,) W (dB).
Using Theorem 2.1, we have
(5.4) lim (bs(¢) — as(c)) =0,
which completes the proof.
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REeMARK. By (5.3) and (5.4), Wi{0:m,, < my,} = 0, or W{O:m,’,,, = my} = 1.
Theorem 2.2 can be considered as a special case of this result.

Let a(c) be a function of ¢ such that limoo a(c)/c In ¢! = 0 and
SUps in mouz, Plerror By In ¢) £ a(c). Such an a(c) exists as we can take
a(¢) = maxi—; Po,(error | By In ¢™). Let $(c) be the family of procedure &

that satisfy:
SUps in moym, P(error | 8) = a(c).

5(c) depends on the choice of a.
TaEOREM 5.1. As¢c— 0

maxs EeN (B In ¢ ) /In ¢ ' — infs in 5 maxe EeN(8)/In ct—0.

Proor. If not, there exists ¢ > 0, a sequence ¢; | 0 and a sequence of pro-
cedures &, in F(c;) such that

(5.5) maxy EeN(BL In ¢ /In ¢t — maxy EN(3;)/In et > /2.

Let 6’ be such that m,,, = m*. From Section 2 we know 6, < ¢ < 6,. Clearly,
for all ¢,

maxg BEGN(ByIn ¢)/In ¢ ' < m*.
Thus, by (5.5) for all ¢;
maxs BN (8.;)/In ¢ < m* — ¢/2,
which yields, for any W,
(5.6) [ BN (5.,)/In ¢ W (d) < m* — ¢/2.
Since
limeso EoN(BzIn ¢ %) /In ¢ = m* > lime.o B, N(ByIn ¢ ") /In ¢,

for 7 = 0, 1, there exists d; > 0 and a ¢'-measure W' that assigns sufficient
weight on ¢’ such that for ¢ < di,

(5.7) [ [EN(ByIn ¢)/In ¢ '[W'(d6) > m* — ¢/4.

(5.6) and (5.7) imply that if ¢; < di

(58) [1EN(BiIn ¢™)/In ¢ W' (d8) — [ [EeN(s.)/In e 'IW'(d8) > ¢/4.
Choose d, > 0 such that for ¢ < da, a(c)/cIn ¢! < ¢/16. Thus for ¢; < d»,
(5.9) Jaoym; [Po(error | &) /In ¢ W' (de) < €/16.

By Lemma 5.1 (ii), there exists d; > O such that for ¢ < ds,

(510) rw(Bilnc?)/eln ¢ — rp(Bw(c))/cln ¢’ < ¢/16.

Hence if ¢; < min (d; , d2, ds) it follows from (5.10), (5.8) and (5.9)
rw(Bw(c:))/eiIn et > ry (B ln e /eiln e — €/16
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> [[ENBrln ¢ ™) /In ¢, |W'(d6) — ¢/16
> [[EN(8.;)/In ¢ |W'(df) + 3¢/16
> rp(8e)/c In ¢t + ¢/8,

which is a contradiction since By (c;) is Bayes (W'). Hence the theorem is
proved.

Let M be any fixed positive number. Define & (¢) as a subfamily of F(¢),
consisting of procedures 6 that satisfy: for all ¢,

(5.11) E.NG)/In ¢t < M, 1=0,1.

§ depends on M.
TaEOREM 5.2. For each 0, 6, < 6 < 6;,asc— 0

E:N(BrIn ¢ ') /In ¢ ' — infs in g1y BeN(8)/In ¢ — 0.

Proor. If not, there exists ¢ > 0, 6y < 6, < 6;, ¢; | 0and 5, in F (¢;) such
that

(5.12) E,N(Byln¢.™")/In ¢, — Ep,N(5.,)/In & > e
From Theorem 2.1 we have N(B.In ¢ ™) < N(Bs, In ¢) so that (5.12) implies
(5.13) Ey,N(Boy,In ¢; ") /In ¢, — Eg,N(5;;)/In ¢, > e

It can be shown that (5.13) leads to a contradiction. The proof is analogous to
that of Theorem 5.1.

ReMARK. Theorem 5.2 holds for 6, < 8 < 6;, but it can be generalized to
hold for any 6 in  if we replace § (¢) by § (¢), a subfamily of & (¢) consisting
of procedures & that satisfy: for all ¢, EN(8)/In ¢+ < M, where 6 is any fixed
value between 6, and 8, . The proof is analogous to that given for Theorem 5.2.
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