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SOME EXAMPLES OF MULTI-DIMENSIONAL INCOMPLETE
BLOCK DESIGNS

B. D. Causey!
Unaversity of Chicago

0. Introduction and summary. This paper presents some examples of “multi-
dimensional incomplete block designs,” a class of designs introduced as such by
Potthoff [2] to provide analogues for the familiar two-factor incomplete block
design. Much of the content of [2] was subsequently presented in [3], [4], [5], and
[6]. Three-dimensional incomplete block (“3DIB”) designs and four-dimensional
incomplete block (“4DIB”’) designs for additive models are discussed in general
terms in [3] and [4] respectively; our purpose in ‘this paper will be to provide
examples to which the tools developed in [3] and [4] can be applied. The original
results of this paper have been presented in [1].

1, Preliminary results. In this section we indicate some of the results already
obtained by Potthoff. First let us consider the 3DIB additive designs of [3].
Suppose, as in [3], that we begin with a situation in which we have three factors—
factors 1, 2, and 3—at m, n, and p levels respectively, and % observations. The
3DIB additive model equation is given in [3], equations (3.1a) and (3.1b).
It will be assumed that each level of factor 1 appears equally often, and thus
h/m times; that each level of factor 2 appears h/n times; and that each level of
factor 3 appears h/p times. Suppose that, as is indicated in [3], paragraph 3(g),
we can find a vector @ of the form [3], equation (3.3), whose expectation, given
by [3], equation (3.4), depends only on the effects corresponding to the levels of
factor 1. Suppose further that a “conditional inverse” of Ci1, as defined in [3],
equation (3.4), can be found, where we define C* to be a conditional inverse of
a square matrix C if and only if ¢ = CC*C. In this case we can conveniently
find [3], Sections 4 and 6, Gauss-Markov estimators for contrasts in the effects
for factor 1, formulas for the variances of these estimators, and [3], equation
(1.10), a sum of squares to be attributed to variability in the effects of factor 1.

Next, we might interchange the role of factor 1 with that of either factor 2 or
factor 3, and obtain the same results, if possible, for those factors. For the
3DIB designs which we present in Sections 2 and 3, these results can be obtained
only for factors 1 and 2; we can thence find sums of squares to be attributed to
error and to variability in factor 3, by application of the conditional error theorem
quoted in [3], Section 2.

We now consider the problem of obtaining a relation of the form [3], equation
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(3.3), for factor 1. We can begin with the three equations:

(1.1) (h/m)ty + Hysty + Hists = E (Y1),
(1.2) Haty 4 (h/n)t: + Huts = E(Y2),
(1.3) Huty + Hypty + (h/p)ts = E(Y3).

Here the vectors ¢, and Y, , and the matrices Hyo, 1 < u, v = 3 and u 5 v,
are defined as in [3], Section 3. We note that, generally for w = v, the (k, L)
entry of the “marginal matrix” H,, is the number of times that level k of factor
u and level L of factor v are observed in combination among the 4 design observa-
tions. A general method of obtaining [3], equation (3.3), is to multiply equation
(1.2) on the left by an m X m matrix A;, and equation (1.3) on the left by an
m X p matrix A;; and then to add the transformed equations to (1.1), where
Ay, and A, are chosen so that Hys + (h/n) A + AsHs is the m X n zero matrix
and Hi3 + A2Hos + (h/p)Ais is the m X p zero matrix, so that an equation of
form [3)], equation (3.4), is obtained. We will implicitly follow this procedure in
subsequent sections.

We now consider the 4DIB additive designs of [4]. Here we begin with the
three factors of the 3DIB design and the & observations, with a fourth factor,
“factor 4, at ¢ levels. As for the 3DIB design, each level of factor 1 will appear
h/m times, etc. We will begin with a system of equations, analogous to (1.1),
(1.2), and (1.3) for the 3DIB design:

(14) (h/m)ty + Hysly + Histy + Huty = E(Yy),
(1.5) Houty + (h/n)ts + Hasty + Hoals = E(YS),
(1.8) Hutly + Hgpty + (h/p)ts + Hasty = E(Y5),
(1.7) Huty + Hyty + Huls + (h/Q)ts = E(Yy),

in the notation of [4]—analogous to that of [3]. From these equations we will
obtain a vector of form [4], equation (2.3), whose expectation is given in [4],
equation (2.4). The procedure for finding the 4DIB design vector is analogous
to that for finding the vector [3], equation (3.3), for the 3DIB design; the results
that can be obtained are analogous to the 3DIB results.

In subsequent sections, we shall let I denote the identity matrix, J a matrix
(not necessarily square) whose entries are all 1’s, and 0 a matrix whose entries
are all 0; the number of rows and columns in these matrices will be clear in
context. A scalar multiple of J will be referred to as flat. Notation introduced in
this section will be used in other sections; notation introduced in other sections
will be used only in the section where introduced except as is explicitly indicated.

2. Some 3DIB designs. In this section we construct 3DIB designs; by a slight
variation, we may obtain some further designs for 4 and 5 factors as well.

Before the actual design construction, we present some preliminaries. Let
ny and n, be integers greater than 2. Suppose that we can choose an integer d; ,
with 1 < d; < m, such that ¢; = dy(di —1)/(ny — 1) is an integer; similarly
suppose that we can choose d» , 1 < dy < ns, such that ¢; = da(ds — 1)/(ny — 1)
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is an integer. Let Gy be the additive group of integers 0, 1, --- , n3 — 1, based
on addition mod n; ; suppose that we can choose a set D; of d; distincet integers
riyt =0, .-+ ,d;y — 1, belonging to Gy, so that the set of di(di — 1) nonzero
differences 7y — 7,4 # 4,4,¢ = 0, - , dy — 1, includes, under addition in
@1, exactly ¢; repetitions of each of the n; — 1 nonzero members of G; . Suppose
that a £ 0 belongs to G; ; the set of dy elements 7;,7 = 0, --- , di — 1, and the
set of d; elements ¢ + r;,72 = 0, --- , di — 1, based on addition in G;, have
exactly ¢; elements in common. To see this, we note that for 0 < 4,7 < dy — 1,
the element r:» equals the element a - r; if and only if r; — r; = a. As is indi-
cated above, there are exactly ¢; combinations (¢, 7), 4 # ¢, 4, ¢ = 0, -+,
di — 1, such that r» — r; = a, so that the number of common elements is in
fact ¢; . We suppose that we can similarly choose a set D, of d, distinct integers
8j,7 =0, -+, dy — 1, such that, based on addition mod n, in the additive
group Gs of integers 0, 1, - - - , ny — 1, the set of differences s; — s;,7 %= 7,7,7
=0, ---,d; — 1, includes exactly c; repetitions of each of the nonzero members
of Gz . Then if a # 0 belongs to G, , the set of elements s;,7 =0, --- ,dy — 1,
and the set @ + s;,7 = 0, ---, dp — 1, have exactly ¢; elements in common.

Under these circumstances, we construct 3DIB designs with m = din,,
n = dyny , p = nMe , and b = mn. For example, we might choose n; = 4, n, = 3,
dy = 3,and dz = 2, s0 that m = 9,n = 8, p = 12, and h = 72. The difference
set Dy can consist of ro = 0, r, = 1, and 72 = 2; D, can consist of s, = 0 and
81 = 1. The procedure of construction is to set up what might be termed a
ng X my array of di X dp matrices, to obtain an overall diny X dym; array. We let
rows correspond to the levels of factor 1, columns to the levels of factor 2, and
entries to the levels of factor 3. Entries are defined as follows: the (y, 2)di X d2
matrix will have (7, j) entry

(2.1) na(ri + 2) + (s; + v),
where 7 =0, ---,dy — 1,5 =0,---,dpo— 1,y =0,---,n — 1l,andz =
0, - -+, n1 — L. The quantities r; + 2z and s; + y are reduced mod n; and mod n,

respectively to integers between 0 and n, — 1 inclusive and between 0 and n; — 1
inclusive respectively; all entries will thus be between 0 and nyns — 1 inclusive.
For example, for ny = 4, ny = 3,dy = 3,ds = 2,70 = 2,8, = 1,y = 2, and
2z = 3, we would obtain from (2.1) the quantity 3(24+3) + (14+2) =3 X 1 4+
0 = 3. The entire design for n; = 4,7, = 3,d; = 3, and d; = 2 can be represented

0 1 0 1 0 1 0 1

0 0 1 3 4 6 7 9 10

1 3 4 6 7 9 10 0 1

2 6 7 9 10 0 1 3 4

0 1 2 4 5 7 8 10 11

2.2) 1 4 5 7 8 10 11 1 2
2 7 8 10 11 1 2 4 5

- 0 2 0 5 3 8 6 1 9
1 5 3 8 6 11 9 2 0

2 8 6 11 9 2 0 5 3
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In the general case, we let the levels of each factor be numbered in natural order;
suppose that rows, corresponding to the levels of factor 1, are numbered from
0 to dings — 1, columns from 0 to dyn; — 1, and entries from 0 to nyn, — 1. For
fixed 7 the n: quantities 7; + z (mod ny), 2 = 0, -+, m; — 1, comprise the n,
integers 0, ---, n; — 1; thus the din; quantities r; + 2,2 = 0, -+, ny — 1,
1 =0, ---, d — 1, include d; occurrences of each of the n; integers 0, --- ,
n; — 1. Likewise the din, quantities s; + y (mod n.) include d, occurrences of
each of the n, integers0, - -+, ns — 1. Thus the d; dsnin. design entries given in
(2.1) include exactly di d» occurrences of each integer an, + b, fora = 0, --- ,
m — landb = 0, --- ,n, — 1, and thusexactly d; d; occurrences of each integer
0,1, -+, mmy — 1. As a result, each level of factor 3 will appear exactly d; do
times (equally often) in our design. The marginal matrix Hi, will be J (each
row and each column coinciding exactly once). We now want to look at the ma-
trix products HizH31 , HyHse , and HyHy, .

York,L =0, ---,dm, —1, the (k, L) entry of Hy3H3 is the number of entries
common to rows k and L of the overall design array. Consider the number com-
mon to rows diyo + % and diyn + 4, where yo, y1 = 0, -+, ny — 1
and %,% = 0, --- ,dy — 1. Using (2.1), it is easily shown that the dn; elements
in each of these rows are, respectively, nez + (s; + o), 2 = 0, -+, n; — 1,
j=0, ,dz'— l,andnzz+ (Sj+y1),Z=O, s, N — 1,]—: 0, ,dg - 1,
where s; 4+ yo and s; + y1 are reduced mod n, . For y = y; the number of com-
mon elements is just dena. For yo # 1, it is tedious but straightforward to
show that the number of common elements is just n; multiplied by the number of
repetitions (based on addition mod 7;) of y1 — y, among the nonzero differences
si— Sp,J#*75,5,5 =0,---,dy — 1. But we already know that there are
exactly c; such repetitions; hence the number of common elements is just con; .
Using this information, we can write Hi;H3; as an ny X 7y array of d; X d; ma-
trices, where the di X di matrix along the diagonal is den..J, and off the diagonal

is comaJ.
In order to find Hy;Hi , we consider the number of elements common to
columns dszo + jo and dez1 + J1, 20,21 = 0, -+ , 1 — Land jo, 51 = 0, -+,

d; — 1. Using (2.1), we obtain that the din, elements in each of these columns
are, respectively, ns(ri + 20) +y,y =0,--- ;e — 1,2 =0, -+ ,dy — 1, and
ne(ri +21) +y,y =0, ,me — 1,7 =0,---,d; — 1, where r; 4+ 2 and
7: + 21 are reduced mod n, . Arguing as for Hi3Hs , we find that we can write
HyHs as an ny X ng array of d; X dp matrices where the d; X dp matrix along
the diagonal is dineJ, and off the diagonal is cinsJ.

FOI‘]{} = 0, cee dlng —1 andL = 0, cec d2n1 —_ 1, the (k, L) entry Olengz
will be the number of elements that row %k of the overall array and column L of
the overall array have in common. Using (2.1), we have (as above) that row
d1yo + 1 comprises the elements nsz 4+ (s; + 40),7 =0, -++ ,do — 1,2 =0, --- ,
n1 — 1, and that column dwo + jo comprises the elements ny(r; + 2p) + v,
t=20,--- di — 1,y =0,---, ny, — 1. The common elements are the d; d»
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elements ne(r: + 20) + (s; + %0),2=0,---,di— 1,7 =0, ---,ds — 1. Thus
each row and each column of the overall array have d; d, elements in common,
and H13H32 = dl dzo].

We now obtain convenient results for factors 1 and 2. The matrix
Hyy — (1/dy de)HisHye equals 0, so that we can easily form an equation of form
[3], equation (3.4), where @ = Y1 — (1/did:)Hi3Ys and Cu = doml —
(1/dy dy)Hi3Hz . The matrix Cu + (cana/dids)J is an ny X ng array of dy X dy
matrices, with matrix D appearing along the diagonal and matrix 0 appearing
off the diagonal, where the di X dy matrix D equals (ni/dy)(didol — (1 —
((dz — 1)/(ng — 1)))J). Finding D™ is a simple matter; the ny X n, array of
di X dy matrices with D™ appearing along the diagonal and 0 appearing off the
diagonal is a conditional inverse of Cy . Interchanging factors 1 and 2 and the
subscripts 1 and 2, we obtain a like result for factor 2. For the design given in
(2.2), the 3 X 3 matrix D in terms of which the conditional inverse is defined
will be (£)(6I — (2)J); theinverse D™, (#)(9I + J). For factor 2, the2 X 2
matrix corresponding to D is (1) (181 — J), inverse (11z) (161 + J). Using the
relationship Hi» — (1/d1dy)Hy3sHs, = 0, we can show that contrast estimators
corresponding to factor 1 and the sum of squares attributed to variability in that
factor are the same as what would be obtained if the effects of factor 2 were nil,
and vice versa; and also that the estimators and sum of squares for factor 1 are
distributed independently of the corresponding quantities for factor 2.

Some sets of parameter values for which 3DIB designs can be constructed
according to this section are

m d ny a2 m n b h

4 3 3 2 9 8 12 72
4 3 4 3 12 12 16 144
4 3 5 4 15 16 20 240
3 2 5 4 10 12 15 120
3 2 6 5 12 15 18 180
3 2 7 3 14 9 21 126
4 3 7 3 21 12 28 252
3 2 3 2 6 6 9 36

We now replace the single factor at din, levels corresponding to rows by two
factors, say 14 and 1B, at di and 7, levels respectively: we let level 4, of factor
14 be associated with row 7, of each of the di X d, arrays of (2.2),%, =0, ---,
di — 1;foryp = 0, --- , ne — 1, we let level y; of factor 1B be associated with
all of the rows in the di X d; arrays (y»,2),2 =0, ---, n1 — 1. We thus will
have a 4DIB design with factors at dy, 72, doni, and nin, levels, and with the
number of observations again di dsine: . We can let the factors of the 4DIB
design now be numbered 1 (corresponding to factor 14), 2 (corresponding to
factor 1B), 3 corresponding to columns of the overall design, and 4 corresponding
to entries. Arguing much as for the 3DIB designs, we can find the marginal
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matrices: we obtain
Hy, = d2n1J, Hy = n2J, Hy = dzJ, Hy = le, HyHyp =
d12n1(02J + (dz - Cz)I),

and HyHy = di’ doJ. The matrix HsH s will be the matrix HaHs, obtained for
the 3DIB design. Using these results in conjunction with the equations (1.4)-
(1.7), we may easily obtain results involving factors 1, 2, and 3; sums of squares
attributed to error and to each of the four factors can then be easily calculated.

Let us now assume in conjunction with the 4DIB designs that our four-factor
model is not purely additive, but a model with one interaction term, between
factors 1 and 2. The problem of finding Gauss-Markov estimators of factor effects,
variances of these estimators, and appropriate sums of squares is equivalent to
the problem, already considered, of obtaining the same results for the 3DIB
designs of this section, in conjunction with a purely additive model.

Forny = 4,d, = 3, n, = 3, and d; = 2, we can obtain a 4DIB design with
m=3,n=3,p=8,q=12 and h = 72, from the 3DIB design given in (2.2).
Alongside each of the 9 rows in (2.2), we place a pair whose entries correspond
to levels of factors “14”” and “1B” respectively; the pairs are, from top to bottom,
<O) O)’ (1’ 0)7 (27 O); (O: 1)’ (1: 1)’ (2’ 1): (O: 2), (1, 2)7 and (2’ 2)

We may obtain a class of 5DIB designs by replacing the factor corresponding
to columns in (2.2) by two factors, as well as the factor corresponding to rows.
These 5DIB designs can be used in conjunction with a model allowing for two
2-factor interactions involving four distinct factors; mathematically we will be
dealing with the equivalent of both the 3DIB and 4DIB designs of this section
in conjunction with additive models, as well as with the 5DIB design itself in
conjunction with additive models (easily handled because of the simplicity of the
marginal matrices). In (2.2) we let the pairs corresponding to columns be, from
left to right, (0, 0), (1, 0), (0, 1), (1, 1), (0, 2), (1, 2), (0, 3), and (1, 3).

3. Use of finite fields. In this section we obtain some 4DIB designs and 3DIB
designs, based on the finite (‘“‘Galois”) field of s elements for s a power of a prime.
Such fields have been constructed from Galois polynomials and discussed in, for
example, [7].

Let F denote the field of s letters, the symbols 0 = fo, fi, - - -, fi_1 denote the
elements of F; and F, denote the set of s — 1 nonzero elements of F—a group
under field multiplication. If s is a prime, the field is just the integers 0, 1, - - -,
s — 1 based on reduction mod s; in this case we may let f; = 5,7 =0, -+,
s — 1. Suppose that for 1 < d < s — 1 we can find an element ¢ of Fy which is
of order d, that is, ¢ = 1 but ¢’  1for 1for¢ = 1,---,d — 1. Let T, denote
the subgroup of d elements ¢, = 0, --- , d — 1, generated by ¢. The group F,
may be divided into (s — 1)/d congruence classes, or cosets, each containing d
elements, with any two elements of F belonging to the same coset, if and only if,
their quotient under field multiplication belongs to 7% . We let aTy denote the
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coset to which the element a belongs. Let (s — 1) /d be denoted by r. Suppose

that ¢ is an element of F, such that the r elements ¢*, y = 0, - -1, belong
to r distinct cosets (This must be the case if none of the r — 1 elements g%,
y =1, — 1, belong to T ; for if g” and ¢° belonged to the same coset for

0=y < y é r — 1, we would have to conclude that ¢* ¥ belonged to Th,
with1 £ 4" — y < r — 1.) For all values of s, d, and r that we have investigated,
corresponding field elements ¢ and g satisfying these requirements can be found.
Some sets of values of s, d, r, ¢, and g are: (1) 5,2, 2, 4, and 2; (2) 7, 2, 3, 6, and
3;(3)7,3,2,2, and 6; (4) 11, 5, 2, 4, and 2; (5) 11, 2, 5, 10, and 2; (6) 13, 4,
3, 5, and 2; (7) 13, 3, 4, 3, and 2; (8) 13, 2, 6, 12, and 2; (9) 19, 9, 2, 4, and
2; (10) 23, 11, 2, 3, and 5; (11) 31 15,2, 7, and 3; (12) 9, 4, 2, x,andx+ 1
Where the ﬁeld is based on reduction of Ga101s polynomials mod (a: + 1); and
(13) 9,2, 4, 2, and z + 1, where the field is the same as for (12).

We first present a class of 4DIB designs. We begin® by forming »d X s sub-
arrays which we arrange lengthwise to form an overall d X rs array. Numbering
smaller arrays from 0 to » — 1, rows of each (smaller) array from 1 to d, and
columns of each array from 0 to s — 1, we let the entry in row ¢ and column j
of array y be given by the pair (g%’ + f; , g* "¢t + f;), in terms of field multiplica-
tion and addition. We let factor 1 be at s levels with level & of factor 1 correspond-
ing to the occurrence of f; as the 1st component of an entry, & = 0, --- ,s — 1;
likewise we let Factor 2 be at s levels with level & of factor 2 corresponding to the
occurrence of f;, as the 2nd component of an entry. Factor 3 will be at rs levels,
corresponding to the rs columns of the overall array; and factor 4 will be at
d levels, corresponding to the d rows of the overall array. The number of design
observations will be s(s — 1). We claim that s distinct field elements appear as
1st entry component in each row 7 of each array y; these are the distinct field
elements f;,7 = 0,---,s — 1, plus g’c’ added to each of them. Hence in the
overall design, each field element appears exactly r times in each row, so that
Hy = rJ. Likewise Hy = rJ. Since each row and each column coincide exactly
once, we have Hy = J.

We now investigate the matrix H13H3 . Numbering its rows and columns from
0 to s — 1, we have that the (k, L) entry of this matrix is the number of times
that field elements f; and f appear in the same column, throughout the overall
design. For &k = L this number equals s — 1; we claim that for & # L, it is
d — 1. We have already shown that in array y of the overall design the field
element x appears exactly once as 1st entry component in row ¢, ¢ = 1 , d.
Suppose that i in row 7’ of array y @ thus appears in column j = j(z, y, ¢ ), S0 tha,t
xz = f; + g% . The remaining lst components appearlng in this same column
with z are the elements f; + ¢%", ¢ = ¢,¢=1,.---,d, or x + P A ),
t'#4,1=1,---,d,s0thatifa ;é 0,z 4+ a will also appear as a 1lst component,
if and only if, a = g”(c ¢’ ) for some 5. Letting y and 7 vary, we obtain that
the number of times that  and  + a appear as lst components in the same
column, in the overall design, will be the number of times tha,t a 75 0 appears
among the (s — 1)(d — 1) nonzero quantities ¢*(c? — ¢’ ), 1% 4,4,1 =1,
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dyy=0,---,r—1or

(3.1) g¢%i(c’ —1), i=1,---,dd=1---,d—1, y=0,---,r—1.
For fixed ¢/ = 1,---,d — 1, the s — 1 quantities g%c’(¢” — 1),5 =1, -,
d,y=20,---,r — 1, comprise the s — 1 nonzero elements of F, so that the

(d — 1)(s — 1) quantities (3.1) include exactly d — 1 occurrences of each non-
zero element of F. Thus z and x + a, where a 5 0, appear at 1st components in
the same column exactly d — 1 times; and thus for &k ¢ L, the (k, L) entry of
HyHy is d — 1. Hence HisHy = (d — 1)J + (s — d)I. A similar argument
shows that H 23H 32 = H 13H 31 .

We now show that Hyy = J — I.Fori=1,--- ;dandy =0, -+, 7 — 1,
we again know that z appears in row ¢ and array y of the overall design in a single
column 7 = j(z, ¥, 7). The 2nd component appearing in combination with 1st
component z in row ¢ of array y is f; + ¢*¢’, or x + (g — 1)g”c’. Thus the
number of times that 1st component 2 and 2nd component z + @ are observed
together is the number of times that a appears among the s — 1 quantities
(g — g%,y =0,---,r — 1,7 =1,..., d. These quantities include one
occurrence of each nonzero member of F, so that for k, L = 0, ---,s — 1, the
matrix Hy, has (k, L) entry O fork = L and 1 for k 5 L. Thus Hys equals J — 1.

We now show that HyHs = d(J — I). Fork, L =0, ... ,s — 1, the (k, L)
entry of this matrix is equal to the number of times that level & of factor 1 (1st
components) andlevel L of Factor 2 (2nd components) appear in thesame column
—this is to be distinguished from the two levels’ being observed in combination
together. Appearing in the same column with 1st component = in row ¢ and
column j = j(x, y, ©) of array y will be the 2nd components = + g" e’ — g,
7"1/5, =1, ,dy=0,:--,r— l,org”ci(gci —1),47=1"--,dy =0,

., 7 — 1. For fixed 7, the s — 1 quantities g”ci(gci’ - 1,7=1,..-,d,y =
0,---,r — 1, comprise the s — 1 nonzero members of F; thus the d(s — 1)
quantities gc’(g¢i — 1),4,¢ = 1,-++,d,y = 0, -+, r — 1, include d occur-
rences of each nonzero member of F (and no occurrences of the zero element).
Using this information, we may conclude that the (k, L) entry of Hy;Hs, is O for
k= Landdfork L, so that Hip — (1,/d>H13H32 = 0.

From the 4DIB equations (1.4)—(1.7) we obtain convenient results for factors
1, 2, and 4, using the matrix relationships thus found. For factor 1, we obtain
an equation of form [4], equation (2.3), with @, = Y1 — (1/d)HYs and Cuu =
((d — 1)/d)(sI — J); for factor 2 we obtain the same result with factors 1 and 2
interchanged. A conditional inverse of Cy is just (d/(d — 1)s)I. We will obtain
the same results involving factor 4 as we would if the effects of factors 1, 2, and
3 were nil; the Gauss-Markov estimators of contrasts involving factor 1 are, as
for the 3DIB designs of Sections 2, distributed independently of those involving
factor 2, and are the same as those obtained if the effects of factors 2 and 4 are

“assumed to be nil.

The simplest example of a 4DIB design constructed and dealt with as above

(appropriate as an example of construction, but practically not too useful because
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it allows only 1 degree of freedom for error estimation) is, for s = 5, d = 2,
r=2,¢c=4,and g = 2, given by

0 1 2 3 4 0 1 2 3 4

(3.2) 1 4,3 0,4 1,0 2,1 3,2 3,1 4,2 0,3 1,4 2,0
2 1,2 2,3 3,4 40 0,1 2,4 3,0 410,2 1,3

We now consider a second class of 4DIB designs, constructed much like the first
class. We arrange 7 (d + 1) X s arrays lengthwise to obtain an overall array
which represents the design. For convenience we now let wo = 0, and w; = ¢,
t =1, .-+, d. Letting ¢ range from 0 to d, j from 0 to s — 1, and y from 0 to
r — 1, we let the entry in row ¢ and column j of array y be the pair (g*w; +
fiy g"wic + f;). Factors 1, 2, 3, and 4 will be defined as for the first class of
designs; the number of levels for these factors will be s, s, 7s, and d + 1 respec-
tively, and the number of design observations sr(d + 1). Here the matrices
Hy, and Hyy will equal 7J, and Hs, will equal J. We show that HisHg = HoHgp =
@+ 1)+ (r— 1)I) by proving that the (s — 1)(d + 1) nonzero differences

9" (ws —wi),y =0,-++,7r —1,i54,4,7 =0,---,d, include d + 1 repeti-
tions of each of the nonzero members of F.The proof 1nvolves observation that
these quantities include the quantltles (3 1) and also the 2(s — 1) quantities
g'c’and —g%’,y = 0, - - - —17=1, , d.

We now find His . Suppose that in row 11 of array y of the overall design, the
1st component & appears in column j = j(z, y, 7). The corresponding 2nd com-
ponent observed in combination with z is  + ¢”(¢ — 1)w; ; letting ¢ and y vary
and considering the (d 4+ 1)r quantities ¢*, y = 0,---,r — 1,4 =0, ---, d,
we can conclude that throughout the entire design lst component z and 2nd
ponent x + a are observed together 1 time if @ 5 0 and r times if ¢ = 0. Thus
H12 =J 4+ (’I‘ - l)I

The number of times that 1st component z and 2nd component z + a appear
in the same column equals the number of occurrences of @ among the 7(d + 1)*
quantities ¢*(cwsr — wi),y =0, -+ ,7 — 1,4,%' = 0, - - - , d. The set of elements
cwir , ¢’ =0, -+, d, is the same as the coset c¢T, with 0 adjoined, and thus the
same as the coset 7 with 0 adjoined, and thus the same as the set ws , ¢ = 0,

,d. Hence the r(d + 1)* quantities g” (cw: — w;) are the same as the r(d + 1)
quantltles g”(wsr — w;). Dividing these quantities according to ¢ = 7 and
i # 7, we find that 0 occurs 7(d + 1) times and @ 5 0 occurs d + 1 times, so
that H13H32 =(d4+ 1)+ (r— 1I) and Hy, — (1/(d + 1))HzHs = 0.

Using these matrix relationships, we obtain from equations (1.4)—(1.7) results
for factors 1, 2, and 4 entirely like those obtained for the first class of 4DIB
designs of this section, with Cy; now equal to sI — J.

A construction can be achieved for s > 3 and d = 1 so that in terms of d and s,
the matrices His, Ho , H34, HyzHy , HyH;, , Hie — (1/(d + 1))Hy3H3 , and
€1, and the subsequent results for factors 1, 2, and 4, are the same as for our
second class of 4DIB designs. We let w11, w12, w21, and w.,» be four distinct
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elements of F'; we construct s — 12 X s arrays which we arrange lengthwise.
Letting < range from 1 to 2, 7 from 0 to s — 1, and y from 1 to s — 1, we let the
entry in row ¢ and column j of array y be the pair (f; + faw1,i, fi + fuws,:)-

We now present some 3DIB designs. The method of construction is, basically,
to interchange field addition and multiplication, and proceed as for the two 4DIB
classes of this section. We now suppose that d is a divisor of s, 1 < d < s. Thus
s must be of form a® and d of form a*, where ¢ > 1 is prime and 1 < b’ < b.
Regarding F as an additive group under field addition, suppose that T is an
(additive) subgroup of F, of order d. For arbitrary a, b, and b’, the Galois field
F will consist of polynomials of degree = b — 1 with (integral) coefficients
reduced mod @ and with field multiplication based on reduction mod @ polynomial
of degree b; the subgroup T can consist of those polynomials in F which are of
degree = b’ — 1. .

Let us call the elements of 70 = wo, w1, -+, Wa1 . The elements of F fall
into s/d cosets of T, each containing d elements, with two elements belonging to
the same coset, if and only if, their difference belongs to T'. Let ¢ = s/d; we
number these cosets Ag, --+, A;—1 and let a7 denote the coset to which field
element ¢ belongs. From each coset 4; we choose a particular member g; . We
form s — 1d X tarrays, and arrange these lengthwise to form the overall design.
Letting 7 range from 0 tod — 1, from 0 to £ — 1, and y from 1 to s — 1, we
let the entry in row 7 and column j of array y be the pair (f,(w: + ¢;), fy(w: +
e + ¢g;)) where e is any field element not belonging to 7. We let the 1st and 2nd
entry components correspond to the levels of factors 1 and 2 (each factor at s
levels), and let columns correspond to the s(s — 1)/d levels of factor 3 (it will
be noted that rows do not correspond to a factor here). By showing that the
quantities fw;,y = 1,---,s — 1,2=0, ---,d —1, include d — 1 repetitions
of each nonzero member of F, we establish that Hi3Hs = HyHsz = (d — 1)J +
(s — d)I. We now want to show that the matrix His — (1/d)Hw:Hs, equals 0,
so that the simplification achieved for factors 1 and 2 in the 4DIB designs of this
section can be achieved. Observing that the quantities f,e, y = 1, ---, s — 1,
include exactly one occurrence of each nonzero member of F, we can conclude
that Hiy = J — I. Since the (s — 1)d quantities f,(¢ + w; — wir),y =1, ---,
s—1,7=0,---,d — 1, include exactly d occurrences of each nonzero member
of F, we can conclude that Hi3Hz, = d(J — I) = dHis.

The simplest example (again appropriate as an example but not for practical
use) isfors =4,d =2,¢e =z, F = (0,1, z, z + 1) with reduction of poly-
nomials mod (2° + 2 + 1), T = (0,1), g0 = 0, and g; = x:

0 1 0 1 0 1
0 0,z z, 0 0,z +1 z+1,0 0,1 1,0
1 L,z +1 z+1,1 X, 1 1,z z+ 1,2 z,z+ 1

4. Variations of Section 3. Suppose, in the notation of Section 3, that
s = 4a + 3, where a > 0 is an integer, and that ford = 2¢ + 1 and r = 2 we



MULTI-DIMENSIONAL INCOMPLETE BLOCK DESIGNS 1587

can find corresponding elements ¢ and g. For these values of s, d, and r, we then
can obtain as in Section 3 two 4DIB designs consisting of two d X s arrays and
two (d + 1) X s arrays respectively. Here, for the same parameters, we present
two designs consisting of one d X s array and one (d + 1) X s array respectively,
instead of two arrays. For practical purposes, only a few values of s = 4a + 3
will be powers of primes but not primes: the smallest is 27, and the next smallest
is 243.

For this situation we first present some preliminary results. We claim that
(1) the set Ty of 2a + 1 elements ¢t, ¢ = 0, -- - , 2a, does not intersect the set
—To of 2a + 1 negatives —c¢’, ¢ = 0, - - - , 2a, so that each of the 4a + 2 nonzero
field elements belongs to exactly one of these two sets. To prove this, we first
show that the additive inverse —1 of 1 is of order 2 under field multiplication, so
that since 2 does not divide 2a 4+ 1, the order of Ty, —1 cannot belong to T .
Thus the cosets T and (—1)T, are distinet. It is then straightforward to show
that (—1)To and — T, are identical.

We next claim that (2) the set of (2¢ + 1)2a nonzero differences ¢ — ci',
i #4,4,7 =0, ---, 2a, involving the elements of T include exactly a repeti-
tions of each nonzero member of F. Using the fact that ¢ = 1, we may write

these differences as ci(¢f’ — 1) and ¢’(1 — ci'), 1=0,---,20,7 =1, ---,a,
which include a repetitions, in unspecified order, of each of the members of the
two distinet cosets T and — T, and hence, using (1), of each of the nonzero
members of F.

We now generate a first class of designs, with several, say 2, factors at s levels
(2 = 3), one factor at d levels, and ds observations. Suppose that we may choose
z — 1 distinet elements of To—which we number b,, ---, b,—so that b, —
bueTofor 2 = u < v = 2. We set up a d X s matrix whose entry will have
2z — 1 components. For notational convenience, we number the matrix rows from
1 to d, the matrix columns from 0 to s — 1, and the 2 — 1 entry components
from 2 to z; we define component % of the entry in row 7 and column j to be
b’ + fi. We let factor 1 correspond to the s columns of the matrix, factor
z + 1 to the d rows of the matrix, and factors 2 through z to the respective
2z — 1 components of the entry (also numbered from 2 through z). Arguing as in
Section 3, we show that each row appears once in combination with each level of
factors 1 through z. We now investigate the marginal matrices involving the
s-level factors. Suppose that the levels of factor 1 are numbered from 0 to s — 1,
with level k& corresponding to column % of the matrix, and that the levels of
factor w, u = 2, --- , 2, are numbered from 0 to s — 1, with level k& of factor u
corresponding to the occurrence of field element f;, as component % of an entry,
k=20,---,s — 1. We first look at Hy,,, w = 2,---,2. Fork, L =0, -- -,
s — 1, the (k, L) entry of this matrix will be the number of times (0 or 1) that
field element f7, occurs as component % of an entry in column %. For fixed k, field

»elements appearing as component % in column k are buc’ + fi, ¢ = 1, -+, d.
Since b, belongs to T by assumption, the cosets b, T and T, are identical; using
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this fact, it is easily shown that for each u the field elements appearing as com-
ponent « in column % are ¢! + f;, ¢ = 1, - - -, d. Hence the matrix Hy, is equal
to a matrix H which has (k, L) entry equal to 1, if and only if, f, — f: belongs
to T and equal to 0 otherwise.

We now consider the matrix H,, for 2 £ 4 < v £ 2. Component « of the entry
of the d X s design matrix will equal a particular element x for exactly one entry
inrow 4,7 = 1, --- , d. Suppose that this entry is in column j = j(z, 7); then
2 = buc® + f;. Letting ¢ vary, the d levels of factor v appearing with the level
of factor u corresponding to field element x will correspond to field elements
z 4 (b, — by)c', 7 =1, -+, d. But since (b, — b,) belongs to T by assumption,
the cosets (b, — b,) T and T are identical ; we hence conclude fork, L = 0, - - -,
s — 1, that the (k, L) entry of H,, is 1 if, again, fr — f; belongsto T, and is 0
otherwise; thus H,, equals the matrix H defined above. Thusfor1 s u <v =2
we have that H,, = H, and also that H,, = H'.

Fork,L =0, ---,s — 1, we know that H has (k, L) entry 1, if and only if,
fu — fu € To, and entry 0 otherwise. Likewise H' has (k, L) entry, if and only if,
fu — fe € — T, and entry 0 otherwise. By (1), the sets Ty and — T are disjoint and
together include exactly one occurrence of each nonzero member of F, so that
H + H’ has (k, L) entry equal to 1, if and only if, f. — f» # 0, and entry 0
otherwise. Thus H + H’ has entry 0 along the diagonal and entry 1 off the diag-
onal, and thus equals J — I. The matrix product HH’ has (k, L) entry equal to
the number of integersy,y = 0, --- , s — 1, for which both the (k, y) and (L, y)
entry of H are equal to 1; this number will be just the number of times that
fi — f» appears among the d” differences ¢’ — ¢¢, 4,7 = 1,---,d. For L = Fk,
fr — fr = 0 and appears exactly d times; for L # k, we know from (2) that the
nonzero differences ¢! — ¢¢ include exactly a repetitions of each nonzero member
of F. Hence the matrix HH’ will have entry a off the diagonal, and 2a + 1 along
it, so that it can be written aJ + (a + 1)I. Using a similar argument, we can
show that H'H also equals aJ + (a + 1)I.

A second class of designs can be constructed by adding to the first design array
a “0 row” visually above the rows 1 through d, to obtain @ (d + 1) X s array.

This 0 row will have an entry in column j, 7 = 0, ---, s — 1, consisting of
z — 1 components all equal to f; . Thus we have that component u of the entry
in row % and column j is wib, + f;,¢=0,--- ,d,7=0,--- ,s —L,u=2---,

2, where w; is defined in Section 3. Again we let factor 1 correspond to columns,
factor z + '1 to rows, and factors 2 through z to components of the array. Again
we have that the marginal matrices H,,. .1 are allequalto J.For 1 S u <v =
2, H,, equals G (and H,, equals @) where G has (k, L) entry 1 if and only if
fr— fi = w;forsomez =0, -+ ,d,fork,L =0, ---,s — 1. The matrix G is
the same as H except that 1 instead of 0 now appears along the diagonal. Thus

G=H+4+1 and G =H +1I; and
G+G =H+I+H +I=H+H +2l=J—-1+2=J+1.
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Also,
=H+IH +1)=HH +H+H +1
=aJ + @+ DI +J—I+1=(a+1)J+ (a+ 1)I;

likewise @'G = (a + 1)J + (a + 1)I.
The simplest design of our first class is, fors = 7,d = 3,2 = 3,¢ = 2,b; = 1,
and b; = 2, 4

0 1 2 3 4 5 6
(41) 1 2, 4 3, 5 4, 6 5,0 6, 1 0, 2 1, 3
2 4, 1 5, 2 6, 3 0,4 1,5 2, 6 3,0
3 1, 2 2, 3 3, 4 4,5 5, 6 6, 0 0, 1

b

This design, and the design of our second class for the same parameters, have
been constructed by Potthoff [2] in slightly different, but equivalent, form, except
without a factor corresponding to the rows of our design. Some further sets of
parameters for which designs of both of our classes can be constructed are:

(I)s=11, 2=4, ¢c=4, bo=1, bs=4, bi=15 (acasealsoalready
considered by Potthoff);

(2) s = z=4, =4, b =1, bs =6, by = 7;

(3) s = 23z= =2 bo=1 b=2 bs=3, bs=4; and

(4) s = 31, z=5, c=1, b2—1 by =2, by =19, bs = 10.

Of course there is no need to use the maximum possible number of factors; we
might, for example, have s = 23 and z = 3, instead of z = 5. We have not dis-
covered a general way of determining the maximum possible value of z, for
arbitrary s.

We now consider the results obtained for our two classes of designs. In each
case the effects of factor z + 1 will be estimated as though all other factors were
absent; conversely, estimates involving factors 1 through z will not be affected
by the presence of factor z + 1, so that essentially we have a design for z factors
each at s levels. For z = 3 (a 3DIB design) we can note that the designs of both
our classes belong to “Design Class 2” of [3] for any permutation of the factor
indices, and that hence we can obtain a result of form [3], equation (3.3) for
each of the three s-level factors—utilizing the simple form of the matrices
H+ H HH = HH,G+ G, and GG = @'G. A conditional inverse of Cyy will
be, for each factor in the case of our second class of designs, (1/(2a + 1))I; the
design efficiency [2], [3] for estimating all contrasts for each factor willbe (2a+-1)
/(2a + 2). For the first class of designs the conditional inverse will be (a/ (2d* —
1))I, and the efficiency (24 — 1)/(a(2a + 1)).

For z = 4, the (4DIB) designs of both of our classes belong to “Design Class
., 37 of [4] so that, again, results can be obtained for all s-level factors. The effi-
ciency for all contrasts for each factor is (a(4a + 3))/((2a + 1)(2a + 2)) for
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the second class of designs, and ((4a + 3)(d’ — a — 1))/((2d° — 1)(2a + 1))
for the first class.
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