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1. Introduction and summary. Neyman and Scott [12] considered the problem
of estimating the mean of a distribution after some fixed Gaussian inducing
transformation had been applied to the observations. More specifically, if a
random variable z is observed then it is assumed that ¢ = f'(z) has a Gaussian
distribution with mean u and variance ¢°. They find the minimum variance un-
biased estimator (MVUE), 6, of § = E(z) in terms of the MVUE’s of u and
o’. The heart of their solution is in taking a Taylor series expansion of f(£)
around the origin and showing that the resulting infinite power series behaves
like a finite one in the sense that the operations of taking expectations and sum-
ming can be reversed as required provided only that f(#) is an entire function of
second order or less. This paper exploits the Taylor series expansion of f(§)
around the mean to find the MVUE of ¢ = E(z — 6)°. It was motivated in
part by the fact that recent research in cloud seeding has shown that the variance
may be a more important parameter than the mean [8], [15], and also by a general
concern with the class of recursive transformations defined on p. 651 of [12].
In addition the MVUE of Var (§) for particular transformations is derived.

The problems under consideration here have been considered by Finney [6],
Sichel [14], and Meulenberg [11] for the logarithmic transformation i.e., f(£)
= ™. Their results provide a check on mine.

Schmetterer [13] has interpreted the results of Neyman and Scott in terms of
the solution A(f, ¢°) of the integral equation

E[n(4, 6%)] = E(x)

where £, 6 are the MVUE’s for u and ¢”. Kolmogorov [10] has also considered
the problem of finding unbiased estimators in terms of the solutions of integral
equations but he relies heavily upon the results of Blackwell [2] in using the suffi-
cient statistics for (u, o°) to turn unbiased but inefficient estimators into the
MVUE.

The problem discussed here can be formulated as an integral equation: viz.,
find A*(4, 6°) such that

ER* (4, 6,)] = Ele — E()I

but the present author has not attempted to solve this problem in this way.
Rather he has approached the problem by a straightforward application of the
method of Neyman and Scott.
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1126 M. H. HOYLE

2. Procedure. The first part of the paper shows that provided (i) 6 exists and
(ii) f is an entire function of second order, i.e., f ¢ &, where & is the class of en-
tire functions of second order or less, it is permissible to write

6 = E[f(§)] = Zneo () HPE(E — u)" = 25=0£" (n)) " (36°)"

where f,'™ stands for the nth derivative of f evaluated at p. Further by expand-
ing f,*™ as a Taylor series itself one obtains

0 = Z:EO Z’:O_ofo(Zm-Hc)(k! ml 2m)_1[£k0'2m.

It is then shown that if one substitutes the MVUE of x*¢™™ in this formula an un-
biased estimate of 8 can be obtained.

The second part of the paper shows that given (i), (ii) and (iii) ¢’ exists, one
can legitimately write

¢' = E{f(¢) — EFF(ON’
= Z:Ll Zl:;lfn(k)fu(n_kﬂ)(k!(n -k + 1)!)_l[ﬂn+l - ﬂk'ﬂn—kﬂ]

where u, = E(t — p)". In an exactly analogous method to that above one can
obtain the MVUE of ¢°. In the last part these results are used to find the
MVUE of var (6).

3. Preliminary results. The following results will be required in the sequel
and it is convenient to prove them at the outset.

(i) Ifg(z) is an entire function of orderp (0 < p < ) and typey (0 < v = »)
then g, and ¢.® are entire functions of the same order and type. In particular
9. < ,1g.%] < o for all finite p. This is Theorem 2.4.1. of Boas [3].

(ii) A necessary and sufficient condition for the two series

I: 2 ofPZ )™ and I Do .52

to converge for all finite u and Z is that f ¢ §. That f must be in & is apparent
by letting » = 0 and for this case Neyman and Scott have proved the converse.
In order to prove the converse for u 5 0 it is necessary only to expand £,% and
£,%"™ as a Taylor series in u and to show that the resulting infinite double sum is
absolutely convergent. This is easily done by showing that II for instance is
absolutely convergent or divergent with the series

7] Xm0 (12] + 6P 721 (o)™ + 250 (121 + )7 1L 1) ™
and this is absolutely convergent iff f ¢ &, [12].
(iii) Let
v(r,s) = E[|(§ — n)’
- E(E - ”)rl |(£ - I-‘): - E(E - I")‘”; 7,8 = L2-.--,

then v(7, 8) < Brte + 36-+8, where 8, = E |¢ — p|". This is easily seen by expand-
ing the right hand side of ¥(r, s).
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(iv)
Boma = a(3)™2m — DI((m — DD, m=1,2,---.

This is easily proved using the Cauchy-Schwarz inequality Bem-1 < (pam—s- piom)}
and then substituting for e, and ugm—_s .
( ) (2n+l) < 22n+l(n+l) forn = 1’ 2’ .. andk — 1’ 2’ e NOW

I'(2n + 2)[0(2k + 1)T(2n — 2k + 2)]*

= T(n+ T(n + TG + 5Tk + )I'(n —k + T(n — k + )]
= ("M (n+2)7T(n + HTH)IT(n — k + Tk + ™

S 3B+ 5, 3B —k+ $,k+ DI

< (TN2"PBn + 4,n+ DB —k+ 3k + T
( nt+1 ) 22n+l.

I

IIA

Since the beta function is a decreasing function of its arguments and where we
have made extensive use of the properties of the beta and gamma functions,
[17], [18]. In an exactly similar way one can show that

n) 2”(1:) <2k—l = 22"(1;21) and (3:?1?) = 22"+2<n)

(vi) MVUE of ¢*"4*. In their paper Washio, Morimoto and Ikeda [16] found
the MVUE under general assumptions, of any analytic function of two unknown
parameters of the exponentlal family. In particular they discuss the problem of
unbiasedly estimating u“s" (a a non-negative integer and —f8 =< «a) from a sample
of n observations from N (u,¢”). They give several formulae based on the statistics
4 and S which, because of their sufficient and complete properties, ensure mini-
mum variance estimators, where /i is distributed according to N(u, A%*) and
S/o” according to x*(») and independently of one another. A® is the constant de-
fining the variance of fi in terms of the variance of the observations and » is the
degree of freedom of the residual sum of squares, S. Let 6 ¢ © be a parameter in
the general parametric space ® and let t be the MVUE of 0, then the linear oper-
ator E* is defined by t = E ().

It is readily seen from Corollary 2.2 of [16] that E (7, %rs *), where 7, = 1572,

= ;w_z)\"2 U = —fiis given by
S—(vl2—l) (P( ))—1 (a /au2 ){j‘s a—l x)v/2—1 dx}
wherek = 0,1,2, -+ ,a = —Fk, and, since S is the residual sum of squares, we
have 8S/84 = —24/N. Thus, for m = — (k/2),
E—l( 2m k) ’

= (=D¥B(m + k, »/2)2""*8" 7 T(m + k)] (a"/0i")(S™".

This partial derivative can be evaluated using the results of Fad di Bruno [3] or
Gotting [6].
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/From their results it is clear that
o (8%)/ofk =k! D p! 8U(p + N — k)! my!ma![ 7 (—26/8NH) ™ (—1/8\H)",
p= 1) 2: Tty

where the summation is taken over all partitions such that N = 0,1, --- k — 1,
m + ny, =k — N, Iny + 2n, = k, and n;, n, non-negative integers, so that

0" (8") /0"
= > WY D1k ST INIp — k + N)I(k — 2N)1(— )7,
Whence
E7(o™")
= T(»/2)k1(S/2)™ 28 (—28N) B i Wk — 20)I1T(m + »/2 + )]

Alternatively if one knows this result one can check directly that its expectation

2m k
iseu.

(vii) Upper bounds for E |[E"(4*™™)|,m,k = 0,1, - - - . Consider first the case
when % is even. Then

E |E~ (u"e™)|

< 2k1™ (BN (BN + 2k1e™ D50 (2ON)'E A2k — 20k
But

E (a7 = 22520 (%580 ul™ 7 4 2050 0 ) Beg [wf*

where 8, = E|fi — u|,r = 0,1, -+, and

k:to (%—23)621 | |2k—2z—2:

IIA

DT (2 — 205Uk — 20 — 2) ] (RN

< (26 — 20)![(k — )73\ + W
For u # 0,

Z.I;;i (22ch—_215 ) B;i— 2%—21—25+1
< oh T 205 (2h — 20) PTG — D2k — 20 — 27 + 1) TN (AT
< o\ u[™ (26 — 20)[(k — )7 3N + W7

where we have used the results of Section 3(iv). Thus if w # 0, E |4[*7*
0+ oN|ul(2k — 2k — ) (2™ + uP)* P and if p = 0, E|a/*
(2 — 20)[(k — DG N)" de. BIA"™ < (1 4 pu)(2k — 2)1[(k — &)1
(2" + 4*)* " where p, = 0if p = 0 and p, = oA|u|[™"if » ¥ 0. So ﬁnally,

BB (4™ ’
< 26BN 70" (30N) + (1 + p)2RIED 0™ 2050 (5 G\ + w)F
< (1+ pu)zk!(k!)“f’"(ax + 1)

A II/\
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In an exactly analogous manner it can be shown that
EE7(W™76™)| = (2k 4+ 1)1k 0™ ([|u] + oA\ + 47"
4. Estimation of the mean. To justify writing
8= 22 0f® () (36D = D0 Do £o P ke 1 27
and
b= Dm0 2o SO k12T E T (W™

it is necessary to use the following easily established results.

(i) The power series expansion of f(£), i.e., D nofu™ (¢ — u)"(n!)™" is abso-
lutely convergent for all u, o” and f ¢ §.

(ii) The power series expansion of E[f(£)], i.e., Do fu "E(t — p)"(n)is
absolutely convergent for all u, o* iff f ¢ 5.

(iii) The expectation of the Taylor series expansion of f(£) can be taken term
by term i.e., the series Dm0 f.™ (n!)"'E |¢ — u|" is absolutely convergent for all
I’ o and fed.

To prove this it is sufficient to show that the two series

T @) TE(E — p)™ and D e f,5TV((2n 4+ 1)) TE g — ™

are absolutely convergent for all u, ¢” and f ¢ &. The first part is immediate from
Section 3(ii). For the second series, the result follows by using the results of
Sections 3(ii) and 3 (iv).

(iv) The power series representation of f is absolutely convergent for all 4, S

and fe&.
To prove this we note that by simple algebra

[E7 (W™ |(2k!n! 2%) 7 < S"(N’S + 447)%(n! k1 2P"t%) !
and
JE7 (™™ (2 + 1)1n127)7" < [A] (NS + 48°)"(n1 k1 27
k=01---; n=0,1,---;
50 that D meo 2 k=0 [fo™" P E(u¥™)|(k!n!2") ™ is finite for all 4, S, fe & iff
the same is true of both the series
7m0 2tk [0 ST (NS 4 44%)* (ktm 22H) T
and ] 2250 Dnskmp [Fo" V[ ST(N'S + 487)F(n! k1 27)

The finiteness of both these series for all i, S and f ¢ F follows almost immediately
from the definition of .

(v) E|f] < o« forall u,o”, fe 5.

Using the results of Section 3(vii) it is easily shown that

BBl £ (14 pu) 2ommo 2o [fo"™ ™| (kI m1) 7 (36")™ ("N + %)
+ (] + o) 2meo Zk=o fo (2m+2k+l)l(k'm')_l( ™™\ 4w
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so that B || < oo iff, for all 4, o> and f ¢ 5,
20 2oty [P (B m 1) 7 (3P (0N + 1) <
and
=0 Lmirmp [T (k1 m ) T (367 (6N + 1) < w.

This follows almost immediately as before. Thus the expectation of § exists and
it is clear that E(§) = 6.

5. Estimation of the variance.
TaEOREM 1. (A)

¢ = 2aa i fu LI (B0 =k + 1)) [as — s pnoii)
and
B = Dot 2ot 2o Lim o* S PTIH (G ki (n — K+ D)UG — D7
E W (i1 — e )]

are absolutely convergent for u, o’ iff feg.

(B) 4 4s the MVUE of ¢

To obtain the expression for ¢* = var (z) we exploit the method of Neyman
and Scott and the traditional large-sample procedure for finding an approximate
answer to the problem, [9]. Now,

¢' = E{lz — E(2)[)
= E{[f(£) — B{f (&)}
= B{22%= () = w)" = B(E — )"}
= B0 2 £ (il (n — ke 4+ DTG — w)* — BG - W)
A(F — )" — B(E — w)"M
These manipulations are justified as it has been shown that f(¢) and E{f(£)} can
both be expanded as absolutely convergent Taylor series around u for all g, £, o*
and f ¢ §. Thus the Taylor series expansion of f(¢§) — E{f(¢)} is absolutely con-
vergent and so therefore is the expansion of [f(¢) — E{f(£)}]*. The next step is to
take, and this will be justified later, the expectation inside the double summation
giving
¢' = 200m 2 LT (ki (n — b+ D)D) eov {(5 = ),
. G-
= Z:-ﬂ Zl:;l fu(k)fu(n—kﬂ)(k!(n -k + 1) !)_I[MM—I — Bkln—kt1]

To demonstrate that this double series is absolutely convergent for all u,
o’ iff f ¢ & assume the convergence of right hand side of (1), then

© > 2o Dbt [fuE5E Jtns — pitnea| (B0 — &+ 1)1

(1)
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v

2 KD
o 150 20 155 () 7 (3e)

so that fe &.
To show the converse we note that to show that expectations can be taken
term by term it is necessary to show that if f . § then the double series

2 onm1 2 R ELITF (R — B+ 1))
B8 — w)t — Bt — w)H-|(6 — 0" — Bt — 0)™))
is convergent for all , ¢* and this will be proved in Theorem 2. But
leov {(¢ — W), (¢ — )" ™| = Bass + BiBuirr < v(kyn — k + 1)

where we have used the result of Section 3(iii). It is clear therefore that if the
series

v

i 2 LR (R — ke + 1))y (kn — k + 1)
is absolutely convergent for all u, * and f ¢ F then so is the series
2ot 2 fu LTk — B+ 1)) (tasr — rbtnnra)-

TurOREM 2. The series
et 2= ST (ki — K+ 1)) Tk, n — k4 1)

is absolutely convergent for all p, " and f ¢ 5.

By rearranging the absolute values of the terms of this series according to
whether n and k are odd or even, one finds that the series is bounded above by the
sum of four double series all of which can be shown individually to be finite for
IR o’ and fed.

Consider for example the double series (k odd, m odd)

Dot 2o [fEETRRE D (2 — 1)1(2m — 2k 4 2)1) Ty (2k — 1,
2m — 2k + 2) )

Using the results of Section 3(iii), (iv), (v) fairly straightforward algebra shows
that this latter double series is bounded above by

70" 2omer 2o (LB (26 (= 1)im — B 4+ 1))

= 70" (220 [F™ 126" (6) ™) (i 1£.21(26%)* (k) ™).
But both these series are convergent for all u, ¢° and f ¢ §. The proofs for the
other three constituent series are similar and are omitted. Together they prove
this theorem and hence also Theorem 1A.

It remains to show that (i) the series expansion for ¢ is absolutely convergent
for all 2, S and f ¢ § and (ii) E |¢’| < « for all u, o and f £ F. Now

¢ = 2mmt 2t HPRETF (kI — k4 1) M — e i)
= Doma1 21 Do D fo¥ ST (i in — B 4+ 1)IG — )17
1 — e dneig]
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and so to prove (i) one has to show the convergence for all 4, S, f ¢ F of

n=l Zk—l Z]=0 f (k+i)f (n—k+1+]—z)E (# “n+1)l
Gk n — k4 1D)IG =)D

and

B = Xt X S Shno o RO B (Wit
(ikln — &+ DG — )H™

A S D 2 2 2o [ B T BT (o) |
(kN (2m — k)G — )N
S Dma it 2 R A A AR i (TP
(kY (2m — k)25 — )N
© 2m—1 2]+1 (k+2) p (2m—k+254+1—17) —1 2j+1
D > [fo" ™ fo E7 (1™ pam)|
(kN 2m — k)2 4+ 1 — )T

as the odd central moments of a Gaussian distribution are zero. It is not difficult
to show that

B (™) | S 2m(m1) 725151 7 2o () (BSN)
< 2m!(m) 721 TY"Z’
where Y = 1S and Z = 18\’ 4 2. Similarly,
|E™ (pe™™)| < 2mM(m1) (25 + DIG)TAIY™Z.
If X = max (Y, Z) then,
< Do 2t R 20 (29) 1(2m) 1X
~(ilklm11(2m — kY125 — ) ) T[RRI
+ 2 R 25 2T X274 1) H2m) AT
S(Dkm!gN(2m — k)25 + 1 — o))7h

To show that these series converge one must split each one into four parts ac-
cording as ¢ or k is odd or even.
Consider, for example, the first series when 7 is even and k is odd, i.e. the series,

Ay = Zm_l Zk_l ZJ—O ZJ_O 21 ) Xm+J' f (2k42i—1) f (2m—2k+1+2J——2'L)I ( J'm') -1
But from Section 3(v), (37) < 27(} ) and (oim) < 2"(:™) so that
) () (Jim) ™ ’
S+ k= Dim =k + 1+ J = )7 (T CTET)
8@ +k—Dim—k+14+J —0))"
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Thus All < Zm—l Zk—l ZJ—O ZJ -0 ( 8 X)m+J f (2k+2i—-1) f (2m—2k+"J—2z+1)|
(GH+Ek=—Dm—k+14+JT =)
< 8X[D om0 2ormo e ((m 4+ J))TH(BX)™ T
Now this is finite for all &, S, f ¢ F iff
=0 2= |fo ™ (m + J)HTHEX)™ < oo

i.e., iff

2t Zomiamp [fo T ((m 4 T) ) THEX)™ < oo
i.e., iff

2 7= (p + 1)(BX)*(p) R ™| < .

This can be shown to be convergent for all X and thus all £, S by the Cauchy root
test using the further known result that if f e F, limp.. |(p!) o ™[Y? = 0,
[12]. Thus Ay < o« for all &, S and f ¢ &. In an exactly similar way the other
seven component series of A can be shown to be convergent for all &, S and

feg.
In considering B we note that unless k is even and 7 odd w:-gr—r1 = 0 s0

that
S Do 2 D me 2heo [fl® LTI (12 (2n — 2K)1(j — o)D)

: |E (IJ #2k'#2n—2k)|-
It is not difficult to show that

|E7 (0 uap - pon-ax)| < 2k1ED T (20 — 2K)1((n — k)D)T2J (T ) T'YZY
and
|E7 (™ o piam—s) |
< A2k (E) T (20 — 2k) 1((n — K)D)THRT + 1) I(JH)TYZY.

We again split B into four parts according as ¢ and j are odd or even. For example,
for 7 and 7 even,

Bu = 2 ner 2oien 2050 D imo (GOIfe T T YZ (kM (n — k) 0T
It can be shown that

) (kl(n — )N S 2G4+ BT —i4+n— )RS
(G H+ k)N —i+n—k))

A

so that
B £ S0 S S0 S [fo B0, Gn 220 ()
(GE+E)n—k+J =)
S 20 25 o™X (n 4+ DT
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5 [ ':-:1 Z;Ozo lf0(2n+21—2) |X1n+J—l( (n + J _ 1) !)—l]

where X; = max (8Z, 2Y). By can be shown to be <« by the same methods
used in dealing with Ay .

In an exactly analogous way the other parts of B can be shown to be convergent
for all 4, S,f ¢ . Together they prove that B itself is convergent and added to 4,
it means that the series expansion for ¢’ is absolutely convergent for all £, S,
feg.

We are thus left to prove E|¢’| < « for all u, 0" and f ¢ 5. Now

B & S5 Db Do Do A1 1 — k4 )16 — )
AB|E™ (Wipnsa)| + E|E™ (W nibtn—rs1) |}

and the proof follows that of showing $’ < . This expression can be simplified
by noting that w = 0 if k¥ odd and - pn—ss1 # 0 only if k is even and n odd.
Moreover by recalling that

BIE W (36)"] S (1 + p)2/1(T) 7 (30) (N + 477,
EE WP (36D £ (lul + 27%N) (20 + DI T Ee) (0N + w')’

and by letting Z = ¢’\* + 4°, ¥ = 15" it is clear that the resulting series are
those considered in showing ¢’ < . These have been shown to be absolutely
convergent for all Z, ¥ and f ¢ § and hence E |6°] < o for all u,s” and f e .

6. Particular expressions for the variance. Since pny1 — wrt1 boitr = 0
for n even and all k,

¢ = Dt imn SPRO T (kU2 — k) D) e — e ol
(i) Square-root transformation. Here x = f(§) = £ so that f ¢ § and ¢ =
4% + 20°.

(ii) Cube-root transformation. In this case x = f(§) = £ 50 that fe Fand ¢” =
156° + 9u's® + 360"

(iii) Recursive class of transformation. This class of transformations was in-
troduced by Neyman and Scott [12] and is defined by the differential equation

.f@n)(x) = ABn_l + an(x)7 n = 1: 2) e+, SO f(2n+1)(x) = an(l)(x)

Note that for B = 0, this is the square root transformation which we have just
considered. In what follows then, we will assume B # 0. Neyman and Scott
show that several well known transformations are members of this class e.g.
log z and sin™ (z}). Now

68 = Dmma 2t SR (26120 — 26) )T (Men — pon—ske be)
+ R D L E ORI (2 — 1)1(2n — 2k + 1))
‘ (I-‘Zn - Mn—2k+1'l-bzk-1)
:_2 (%02)11 Z:;llf“(zk)f“(2n—2k)(2kl(2n — 2k) 1)-1

Il
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deen)t(n) ™ = (20 — 28)1(2k) 1((n — k) 1k
+ 201 (36")" 2k LT (2h — 1) W20 — 2% + 1))
2nl(n!)!
=2 2 (3e") (Ua—Va) + 2 (302) "W,

But for a recursive transformation, forn = 1, 2, - -
f“(Zk)f“Qn—Zk) — A2Bn—2 + 2ABn—lf” + an“Z

candk =1,2, --- n,

and
f“(2k—1)f“(2n—2k+l) — Bn—l ”(1)2
so that
U, = (AB" % + 24B™Y, + B (n) 7 13 (3)
= B"(AB™ + £ (2" — 2)(n)) 7,
. = B"(AB™' + f)%(2" — 2)(n!))™" and
W, = B 2" (n)7 £, 0%
Thus
¢ = (&7 — DIAB™ + £.)° + (f.")/B] — (¢ — 1)(AB™ + 1,)".

For example
(a) f(§) =sin’¢-(4 = 2,B = —4).

Thus ¢* = (e — 1) cos 4u — 2(¢7*" — 1) cos® 2u
(b) f(£) = ™. Here A = 0, B = m’ and thus

2 2m;4+m2n'2(em2az _ 1).

P =e€
(¢) f(¢) = sinh® ¢ Here A = 2, B = 4, and
o' = (e — 1) cosh 4u — 2(¢*” — 1) cosh® 2u.
7. Estimation of the variance.
(i) Square-root transformation:
¢ = E'(44's" + 20%)
=460 + 2(» + 2)7'(1 — 2D)¢é*

where ¢* = Sy,
(ii) Cube-root transformation:

& = E(156° + 9u'e® + 360'%)
= 94°p* ’

+ 18 (v + 2)7H(2 — 3N A% + 3N — 12V + 5)[(v + 2) (v + 4)]7%6%.
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e . . 2. . . 2/2 bo2/2
(iii) Recursive transformations: Now ¢ is a linear function of ¢ ', f,e” /%,

fu, £ 1.5 1,97 and £,2%¢*"" for suitably chosen a, b, ¢, d so that we need to
find unbiased estimators for each of these to obtain ¢’. Again it is only necessary
to consider B # 0.

(1) E™*(*"*): Neyman and Scott show that

E () = ®(a8,v) = Xaeo (n) T ()T (v 4+ n)] 7 (2a8S)™

This we will 2Wri’ce as ®(a) for there will be no confusion in what follows.
(2) EN(£.>""*). Consider

f()®(b — BN') — AB7'[®(b) — &(b — B\)].

This has an expected value, using equation (48) of Neyman and Scott’s
paper, of

[f#eB)ﬁa?ﬂ + AB—leB)\%?ﬂ _ AB—I]e(b—B)\2)a2/2 _ AB—I[eb¢r2/2 _ e(b—B)\2)v2/2] — f#ebu2/2.
Thus
E7.6"") = f:0(b — BNY) — AB7'[®(b) — ®(b — B\*)] for all b.

(3) EM(f,}): Consider expanding g(u) = f.’ as a Taylor series around the
origin—this is clearly permissible since f ¢ §. Then

g(p) = g(0) + 200 u™™((2n + 1)) (0) + 20 k™ ((20) 1) g® (0)
and by Leibniz’s theorem
g(2n)(x) — 2fxf$(2n) + Z]?;Ol (212011 )fx(2n—2k—1)f$(2k+l) + ZIZL;],I (gl? )fz(2k)fx(2n_2k).

By using the fact that we are considering a recursive transformation it is easily
found that

g(2n)(0) — 2271,—1[Bn—1f0(1)2 + A2Bn—2 + an02 + 2ABn—lfO] _ 2A2Bn—2 _ 2ABn—1f0
and
g(2n+l)(0) — 22n+l[ABn—lf0(1) + fofo(l)Bn] _ 2AB7I,—1 0(1)'

If we assume B > 0, then by substituting these results and evaluating the summa-
tions over n, it is readily found that,

£l =f8 — M 4+ N + 3KB (™ — &™) — 4LBH (™ — )
+ M (S 4 ) — IN( + M)

where
K = ABY® + fofe®, = L = 24AB7'f"
M = 1B (Bf ™" + A® + BY, + 24Bf,), N = 24°B~* + AB7Y,.
So recalling that, [1], [6], ’
Ele"®(8)] = exp {an + (o’N' + 8)d"/2}
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it is easy to see that
E'fY =f — M + N + KB} (% — ¢%)a(—4B)\?)
+ M (P 4 e —4BN) — LLBH (M — ¢ PHe(—BNY)
— IN(" + e PH)a(—BNY)
= fi¥ + [KB* sinh (2B%) + M cosh (2B%)][®(—4BN) — 1]
— [LB* sinh (BY}%) + N cosh (B*%)][®(—BN) — 1].

If B < 0 it is clear what should happen—replace B~* sinh (BY%) by (|B|)™ sin
(+|BJ*4) and cosh (B'%) by cos (4|B|'4). This is evident from the defini-
tion of the hyperbolic and trigonometric functions in terms of the exponential
function.

(4) E7'f.2e""”): Tt follows almost immediately that

E7f")
= [fes — M + N]&(c) + [KB™* sinh (2B*2) + M cosh (2B*})]®(c — 4B)\?)
+ [LB ! sinh (B*) + N cosh (B*i)1®(c — B\Y)
= f7®(c) + [KB™* sinh (2B*) + M cosh (2B)][®@(c — 4B\*) — &(c)]
— [LB ! sinh (B) 4+ N cosh (B*)][®(c — B\ — &(c)].

(5) E'[£.°": By expanding h(u) = £,*" as a power series in x and by using
the properties of the derivatives of f it can be readily shown, in a similar
manner to finding f,%, that

Wu) = [ + IKBB(™™ — ™) + IMB(S™ + e — 2)
so that
B "] = 2" + [KBB* sinh (2B') + 3MB cosh (2B')][&(—4B\) — 1.
(6) E_lffu(l)zedﬂﬂ) : It follows immediately that
B[R = £;"'0(d) + [KBB sinh (2B'%) + MB cosh (2B'3)]
[®(d — 4BN) — ®(d)].

Thus on substituting these expressions for suitably chosen a, b, ¢, d in the
expression for £ '(¢*) = 4° one obtains, after some simplification,

¢ = 3lfi" — A’Bl[®(4B) — 23(2B) + 1] + 3B fi"[@(4B) — 1]
+ AB7'[fi + ABY[®(4B — 4B\') 4+ &(—BN\) — 28(B — 2B\Y)]
— W(LBY, N, Bii)[®(4B — BN') — ®(4B) — ®(—B)\') + 28(2B)
— 28(2B — B\Y) — 1] + ¢(KB, M,’2B*ﬁ)
-[®#(4B — 4BN') — ®(4B) + ®(2B) — ®(2B — 4BN)]
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where
W(Pa, Q, o’z) = Pla|™ sinh (|af'z) + @ cosh (|af'z), a >0,
= P, a=0,
= Pla| sin (|af'z) + Q cos (laf’z), a < 0.

For example

(a) £ = logwx. Here A = 0,B = m’,m = log. 10,k = 1, L = 0, M = 1,
N = 0. Thus ¢(LB™, N, B'A) = 0, and (KB}, M, 2B*i) = sinh (2mi)
+ cosh (2mf) = €™ whence

& = &me [®(4m® — amih?) — o(2m’ — 4m’\)]

which agrees with Finney [6], Sichel [14], and Meulenberg [11].
(b) &£ = sin'2! Hered =2,B= —4,K=L=0,M =% N = 3sothat

(LB N, Bif) = 1 cos 24 and (KB}, M, 2B*%) = } cos 44
Thus after some simplification
¢ = 31 — &(—8)] +  cos 44[B(—16 + 16X") — &(—8 + 16\")]
+ 1 cos 24[28(407) — 2B(—4 + 8\2) 4 28(—8 + 4\°) — B(—16 + 4\")
+ &(—16 + 16))].
(c) £ = sinh™ 2}. Here A = 2,B=4,K = L =0,M =}, N = },so0 that
V(K - M, 2B%) = % cosh 44,
(LB}, N, B}4) = % cosh 24.
Thus, after some simplification,
¢ = 11 — &(8)] + & cosh (44[®(16 — 16)") — ®(8 — 16\")]
+ L cosh (28)[28(—4N?) — 28(4 — 8N%) + 28(8 — 4\') + ®(16 — 16)")
— (16 — 4\)).

8. Estimating var (§). Neyman and Scott have obtained the MVUE of 6 but,
it is clearly desirable to have some idea of the variability of 6. One could pre-
sumably set an approximate 95 % confidence interval for 6 as 6 = 2[(E {var (§)})}]
but the whole problem requires further investigation. An alternative procedure
is to compute in the usual manner a confidence interval of u, say
P{f, £ u £ fiv}] = a and then to use the formula for § in terms of &, i.e.

A

6 = 6(f4, S), to provide approximate a upper and lower limits, that is to say use
o = 6(4y,S) and , 6o =6(4s, )

as upper and lower points of an a confidence interval. The author has no idea of
the properties of either of these two procedures but hopes to investigate them in
the future. Cne would not expect them to give substantially different results.
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Clearly since var () = E(6*) — 6 we have only to find E'(6%) to obtain
E'(var (§)) = & — E(6%).
(1) Square-root transformation: Since

EN8) = i+ (2 — 6\)&E + vé'(v + 2)7(1 — 227 + 39
it is easily seen that
E7'[Var (6)] = 40" + 6*{(1 — N)* —»(v + 2)71(1 — 207 4+ 3aH)}.
(ii) Cube-root transformation: By elementary calculations
E'var ()] = ONA%" 4+ 9[(1 — N)® — »(» + 2) (1 — 4N + 5)\)]p%et
— V(v + 2) (v + 4)) (3 — 6N + 5N

(iid) -Re(zzursive class of transformations: Now 6 = f(u)e""* — AB™
+ AB7'¢""? 50 that

E—1(02) — E—l[f“2e2Bo'2/2 + A2B—2 + A2B—2e2302/2 _ 2AB_lfpeBazl2
_ 2A2B—2680'2/2 + ZAB—lf“ema?/z]
and the right hand side is known. After some simplification,
E7'[Var ()]
= 6" — A’B’[1 — ®(2B)] — 24B7'[f; + AB'|[®(2B — B\') — ®(B — B\Y))
— ¢(KB}, M, 2B*)[®(2B — 4B\') — &(2B)]
+ ¢(LB, N, B}4)[®(2B — B)\?) — ®(2B)]
— f°®(2B).
For example
(a) £ = logwz. It is found that

E'var (8)] = 6 — ™ [@(2m’ — 4N'm?) — 3(2m?)] — ™. d(2m?)
= ¢ — 'p(2m’ — \m?)
= @ (m’ — mA) — d(2m® — 4Nm?)]

where § = ®(m® — m*\?)e™,
(b) £ = sin™' «*. For this transformation

=3+ (sin’2 — HB(—4 + )
and it turns out that, after some simplification, ,
E'var ()] = 6 — 1 — 3®(—8) + Lcos24-®(—4 + 4\2)
’ — L cos4fi-B(—8 + 16\%).
(¢) £ = sinh™ &', For this transformation
' b = (4 — 4\)[sinh’ 4 + 3] — }
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and it turns out, that, after some simplification,
E'var (8)] = 8 — 1 — 3®(8) + 4 cosh 24-®(4 — 4)") — 3®(8 — 16)\*) cosh 4.

9. Estimating the variance of the difference between two treatment effects.
In an analysis of variance situation one is often interested in the difference be-
tween two treatmentseffects and in our case it is clear that we are concerned with
the original (or natural) units and not the transformed data. It is obvious that we
can estimate this difference as 6, — 6, and in this section I give expressions for
V(6 — 6). To do this we suppose that (41, fiz) has a bivariate normal dis-
tribution with mean (u;, ) and variance-covariance matrix

02[)\12 )\12:|
Mo AT
(i) Square-root transformation: Using the known 8;, the results of Cook [5],

for the cumulants of the bivariate normal, and the known formula for Var (8;) it
is easily shown that

Var (él —_ 92) = 0'4[()\12 + )\22)2 + (V + 2)1/—1()\12 —_ )\22)2 —_ 4)\“1,2]

+ 4N+ Auet — 2\app]
and

Vb — b)) = 46° 0% + M fi® — 2wofufie) + W' + 2070\ — MND)
—2((r — 1D 4+ 2)' N = )
or alternatively,
Vb — b)) = (b — 6)" — (" — /)
+ 26307 — f) + M(BfsT — i) — Ahsfiafle]
+ (v + 276300 = M) + 405 — MN)).
(ii) Cube-root transformation: In a like manner, it is easily found that
cov (B1,8) = 95%(1 — M) (1 — M) (v 4+ 2)v  (uape + Aso”)
+ Mo’ [wlpe” + ow® + o]
+ 902N + M+ N — MM
+ 30" \l2N: + 3" + 3A" — 3NN
and that an unbiased estimator for this is,
Cl,B2) = 98%mal(1 — M) (L — M) = »(v + 271 + 2% — A
— N\ 4+ MA)] )
+ 90 + 2) 7l (1 — N + (1 — M)+ Ogfinflas”
— %% (v 4 2) (v + DT BN + NN + Maz — Dz — Ihaal’].
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There appears to be no useful simplification of the expression
V(b — b)) = V(b)) + V(b)) — 2cov (61, br)
and
Vb — b)) = (b — 6)* — (" — fia')"

+ &% (v + 2)(» + )TN — N)* — 300N + N)
+ 182N + N M — 6M2(3 + 6Ny — 4NL)}
— 6% 4+ 2)7[{(18\(1 — N) 4 9(1 — 5N) (1 4 M)} i”
+ {18\2(1 — N*) 4 9(1 — 50) (1 + N')}i”
— {18(1 — M — N+ 2Ngp)} fuafia]
— FU8Nufi e + (6 — 15MD) A" + (6 — 15071
— 6(1 — N — 6fifia’ (1 — N).

(iii) Recursive transformations: Since we already have expressions for
E7'6% (¢ = 1, 2) we concentrate on finding an estimate (again treating B # 0),
for

0.0, = A’B — 24’B7°” + A’B7" + f(m)f(pa)e™”
— AB7 () + f(u)] + AB7'" [f(m) + f(m)].

The onlyexpression for which we do not already have an estimate is f(u1)f(p2) .
To find this we will need to remember, since

E(e) = exp {ap, + bu, + d’o.” + abpo.o, + 10707}
where z and y have the obvious bivariate normal distribution, that

E7Y (12" ?) = gPiithrg (o — g2 — 2abNy — BAASD).
The method is to write g(x, y) = f(x)f(y) as a bivariate power series in « and y,

g(z,y) = g(0,0) + D_n194(0,0)/n!
where
g:(0,0) = (x(3/dx) + y(8/3y))"9(x, y)|e=0.y=0 -
It turns out, using the specific knowledge of the derivatives of f(x) that,
gn(0,0) = — (= + y™) BN |
+ @+ "B M.+ (z —y)"B"H (n=12--")

where N and M are as before and H = %B_2[—Bfo(1)2 + A* 4 24Bf,+ B,.
Likewise

g2n+1(0, O) — KB-%(.',U + y)2n+l(Bv})2n+l _ (x2n+l + y2n+l)(B§)2n+l%LB—}.
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It is easily verified that by summing over n, and simplifying that,
g, pe) = f(p)f(ue)
_ (f02 - M+ N - H) + %KB--%{e(uﬁnz)Bi — e—(u1+uz)m}
+ %M{e(umcz)m + e—(m+u2)Bi}
+ 1H| pu B + e—m—uz)m}
_ iLB_‘{e’“B’ — B + B e‘”’”}
_ %N{e"‘“ + 1B + R + e_,.zm}.
It follows that
E7[f(m)f (ua) ™) = f(ii)f (fa)®(2B)
+ (KB} M, {fn + £} B)[®(2B — B\ — 2B\ — B)') — ®(2B)]
+ H cosh {B}(f1 — fi2)}[®(2B — BN + 2MeB — B),) — ®(2B)]
— 1W(LB} N, B'iy)[®(2B — BN') — ®(2B)]
— W (LB} N, Bf,)[®(2B — B\') — ®(2B)].

It is thus possible to find E~ 1(6,6,) and it is easy to find the expression for
V(6 — b) = 6 + 6° — 2E7'(6,6,) yielding

V(b — b)) = (b — 82)" — ®(2B)[f(fa) — f(fa)]’
— w(KB}, M, 2B, [®(2B — 4B\®) — ®(2B)]
— ¢(KB} M, 2B!,)[®(2B — 4B\) — ®(2B)]
+ 2¢0(KB™} M, By + f2))[®(2B — BN — 2BNy — B)Y)
— &(2B)]
+ 2H cosh B}(fi — fi2)[®(2B — B\’ + 2B\ — BA') — ®(2B)].
For example
(a) ¢ = logwz; H = 0.
Vibr — b)) = (b — 6:)* — €™(2m* (1 — 207%))
— ™3 (2m* (1 — 20%))
+ 2" PIG (122 — NP — 20 — N)).
(b) ¢ =sin'at; H =3,
V(b — ) = (b1 — 6:)* — ®(—8)[sin 24 — sin 2]
— 1 cos 47u[®(—8 4+ 16M?) — 3(—8)] — } cos 44:[®(—8 + 16\
— ®(—8)]
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+ 1cos (201 + 20)[®(—8 + 4N + S\ + 4N7) — B(—8)]
+ 1cos (201 — 26)[®(—8 + 4N — 8\ + 4N — &(—8)].
(c) ¢ = sinh™2!, H = 1.

V(b — 6:) = (b — 6,)® — ®(8)[sinh 244 — sinh 24,
— } cosh 4/4[®(8 — 16)\") — ®(8)] — 2 cosh4/,[®(8 — 16)\?)
— ®(8)]
+ %cosh (241 + 20)[®(8 — 4N — 8y — 4N7) — &(8)]
+ %cosh (201 — 24)[®(8 — 4N + 8\ — 4N — &(8)].
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