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ON THE ADMISSIBILITY AT «, WITHIN THE CLASS OF RANDOMIZED
DESIGNS, OF BALANCED DESIGNS!

By R. H. FARRELL

Cornell University

1. Introduction. The power properties of randomized designs locally about the
hypothesis set have been considered by Iiefer [4] and Farrell [1]. Our purpose
here is to consider how one should choose a randomized design in order to maxi-
mize power far out. This problem is considered when the underlying model is a
one way classification and when the underlying model is a two way classification
without interaction. Material on the two way classification is to be thought of as
being an analysis of a ‘“‘complex’ design problem of interest.

In this section we explain the terminology used. We then state some theorems
at the end of this section. The proofs of the theorems require a lemma about
convex mixtures of design vectors, proven in Section 2, a lemma about the con-
vexity of the power function of an F-test, proven in Section 3, and estimates on
the magnitude of the power of scale invariant tests, obtained in Section 4. Proofs
of the theorems are given in subsections of Section 6.

We begin by describing the problem of a two way classification. We assume
there are RS populations such that population (r, s) is characterized by a mean
value @or + o1 and let @0 = (Qu, -, @), @" = (Qu, -, @), and
o = (@, &1"). A H X 1 vector X is observed such that EX = C, the matrix
C = (A,B)isH X (R+ S)and AisH X R, Bis H X 8. Each entry in 4
and B is either 0 or 1, and a given row of 4 and of B have exactly one non-zero
entry. The matrices A and B in effect specify the design and the matrix 4”B
has entries n,, , the number of observations on the mean value o + @1 -

As will appear in the sequel the matrix

(1.1) D = A"A — (A"B)(B"B)"(B"A)

plays an important role in the analysis of variance theory. Corresponding to a
square matrix M we let M* be its unique generalized inverse in the sense of
Penrose [5]. Since the properties of generalized inverses are important to the
calculations below we list them here for later reference.

(1.2a) MM*M = M; MEMM* = M7
(MM = MT™M; (MM*)" = MM™.
The properties (1.2a) are known to uniquely determine the generalized inverse
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of a square matrix /. If N is any matrix (over the field of real numbers) then
(1.2b) N(N'N)"(N'N) = N.

Let D! be the unique positive semidefinite square root of D. We assume
throughout that if I, is the n X n identity matrix then

(1.3) E(X — Co)(X — Co)" = oI .
Then the vector of best linear unbiased estimators
(1.4) X5 = (DHT (A" — (4"B)(B"B)*BN)X

has covariance matrix ¢ DD ™. From (1.2a) it follows that DD is an orthogonal
projection. Therefore if X has a joint normal distribution

(1.5) o XX

is a non-central chi-square random variable with centrality (recall that ¢ =
(@' @)

(1.6) (QOT D(Qo
Note that if e, is the n X 1 vector such that e,” = (1,1, ---, 1),
(1.7) Dep = A"(Iy — B(BTB)'FBT)(AeR)

A"(I; — B(B"B)"B")(Bes) = 0.

If

Usually the designs used are such that all contrasts of ¢, are estimable so that
D has a single eigenvalue equal zero. Then from (1.6) and (1.7) the statement
©0' Do = 0 is equivalent to @u = --- = o . The standard F-test for the hy-
pothesis @y Doy = 0 uses X,*"X,* in the numerator.

For reasons that will be apparent in Section 6, it is inconvenient to use X 4*.
Let Ui be a R X R orthogonal matrix such that

I
U.DDU." = ( . g).

Then, since D is symmetric, D and D commute, and we may suppose U 4 simul-
taneously diagonalizes D, D*, and D*. EU,X ,* = U,D*gy = U.D*U."U 40 s0
we may write

(1.8) (X4",0) = (U.X45),

and X isa (R — 1) X 1 vector with covariance matrix ¢2l5_; .

In the sequel we will consider only designs for which B”B is non-singular.
Then

(1.9) Xs = (B"B))*B™X

isa S X 1 vector with covariance metrix ¢’I s so that ¢ >X "X is a non-cential
chi-square random variable. X, and X are stochastically independent and the
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“sum of squares of error” is
(1.10) Zd = X"X — XX, — X5"X5 .
In the sequel we let b > 0 and define a function ¢, by
(1.11) if £<b then ¢(¢) = 0;
if £¢=b then o) = L.

In terms of ¢, the standard F-test of @o"Dgo = 0 against @y’ Dgy # 0 is to
accept the alternative if and only if ¢u(|| X 4|[/Z¢) = 1.
The total number of observations H satisfies

(1.12) H= 370D it = ex (A"B)es .

H is a constant of the problem in that each design considered is required to take
H observations. We will suppose T" designs are given. For our analysis it suffices
to know the matrices,

(1L13) if 1=¢<7T, C¢= (4, B,), and
D, = AA, — (A/B,)(B"B.)*(B."A,).

We will generally speak of A,"B, as the design matrix for the ¢th design.

Specification of a randomized design consists of specifying three things, the
designs, the tests to be used and a probability vector p” = (p1, -+, pr-) such
that the design with matrix C, is used with probability p,, 1 < ¢ < T. After ¢
is determined, X is observed, ¢;(X) is calculated, and the alternative is accepted
with conditional probability ¢:(X ). The power function of C;, ¢; is

(114) B(‘Q’ 7, Ct ) ‘Pl) = EC’;@.vﬂot(X)
= [(2nd®) 0, (x) exp (— |z — Cio|*/25°) da.
The power function of the randomized design is

(1.15) Zf;l ptﬁ(‘@: a, Ct ) 90‘)'

The optimality result stated in Theorem 1.1 and proven in Section 6a is about
designs for which the matrix D has the special form D = ap(Ip — ezer'/R),
ap > 0 a constant. It will be recognized that (Ir — ezer’/R) is a projection
matrix of rank B — 1 and that e is an eigenvector for the eigenvalue 0. A basic
problem is to choose design matrices A”B such that D has the above form and
such that ap(R — 1) = trace D is maximized. When H < RS so that incom-
plete block designs are being used the maximization problem is solved by use of
a balanced incomplete block design. When H > RS and H is divisible by R
any design maximizing trace D gives rise to a matrix D = ap(Ir — ezer’/R)
(see Theorem 5.5) which is optimal (see Theorem 1.1). The purpose of Section
5 and particularly Theorem 5.5 is to show that for large sample theory Theorem
1.1 is not vacuous.
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TuEOREM 1.1. Suppose the design C has matrix D = ap(Ir — ezer"/R) and
that the design C s a connected design. Suppose the design C' maximizes trace D
over all possible connected designs taking H observations. Let ¢w be a function of
R + 8 variables such that ¢w(z4 , Zp, 2) = ¢u(||z4l|/2). Choose b so that a size o
F-test results. Let Cy, -+ ;Copr 1,y =+ y¥0r , 01, ++ , D De a randomized design
which is similar size o and such that for some Ko > 0, for all o, o, if ||@/| > Ko
then

(1.16) B(o, 0, C, 1) < ZtT='1 pB(@, o, Ce, Yr).

Then

(1.17) D=D = - =Dp.

If the functions Y1, - -+ , Y1 are scale change tnvariant functions of the sufficient

statistic then ¥, « -+ , Y1 each agree with the UMP F-test with probability one.

The one way classification may be thought of in the preceding terms by in-
troducing a side condition B = 0. In this case D = A”4 is usually non-singular
and good power properties at « are obtained only if D is non-singular.

For the problem of a one way clessification we obtain a somewhat stronger
result the statement of which requires further notation. We let A be the set of
permutations of 1, - -+ , R and if A ¢ A we let Py be the permutation matrix such
that (PA\"MPy)i; = (M hane -

TuaeoreEM 1.2. Let A be the matrix for a design for the one way classification
such that 2fD = ATA then ld“ - djj! = ]., 1= 7«,.7 = R, dn y 0y drr the diagonal
elements of D. Let ¢, give the UMP size a F-test of o1 = - -+ = o = 0 and consider
the randomized design, use AP\, ¢p with probability (1/R!), Ne A. Let Ay, -+,
Ar s 1, < s ¥, D1y -+, D be a randomized design which is similar size o
such that for some Koy > 0, for all @, o, if ||@|| > oK, then

(1.18) (RN 2aaB(o, 0, APy, &) = 2 1-i 0B, 7, Ar, $1).

Then there exist Ay, -+ y A€ Asuchthat if 1 <t < T, A"A = P, (A"A,)Py, .
If each of Yr, - - - , Y1 are scale change invariant functions then 1 , -+ - , Y1 agree
with the UMP size o F-test with probability ome.

2. Convex mixtures of designs.

LemMa 2.1. Leta®™ = (a1, -+ , ar) be a vector of non-negative integers such that
a1 + -+ + agr = H. Let J be the convex hull of the set of vectors {P\"a, \ & A}.

Suppose a1 = a2 = -+ = az and that a1 < ag . Then J has dimension B — 1
and (H/R, ---, H/R) = (H/R)ez" is an interior point of J* in the relative
topology on J.

Suppose k = 1 4s an integer, that m = 1 ¢s an integer,and H = km + (R — k)-
(m + 1). Then the vector a* defined by a** = (m, --- ,m,m + 1, --- ,m + 1)
isin J. a* is an interior point of J in the relative topology of J if and only if @ < m
and ar > m + 1.

ProoF. The set J lies in the hyperplane Y fma; = H. If dimJ < R — 2
then there exist constants (a;, +++ , az) = o not all zero and not all pairwise
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equal such that for all permutations A ¢ A, "P,"a = constant. By considering
interchanges it follows that if 1 < 7 < j £ R then a; = «;. This is a contra-
diction from which it follows dim J = B — 1.

If (H/R)ex is a boundary point of J then there exist constants (az , - - , ag) =
o" not all zero and a constant such that if X ¢ A then o"P\"a = constant, for at
least one \, o"P\"a > constant, and (H/R)(a"ez) = constant. This is not possi-
ble. Therefore (H/R )e is interior to J in the relative topology.

To prove the second part of the lemma, let A; be the subset of A such that if
Ne Ay then N(r) = 7,k + 1 < r £ R. Let A, be the subset of A such that if
AeApthen \(r) =7, 1 = r = k. We let

ar = (KR — E)1)™ D D wen, P\"P1"a,

and writea; = (v1, - ,¥1,72, " ** ,Y2). Wenowprovey: = mandy, = m -+ 1.
To do this note that v1 = (a1 + -+ + ax)/k and v2 = (gpa + - + az)/
(R — k). Therefore a1 = v1 < 72 < agpand y1 = a; = Grq1 = v2 . Thus, if y1 > m
then @, > m so that since a; is an integer, a; = m -+ 1, and it follows
thatm +1 <1< -+ Zag.Hence H =ky1 + (R —k)y.> km + (R —k)-
(m 4+ 1) = H. This contradiction shows y; < m must hold. A similar argument
shows vy, = m -+ 1 must hold.

It is clear then that a* is a convex mixture of (H/R)er and a; so that a* ¢ J.
Now suppose a1 < m and ar > m + 1. We show that it follows that v1 < m
and v > m 4+ 1. Sincey1 = (a1 + -+ + a)/k and since 1 < m, if 1 = m
then the assumption a; < m implies @, = m + 1. Therefore, since az > m + 1,
vo= (@41 + - +ag)/(R—k)>m~+1,and H = ky1 + (B — k)y2 > km +
(R — Ek)(m + 1) = H. This contradiction shows that it must be the case that
11 < m. A similar argument shows v2 > m -+ 1. From this it follows that a* is
a proper convex mixture of a; and (H/R)eg . Since (H/R )ez is an interior point
of J in the relative topology it follows that a* is an interior point of .J in the
relative topology.

If a1 = moraz = m + 1 then each of the vectors P, a lies in one of the planes
of support m(a’) = (& + -+ + @&’k = m, m@) = (@a + -
+az)/(R—k)=m-+1. [

Lemma 2.2. Let M be a R X R matriz. The matriz N = (R1)™ > aa P\"MPy
has the same trace as M, the diagonal elements of N are all equal, and the off diagonal
elements of N are all equal.

Proor. The 7j element of Py\"M Py is (M )iy - Thus the 77 diagonal element
is (RD™ Donea (M ey = R((M )y 4+ -+ - -+ (M)ge). If 7 5 j then \(¢) =
A(j). Given 1" # j' there are exactly (R — 2)! permutations X such that \(¢) = 7,
A\j) = j'. Therefore (N)oj = (R(R — 1)) 2 D> ixi (M)i; . The assertion
about the trace of N is obvious.

3. Convexity of the power function of an F-test. The following lemmas are
self explanatory and are offered without further comment.
Lremma 3.1. Let W be a random variable having a non-central F;, ;—; distribution
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and non-centrality parameter £. There exist constants ¢ and ¢y depending only on @
and j such that EW = ¢; + cf, £ = 0.

Proor. Let Wy, ---, Wi be independently normally distributed random
variables, each with variance equal 1, such that EWy =&, EWyp = -+ =
EW,; = 0. Let W, be a random variable independent of Wy, , - -+ , Wy, such that
W has a chi-square distribution with j — ¢ degrees of freedom. Then

(3.1) EW = EW;\(Wh + -+ + W)
= (1 + £)EW;".

LevMA 3.2. Let 0 = ¢35 < csand let v: [0, ©] — [0, 1] be a Borel measurable
function such that if x & [cs , cd] then v(x) = 1, if x 2 [cs, cd then y(x) = 0. Then,
if the random variable W has a F;,;_; distribution, then E.yy(W) has exactly one
absolute maximum, say at & . The function E.yy(W) has at most one point of
inflexion on the interval [&, «©].

Proor. If ¢ is a real number the function y(-) — ¢ changes sign at most two
times (in the sense of Karlin [2]). Since the family of non-central F; ;_; distribu-
tions are Pélya «, see Karlin [2], we may use the sign change properties de-
veloped by Karlin [3]. In particular, E,(y(W) — ¢) = E¢yy(W) — ¢ can change
sign at most twice. Since limg.., Ezy(W) = 0, let the absolute maximum of
Eyy(W) be assumed at & . If E.yy(W) has a relative maximum at & # & then
we consider two cases, £ = 0. In this case there is an ¢ > 0 such that the func-
tion Ewyy(W) — E¢y(W) + € has three zeros, which is impossible. If & = 0
then the slope of E.yy(W) is zero at &. Then there must exist ¢ > 0 such that
Eyy(W) — E¢v(W) + € hastwo zeros &y < &3 near & and a third zero &5 satis-
fying & < &3 < £ . Again this is impossible. Therefore the absolute maximum
at & is the only relative maximum.

Suppose E.yy(W) has an inflexion point at & > & and let Egy(W) =

2o di( — &)°. By the preceding paragraph do 5 0 and d; < 0. We let d; be
the first non-zero coefficient with 7 = 3. In order that the second derivative
actually change sign in a neighborhood of & requires j to be an odd integer. We
consider the function

E,(v(W) — dW — ¢) = Ewyy(W) — (dest + ¢ + dar)
(3.2) = do — (desbs + ¢ + dar) + (di — de) (E — &)
+ d;(¢ — &) + higher order terms.

We choose as a value of d the value d = cz_l(dll -+ ¢) and let e be a real number of
sign the same as d; such that d; + ¢ < 0 and such that the function

(3.3) —e+ di(t — &)+ Dimidi(E — &)
has two zeros in a neighborhood of £ . The choice
(3.4) ¢ =dy— dei — &(di + €)

makes the constant term of (3.2) equal to zero.
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We have shown that at a point & such that the second derivative of E(.,y(W)
changes sign near & we may find a line det + (¢ + dei) which cuts E¢yy(W) at
& and at two distinet points £ and £ such that & < & < & . We observe that
the line dW - ¢ can cut v(W) in at most three places so that by Karlin, op. cit.,
Ewyy(W) — (des(-) + (¢ 4+ de)) can have at most three zeros.

It follows from this analysis that a point & of inflexion at which the second
derivative of E¢yy(W) changes from plus to minus is not possible. For then if
tn < £ < & wehave Eey(W) < desf + ¢+ dey, and if & < & < £ then Egy(W)
> dest 4 1 4 der . In a small interval fe < & < &9 + 6, Eny(W) < dest + ¢
=+ dc; . Since limg, Epy(W) = 0, and limg,, deof + ¢ + der = — o, it follows
there must exist a fourth zero. But such a zero cannot exist.

Let & be the location of the absolute maximum of E(yy(W). Suppose this
function has at least two points of inflexion and let & < & be the location of the
first two points of inflexion located to the right of & . By the preceding, the
second derivative of E¢)y(W ) must be negative on the interval (& , &) and there-
fore there exists & > 0 such that the second derivative of E(.,y(W) is positive on
the interval (&, &), negative on the interval (&, & -+ §). This contradiction
shows the conclusion of the lemma must hold.

CoroLLARY 3.3. Either E yy(W) is a strictly decreasing function or E.yy(W)
has a single inflexion point at & > & such that E.yy (W) is a sirictly convex func-
tion on (&, o).

Note. If the derivative of E(yy(W) vanishes on an interval then E.,y(W)
is a constant function. By completeness, v(WW) is a constant with probability
one. This contradicts the hypotheses of Lemma 3.2. Therefore E.yy(W) is
strictly convex, £ > & .

4. Estimates on the power function of scale invariants tests. A function
x of K real variables will be said to be sign and scale change invariant if for all

real numbers x;, -+, &g, all choices ¢, -+, ex of =1, and all real numbers

8> 0, x(dety, -+, bextx) = x(%1, -+, Zx). x Will be said to be scale change

invariant if for all real numbers & > 0, 21, -+, zx, x(6x1, + -+, d2x) = x(21,
oo k).

Levmma 4.1. Let W be a K X 1 normally distributed random vector such that
EW = pand EOW — p)(W — u)" = éIx. Let Z = 0 be a random variable in-
dependent of W such that Z has a density function €U0 exp (—2/2€), n an
integer, n = 0. Let x be a sign and scale change invariant Borel measurable function
of K + 1 real variables. Let a > 0 be a real number such that if ||w|/z > a then
x(w, 2) = 0. Let B(p/€) = ExX(W, Z). Then, if 8 > 0,

(4.1) Hmm /e g B(i/€) exp ([lu/€l*/(2 + 2(a + 8')*)) = 0.

Proor. The invariance assumption implies there is a Borel measurable func-
tion x* of K real variables such that for all w and 2z, x(w, z) = x*(w/z). It is
therefore sufficient to consider the problem in terms of the joint density function
of W/Z which has the form

(4.2) e [5 25 exp (—|lwe — w/e||’/2) exp (—2/2) de.
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Then,
(43) Blw/e) = e [ J3x* ()7 exp (—|lwe — w/el[*/2) exp (—2/2) dz dw.
Let 6 > 0 and let czs > O be a constant such that
(4.4) if 2> ¢y then 25V < 2
Then
(45) B(u/e) = 55 cm [ [T x*(w)exp (—(Jwz — w/el” + 2*)/2) de dw
+ e f [T x"(w) exp (= (Jwe — w/e” + (1 — 8)2")/2) dz dw.

In each integral of (4.5) substitute ||wz — u/¢€|| = |2|lw|| — ||u/€l||, complete the
squares in the two exponents, and extend the range of integration in the resulting
integrals to obtain

B(r/e) = ¢ e [ [ x*(w) exp (= (1 + [lw]®)
(2 = (llwll lu/ell/ (1 + llwl*))?*/2)
(4.6) -exp (—|lw/€ll”/(2 + 2lw[")) dz dw
+ o f f x*(w) exp (—=((1 = 8) + [lw]®)
(2 = (llwll lu/ell/((1 = 8) + [lw]*)))*/2)
-exp (—lu/ell/((2 — 26) + 2lw[?*)) dz dw.
The variable z integrates out in (4.6) and we obtain
B(u/e) < cis” cm [ (1 + [lwl)7x*(w)
(47) cexp (—|lu/€ll/(2 + 2[w]*)) dw
+ e [ (1= 8) + [l *x*(w)
-exp (—|lu/€ll/((2 — 26) + 2lw|)) dw.

Since x* has compact support the integrals in (4.7) are finite. Since |w| > a
implies x*(w) = 0, we find

(4.8) B(u/e) < cums (exp (—|lu/€|’/(2 + 247))
+ exp (—|lw/el?/((2 — 25) + 24°))).

From (4.8) the conclusion of the lemma follows at once.

LevMa 4.2. Let W, Z be as for Lemma 4.1. Let x" be a scale change invariant
function of K + 1 variables and 8(u/e) = EX' (W, Z) for all u, ¢ > 0. Suppose
for every 6 > 0 the set

(4.9) {(w,2) | x'(w,2) >0, |w/z]| =2 a— 3§
has positive Lebesgue measure. Then if 8 >0,

(4.10) M /e B/ €) exp (Jlu/ell?/ (2 + (@ — 8))) = .
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PrOOF. As in the proof of Lemma 4.1, replace x by a function x* of K vari-
ables. Direct substitution of ||lwz — u/¢€|| < 2|lw| + ||u/¢| into (4.3) shows

B(r/€) 2 e [T X (w) exp (—(1 + [lw])

(4.11) (2 4 (ol ls/el)/ (1 + [lwl*)))*/2)
cexp (—||u/€ll*/ (2 + 2[w|*)).

On the set |w|| = @ — § we have that
(4.12) exp (—Ilu/ell*/(2 + 2|w|*)) = exp (—[lw/el*/(2 + 2(a — 8)%)).
Make a change of variable in (4.11) given by,
(4.13) 2= (L4 [lwl)! e + llw/el-lwl/(1 + [lw]?)),
and introduce inequality (4.12) into (4.11), to obtain

Bu/€) = cmexp (—w/el/(2 + 2(a — "))
(4.14) - [ [7 %™ (w)(2(1 4 [lw]*)™ = /el fwll (1 + [w]®) ™)

cexp (—2°/2) dz dw.
The function ;" is defined to be
(4.15) X (w) = x*(w) if |w| zae— 3
X F(w) =0 if [jw| <a— s

The integral in (4.14) is seen to be a non-vanishing polynomial of degree K -+ J
in the variable ||u/€|. The conclusion of Lemma 4.2 now follows from (4.14).

5. Concavity of a design matrix. In Section 1 we introduced the matrix
D = A"A — (A"B)(B"B)"(B"4).

This matrix is symmetric and positive semidefinite so we may consider partial
orderings of these matrices by the usual partial ordering of symmetric matrices.
A main result in this section is to show that D is a concave function of the matrix
A”B. (Recall that each row of A has a single non-zero entry and that each row
of B has a single non-zero entry.) The desired result is stated precisely in Lemma
5.2. From Lemma 5.2 we deduce that a certain class of designs maximize trace D.
The result is stated in Theorem 5.5.

Lemma 5.1. Let My be an I X I symmetric matriz, M. an I X J matriz,
and Mz a J X J symmetric matriz such that MoMs ™My = M, . Suppose M = 0.
Then for all I X J matrices C,

(5.1) CMC™ + MC™ + CMy" + My = My — M,MstM,".
If C = —M.Ms* then equality holds. If My > 0 and equality holds then
C = —MM;".

Proor. Expand the left side of the inequality
(5.2) (C + MMy )My(CF 4+ Ms™M,") = 0.
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Using the identity M,M;*M; = M, we obtain the inequality CM;C” + CM,"
+ MC" + MM M, = 0. Add M, to both sides to obtain (5.1).

It follows from (5.2) that if C = —M,M;" then equality holds. If M; > 0
then (5.2) can hold if and only if each row vector of C' -+ M,M;* is zero, that is

(5.3) C = —M,M;". 0

The application to be made of Lemma 5.1 uses the identifications A4 = M, ,
A"B = M,,B"B = M;. By (1.2b) we find

(5.4) M:My*M; = (A"B)(B"B)*(B*B) = A"B = M,.

Now suppose if 1 = ¢ = I that C; = (A4, B;) is a design, and that
(an, -++, ar) is a probability vector. Let N = D .+ a:A;"B; and assume N
is a matrix of integers. Then it is clear that a design C = (4, B) may be chosen
such that A”B = N. Further since the non-zero entries of A;"A4; and B,”B;
are row and column sums of 4,"B;, 1 < 1 < I, it follows that

ATA = g ai ASA
(5.5) B'B = )% ;B B;;
A™B = D% a; A"B;.
We may therefore calculate that if x is a vector,
z"(A"A — (A"B)(B"B)*(B"A))z
(5.6) = infc 2" >t a:(C(B:"B;)C" + (A,"B;)C + CT(B"4:) + A AN
= >0 aiinfe "(C(B"B;)CT + (A"B:)C + CT(BA;) + A A)x.

Therefore we have proven
- Lemma 5.2. Let Cy, ---, C; be designs and (a1, « -+ , ar) a probability vector
such that N = iy a;A"B; is a matriz of integers. If C 1s any design such that
N = A"Bthen D = D iy a; D;. (See (1.1).)

The remainder of this section is devoted to a partially complete characteriza-
tion of designs C' which maximize trace D. The basic formula is

(5.7) if A"B = (n,,) thentrace D = H — > oey (2P0 nl/ D Ry nre).

If each integer n,, = O or = 1, then ns, = n,, and trace D = H — 8.

We now consider the problem of minimizing an expression (m," + - - - 4 mz’)/
(m1 + --- + mg). An easy calculation shows that if 7 = 2 then
(5.8) (m+ 1724+ (m+7—17>=<m+ (m+j)>~
Using (5.8) an easy induction shows

Lemma 5.3. Subject to mi + --- + mgp = m the expression (mi® +

oo 4 mg’)/m is minimized by any vector of integers (my , -+ , mz) such that if
1=<14,5 =< Rthen|m; — my] = 1.
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LemmA 5.4. Let R, a, © be non-negative integers and
(5.9) fla,7) = (R — 9)a* + i(a + VV/UR — )a + i(a + 1)].

Then f(a, - ) is a non-decreasing concave junction of 1.
Proor. Treating ¢ as a real variable we find

(0f/9)(a, ©) = (Ra’ 4+ Ra)/(Ra + 1)". 0

TueorEM 5.5. Suppose H > RS and H s divisible by R. Suppose

R((8 — i)a +i(a + 1)) = H. Let C be a design such that A"B = (n,) satisfies

s =8, 1 Sr=R,1=s=8S—-—4ns=a+1L,1=r=R,S—71+1=
s = 8. Then C maximizes trace D over all possible designs taking H observations.

Proor. Let C* be a design with 4*"B* = (ny,) such that trace D* = trace

D. In view of Lemma 5.3 we may without loss of generality suppose that if
1<s=8,1=n,rn=Rthen |n,; — Nl = 1. Consequently,if 1 = s = 8§

we let a, be the greatest integer such that the entires of the sth column of A*"B*
areequaltoasora, + 1. Thenif 1 £ s £ 8§,

(5.10) Ra, < > % 0k < R(as + 1).
We choose D* to satisfy
Dramh S Dt nh C < DR .

Should it happen that a;, = a,, and > nfsl = Ras, + 4, >E, nfsz = Ra,,
+ 45,4 > 0and % > 0, then by Lemma 5.4 the trace of D* may be increased.
For suppose 71 = 72. Then using (5.9)

(511) f(asl’ il + 1) + f(a/817 i2 - 1) é f(a817 ’Ll) + f<a81y 22)

Therefore by induction we may decrease 7; and increase 7 by 7 where j satisfies
i3 —j = 0ori +j = R. We may therefore suppose without loss of generality
that there is at most one integer s such that 1 < s < Sand Ra < D&y nyy <
R(a 4+ 1).

We let A be the set of permutations of 1, - -+ , R, A" the set of permutations
of 1, -+, Ssuchthat S — 7z 4 1, ---, S are left fixed, and A* the set of per-
mutations of 1, -+« , S such that 1, --- , S — 7 are left fixed. Define

if 1=s=<8—1 then
(5.12) nr = (RIS — D)D) 2 2ovesr My
if S—7+1=s=S8 then
s (R! )7 Zm\ me?* n;\k(r)r(s) .
We will now prove
(513) if 1£s=<8—1i then D rynfs = Ra;
if S—i+1=<s=<8 then 2Einy =R(a+1).

I\

l
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Infact,if 1 £ s £ 8 — 4, porynit = (8 — )™ Dt 2oF, nk so that if

Eont* <R@a+1)fors= S8 — i+ 1then ) iy nis i < R(a+ 1)
so that > % nfs-; < Ra,andif 1 £ s £ 8 — 7 it follows that S E i £ Ra,
which is impossible. A similar argument will show from an assumption that if
1<s=< 8 —dand 25 n > Raa contradiction results.

If 7 is a permutation of 1, ---, S let @, be the S X S permutation matrix
such that Q,"(m:;)Q, = (M. Mm,c). Thus, if A* is the set of permutations of
1, -+, S we have that (n,) is in the convex hull of the two matrices

(RISD™ D aea Drear PA"ATB Q, and

(RIS — )l ™ 2oner Domeny 2oraater (PA)(A™)B*Q,,Qs,
and hence (n,s) is the convex hull of the matrices
(5.14) P\"A*B*Q,, Ned, e A
Since each design matrix in (5.14) gives rise to a corresponding matrix
(5.15) PAT(A*TA* — (A™B*)(B*B*)"(B*"B*))P\
which has the same trace as D¥, it follows from Lemma 5.2 that
(5.16) trace D = trace D™ 0

6a. Proof of Theorem 1.1. We assume the design ¢ = (A4, B) gives rise to a
matrix D = ap(Iz — erer'/R) and that trace D = ap(R — 1) is maximum
among all possible designs taking a total of H observations. We assume a ran-
domized design Cy, -+, Cpy 1, -+, Yooy D1, *--, P 1S given such that
(1.15) holds.

From (1.15) we obtain at once that if ||¢] > ¢Kj then

(63.1) 1 - ﬂ(@, ag, O, <P]b) 2 Z‘=11 pt(] - B(‘Q; [29) Ot ) ‘//'5))
2 pt(l - B(‘Q’ g, Cl ] ‘l/t))

We will use the observation that, since ¢ gives rise to an F-test, 1 — B(¢, o,
C, ¢1) depends only on the parameter ¢ "o Do . As this parameter is scale
change invariant, as has been shown in Farrell [1], the test functions ¢y, - -+ , ¥
may be replaced by scale change invariant functions Y, --+, Yro which are
also functions of the sufficient statistics, that is, if 1 < ¢ < 7", ¢, is a function
of X4, , X5, , Z¢, ,and is therefore a function of B 4 S real variables. The ran-
domized design Cy, -+, Cpr , ¥4™, -+ -, ﬁ, , P1, ** -, Prr 18 again similar size
o and satisfies for all parameter values @, ¢ such that [|¢| > ¢Ko,

(632} 1 - :8(‘9) 7, C; ‘Plb} = ZZ‘:'X pt(l - ﬁ(‘@) 7, Ct ) ‘/’t*))
= pt(l - 6(‘91 7, Ct ) ‘Pt*))-
In order to formulate the problem with care we define for a design ¢’ = (4', B")

(63..3) EZAI = Var, E.’L'Bl = Vpr .
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Then v4ris (R — 1) X 1l and vp is 8 X 1. The R + S — 1 parameters repre-
sented by v4 and vp represent the B + S — 1 estimable parametric functions
obtainable from C’“C’¢. Observe that
(6a.4) vavar = @i D o

The joint density function of 4 and zz may be written as
(68.5)  (2n0") T exp(— (Il — wall + Jze — va]*)/20).

We suppose that ¢," is then a function of X,,, X5, and Z., such that ¢, is
scale change invariant, 1 < ¢ < T'.

Let A and P, be as in Section 1. Since P, ez = ez and since D, = 0,1 =
t < T, it follows that 0 = D aa (PA"D,P))ez . Therefore,if 1 < ¢t < 717,

[7AN

(6a.6) (R 2 0ea P"DiP = ap,(In — exer"/R).
Since ap is maximal,
(6a.7) if 1<t=<T then ap, < an.

Let b/ > 0 be a number such that
(@4, 25, 2)|1 — Wi (a, x5, 2) > 0 and x4 ws + x5'zs > b2
has positive Lebesgue measure. We apply Lemma 4.2.
(62.8) 0 < infe, (1 — B(e@, 0, Ce, ¥c*))
-exp(o " (va,va, + v3,8,)/ (2 + 2(b — 6)")).
Thus there exists a constant ¢, > 0 such that for all parameter values ¢, o
satisfying ||o| > Ko,
(6a.9) 1 — B, 0,0, on) = pic exp(—a (0" Digo
+ va,ve)/ (2 + 2060 — 8)")).
Therefore for all parameter vectors @o/c such that ||| > oKy,
(6a.10) 1 — B(@, o, C, ¢u) Z pics exp(—c'@'Dige/(2 + 2(b. — 5)°)),

since the left side of (6a.10) is a function of ¢ through @,"?@o . We may replace
©o by Prgoin (6a.10) and sum over A ¢ A. Using the convexity of the exponential
function and (6a.10),

1 - B(‘Qa a, 07 ‘Plu)
(6a.11) = pic; exp(—o ‘ap,(In — exex’/R)/ (2 + 2(b. — §)%))
= pics exp(—o (an,/an)@ Do/ (2 + 2(b — 8)*)).

The inequality (6a.11) is possible if and only if b, < b, as follows from Lemma
4.1 and the fact that 8(e, o, C, ¢p) depends only on o "Dy . If we look at
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ew as & function of B + S variables 24, 2z, 2 then the conclusion just reached
says
(6a.12" if 12t=7, and (@4, %s,2) € Ress,
then
U (Xa,28,2) S @104, Tp,2).
When ¢ = 0, the property of being similar requires
(62.13) 1 —a=1—p(0,0,Cen) =1— 2 pB0,a, Cp, ¥.).

If ¢ = O then X4, , -+, X4, all have zero means and likewise X5, , -+, Xp,,
all have zero means. Thus if we let W, be a normal (R — 1) X 1 vector, W
be a normal 8 X 1 vector, EW, = 0, EW, = 0, EW,W," = ¢’ Iny, EW,W5"
= ¢’I5, we find

(6a.14 a

Il

E‘Plb<I/VA ’ Ws, Z)
=K Z T)t%*(WA s Wy, Z).

In view of (6a.12) the relation (6a.14) can hold only if ¢p = ¥,* except on a set
of Lebesgue measure zero, 1 < ¢t < T'.
To emphasize the fact that only size « F-tests arc being used we write

(6a.15 Ble, o, C,en) = B (¢ @ "Dev);
if 1221, Ble o Coy¥™) = B " Dug).

Then (62.2) may be written as

(62.16" B (00" Do) = D ie1 e B (0 00" Dicgo).

By Section 3, let & be a real number such that 8% is a concave function on [& , » ).
From (6a.16) we obtain

if inflézéqv,)\m 0_2(QOTP)\1DtP)\(90 é }:2 , then
(6a.170 867%™ Dae) £ Dty pu(R)™ Donen B (0 200" Pa" D iPro)
= f=11 pzﬁ*(ﬂ_zam@oT([ﬁ - Cnech/R)ﬁQo)-

Inequality (6a.17) is possible only if ap, = ap, 1 < ¢ = T, and, because g*
is a strictly concave function, for all N, P\"D,Py = 1, must hold. This implies
D,=D,1<t<T. 0

6b. Proof of Theorem 1.2. For the one way classification the matrix C = 4
has mutually orthogonal columns, and D = A”A is a diagonal matrix such that
(D);; is the number of observations on the ¢th population. We will let ¢ = 0
and k, 0 < k < R, be integers such that H = (R — k)a + k(e 4 1) and
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let Dy be the special matrix

(a 0)
_ a
(6b.1) Dy a1
0 a+1)
In analogy to Section 1, corresponding to a given design 4 let
(6b.2) X, = (DHTA"X.
Then X, is a random R X 1 vector such that
(6b.3) EX, = Dlo; covXs=olz.
We let
(6b.4) Zs= (X"X — XJSX0)E

Then the usual F-test of ¢ = 0 against ¢ 5 0 is given by, accept the alterna-
tive if and only if go(|| X 4||/Z4) = 1.8ee (1.11).

Tet Ay, ~-+, Ap Y1, +++ , ¥, D1, +++, D be a similar size o randomized
design such that for all parameter values @, o satisfying |lo|| > oK,

(6b.5) (R')_l ZMA B(‘Q: o, AP, ) Qalb) = Zf;l yo£ ﬁ(‘@! o, 4, ) ‘l/t)

If1 <t < T welet D, = A"A,, a diagonal matrix of integers. In the sequel
we shall have occasion to use the lemmas of Section 2 which show Py D.P»
to be in the convex hull of the matrices {Q | for some 7 ¢ A, @ = P,’D.P,}.

As in the proof of Theorem 1.1 we begin by replacing each of ¢y, -+« , ¥
by scale change invariant functions of the sufficient statistics, 1", -+ -, vr
such that the randomized design Ay, -+, Ap, ¥, -+, Yo, P, **, D
is similar size « and for all parameter values, if ||| > oK, then

(6b.6) (R 2raB(0,0, APy you) S 2oim1 pe B0y 0y Auy ).

Then . is a function of R + 1 variables, , z. Let b’ > 0 be a number such
that

(6b.7) {(z,2) | ¥ (x,2) >0 and |z]| > b2,z > 0}

has positive Lebesgue measure. Using Lemma 4.2, if 6 > 0 there exists a constant
¢ such that for all parameter values

(6b.8) 1 — B(@,0,4:,¥") Z cuexp(—c"0"Dig/ (2 + 2(b" — 8))).
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From (6b.6) and (6b.8) we obtain
(6b.9) (R1)™ 2l — B(@, 0, APy, o1)]
z pea(R1)™ 2aa exp (=0 '@ Pi"DiPre/ (2 + 206" — 8)"))
2 pew(R)™ 2 e exp (—o "@"PA"DoPro/ (2 + 2(b" — 8)%).
By Lemma 4.1 we may find a constant ¢;” such that for all parameter values
(6b.10) 1 —B(e,0,4Px,¢) = & exp (—o 0" P\"DoPro/ (2 + 2(b + 8)°)).

From (6b.9) and (6b.10) we obtain that for all parameter values, if ||o|| > oK,
then

(6b.11) 0 = (RD™ 2 [e exp (—o*@"P\"DoPro/ (2 + 2(b + 5)*))
— P exp (—o @ PxTDoPMQ/@ +2(b" — 8)")].
If in (6b.11) we let ¢ = £'ez then
(6b.12) 0 < ¢ exp (—c’tH/(2 + 2(b + 6)%))
— picss exp (—o"tH/(2 4 2(b" — 5)%)),

to hold for all £ > ¢Kj . (6b.12) is possible only ifb" < b.

Therefore if 0 < ¢t < T, en(z, 2) = ¥.* (x z) except poss1bly on a set of
Lebesgue measure zero. Since ¢; PR W, e e, D1, *++ , pr is similar
size o, and since if 1 = ¢ < 7' B(O o, Co, ¥i* ) does not depend on g or C;,
it follows as in the proof of Theorem 1.1 that

(6b.13) if1=e=sT, ¥, ) =0en(")

except on a set of Lebesgue measure zero.
Since the functions ¥, - - - ,¥r" are essentially F-tests,

(6b.14) if 1=2t=T, Bl 0 C, ") = (e 0" Dig).
From (6b.5) and (6b.14) we obtain
(R 2 B(c "0 "P\"DoPrg)
(6b.15) < (BT Xoa Zia pi (e " "P"DiPre)
< (RD™ 20a B (60 "PA\"DiPro).

(6b.15) will hold for all @/s such that infi<;<rres ¢ @ Py"D,Pro = Eg Striet
inequality will hold unless for all ¢, @ 5 0, and all \, " Dyo = ©"P,\"D,Pye.
This implies Dy = D;,1 < ¢t < T'. Theorem 1.2 is therefore proven.
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