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THE CENTRAL LIMIT PROBLEM FOR GENERALIZED RANDOM FIELDS
By D. M. Eaves

Simon Fraser University

1. Introduction. For probability measures in the real line two main results
concerning sums of independent random variables are the Lévy-Khintchine
representation of an infinitely divisible probability measure, and the criteria for
weak convergence of probability measures. During the last two decades or so
these theorems have been extended to a variety of topological Abelian groups,
including vector spaces.

We mention in particular the work of Parthasarathy, Rao, and Varadhan
[5] in locally compact Abelian groups, and the earlier extension by Takano [6]
of the classical theory to finite-dimensional space.

On the whole, the theory for non-locally compact Abelian groups seems in-
complete, due chiefly to the lack of an adequately well-behaved Fourier trans-
form. It is therefore natural to seek to extend the theory to non-locally-compact
Abelian groups in which it can be reduced to the locally compact theory. For
example, one might apply the locally compact theory to the projections of one’s
probability measures into the locally compact quotient groups. Among the top-
ological vector spaces, the natural domain of this technique is of course the class
of duals & of nuclear spaces (and duals of strict inductive limits of nuclear
spaces).

In this paper we introduce the notions of bounded variances for a double se-
quence of measures in %, weak convergence of measures, and convolution. These
notions coincide with the usual definitions in the special case of finite-dimen-
sional spaces, and seem natural in terms of applications. Taking the aforemen-
tioned approach yields the following results, in terms of our generalized notions.
The class of weak limits of sums of random variables with bounded variances
coincides with the class of infinitely divisible measures having covariances. If
p is any infinitely divisible measure, then the log of its Fourier transform has
value at each ¢ in the original strict inductive limit space %’ given by

A(p) = 3lel* + [ ["° — 1 — iz(e)] dr(2)

where 4 £ X, |l¢|| is a Hilbert norm on o', and » is a o-finite measure on & which
integrates the function ¢*® — 1 — 42(p) and has finite mass outside each
neighborhood of the null element.

2. The Lévy continuity theorem. Henceforth & will denote the dual space of
a strict inductive limit % of nuclear spaces 9, , Nz, - - - ; L is given the strong
topology. By a measure in X we mean a o-finite non-negative regular Borel
measure » with values in [0, «], such that for some closed set 9 with »(91) = 0,
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v(€) < o for every closed cylinder set @ missing 97, and the measure »(-n @)
is continuous on cylinder sets, in the sense of Gel’fand [1]. (The definition of this
continuity is given below). Regular is meant in the sense that for any Borel
set ®, »(®) = inf »(Z), the infimum being over all countable unions Z 2 ®
of closed cylinder sets. Thus if % arises in the usual way from the infinitely
differentiable compactly supported funections on an open region in finite-di-
mensional space, then the probability measures are precisely the random gen-
eralized fields in the region, as defined by Gel’fand.

For each n-dimensional subspace $ of X' (1 < n < ) let 8° be its annihilating
subspace of &. If » is a function on the Borel class in &, »g will denote its pro-
jection into the (n-dimensional) quotient space %/8°. The term measure of
cylinder sets in & will refer to a function » the Borel class such that for each S,
vg is a measure in %/8°. A sequence u, of finite measures in % will be said to
converge weakly to p(po — u) if for every one-dimensional subspace $ the se-
quence uqg converges weakly to ug in the usual sense for locally compact spaces
(i-e., in the sense that [ fdu.g — [ fdug for every bounded continuous real-
valued function f on %/8°). The arrow — with measures will denote weak con-
vergence, whether they be measures in & or some associated finite-dimensional
space. If 8 is spanned by a single ¢ in %’ the Fourier transforms of a finite measure
v and its projection ug agree on 8. (For all finite-dimensional § we identify
%/8° with the dual space of 8). Hence the classical one-dimensional Lévy con-
tinuity theorem, applied to the sequence pag , yields the “if”’ part of

TuaeoreM 2.1. (Lévy continuity theorem). If wo — u then for each ¢ in X'
tar(¢) — ur(e). Conversely if, for some function g on X' continuous at ¢ = 0,

par (@) — g(e) (pin ),

then there exists a unique finite measure u such that po — p and u» = g.
Proor oF THE CONVERSE. Given any finite-dimensional subspace 8§ of &',

pag(0) = par(9) —agle)  (pin ).

By the finite-dimensional continuity theorem there exists a unique finite measure
8 in a/8° such that g(¢) = uS+(e) for ¢ in 8. If 3 D 8 is another finite-dimen-
sional subspace and P(X -+ 8°) = X + 5° then the consistency condition
uS = u’ o P! is seen from uniqueness of Fourier transforms: For all ¢ in $

W35(0) = [aig ¢ duS(@) = ) = [armo €™ du’(y)
= Juiso €@ d(® o P)(2) = (0 P)n(o).

If @ is any cylinder set, say € = {(X(¢1), -+, X(¢n)) & C}, let $ be the span
of o1, --+, on, define Q(X) = X + $° and define u(@) = u8(Q(C)). u(e)
is well-defined, since if @ = {(X(61), - - - , X(6x)) € B} is another representation
of €, 3 the span of 6, -+, 6y, and R(X) = X + 5° then w3(Q(e))
and u’(R(€)) both coincide with x*(S(@)), where U is the span of ¢y, - - , ox,
01, , 0, and S(X) = X 4 U° This fact is immediate from the foregoing
consistency conditions.
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Hence u is a finite measure of cylinder sets; i.e., a function on the class of eyl-
inder sets whose projection ug into each %/8° is a measure. A finite measure of
cylinder sets extends to a unique measure in 9 precisely when it is continuous
on cylinder sets, a condition equivalent with continuity of its Fourier transform
at ¢ = 0. Since g = p~+ is continuous at ¢ = 0, u extends uniquely to the promised
measure.

3. The central convergence criterion (CCC). The convoluiion of two finite
measures x and v in & is defined as follows: For each finite-dimensional sub-
space $ of &’ let 38 = ug * vg define the measure 918 in a¢/8°. If 3 D § is another
finite-dimensional subspace and P the natural projection P(X + 3°) = X 4 §°
from 9¢/3° onto %¢/8°, then M8 = 9° o P, As in the Lévy continuity theorem
this is seen from the computation of Fourier transforms, plus the fact that
ugr (respectively, vg~) and uzr (v52) agree on 8. As before, this implies that for
each cylinder set @ = {(X(¢1), - -+ , X(¢n) € C}, the relation

n(€) = ¥({X + 8 (X(en), -+, X(ew)) € C}),

where 8 is the span of the ¢, , well-defines a measure » of cylinder sets. Given ¢
in &” and its span 8,

1 (0) = 1% () = ugr(@)vgr(0) = ur(p)v~(p)

shows 7 has continuous Fourier transform on 2, with value u(X)»(X) at ¢ = 0.
Hence 7 extends uniquely to a measure in &, which we define to be u * ». The
relation (u * v)» = uav» is immediate. This notion of convolution seems natural,
in view of the easily verified fact that, if X and Y are independent C-valued
random variables with probability distributions u and » respectively, then u * v
is the probability distribution of X + Y. ][4~ » will denote the convolution of
three or more measures, whether in 9 or in some associated finite-dimensional
space. u will be called infinitely divisible if for all n u = (u,)" in the above sense,
for some u, . A double sequence p. (n = 1,k = 1,2, --- | k,) of measures is
said to have bounded variances if for each converging sequence ¢, in &,

SUPe maxkfX(<p)2du,.k(X) —, 0, and supe.sup. > fX(¢a)2 dun(X) < o

TaeorEM 3.1 (Central Convergence Criterion.) If the probability measures
tnr have bounded variances and

(1) ch Mnk ~>n My

then there exist a unique measure v in X, A € X, and continuous seminorm || ||
where |jo||” = (o, ¢) for an inner product (-, -) continuous on N x IR for each
nuclear subspace I of &, such that for each ¢ and 6 in X’

(2)  logu~(e) = iA(e) — el + [["? — 1 — iX(p)] dr(X),
v({X(p) = 0}) = 0and [ X(¢)"dr(X) < w;

(3) 2k a(-n€) —, »(-nC) for every closed cylinder set @ omitting some finite
intersection of closed hyperplanes;
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(4) (o, O = limeso limpaw 2k [ po X (0)X (0) dun(X)

— [0 X(¢) dum(X) [0 X(6) dpn(X)],
where D(e) = {|X () 4+ |X(0)* < ¢; and
(5) 2 [ X du(X) =0 A in X

Conversely, if measures p.; have bounded variances and (3), (4) and (5) hold
for some A £ X and prenorm |l¢|| = (o, o2 then (1) and (2) hold for a unique ».

ReMarks. If € has dimension one over the reals ®, the above assertions con-
stitute precisely the classical Levy-Khintchine form of the CCC for bounded
variances. An extended CCC for measures in ®" is presented in [6]. As in the
classical ®' work, the measures u,; in [6] are only assumed to be uniformly
asymptotically negligible; however, if they in fact have bounded variances then
the extended CCC in ®&" reduces to the above assertions, for the special case
% = ®". Inasmuch as the extended CCC in ®" involves essentially the same
work as in ®’, its reduction to the bounded variances case is the same as the
reduction of the extended CCC in ®'. The details will not be reproduced here;
however, we shall repeatedly use the bounded variance CCC for ®". More pre-
cisely, we shall assume the bounded variance CCC for finite-dimensional spaces,
just as in the statement of Theorem 3.1, considering the special case of finite-
dimensional <.

Proor oF THE Direcrt Part. Given¢ in &' let As(B) = A({X(¢) € B})
define the projection A, of A into ®, for any measure N in %. Then the double
Sequence pinkp has bounded variances and []i sty —» 1o . Applying the CCC to
the case ¢ = ® yields a unique measure »° in ® and real numbers 4, and ¢,” > 0
such that for all real u

(2" log per (u) = 1Au — fou + [Zu ™ — 1 — dtu] dv®(2),
»({0}) =0 and 2. dv*(t) < »;

(3") Dt kare(+n Y) =, v*(-n Y) for closed ¥ omitting 0;

(4) 0, = limew limaaw 220 [f 101<e & datare(t) —~ (J1o1<e t dimeo(£))’];

and

(5) 2o [ tdumo(t) — 4,

Since [Zut duare(t) = [x X(¢) dune(X) and log pe(1) = log p~(p), con-
ditions (2), (4) and (5) in the conclusion of the direct part of the CCC will
be established once it is shown that there exist a unique measure » in &, 4 ¢ X,
and inner product (-, -) continuous on 91 x 9t for each nuclear subspace 9 of
&', such that for all ¢ in &',

(i) 4y = A(e) and 2 [ X dun(X) —n 4 in X,
(ii) 0" = (o, 0}, and
(iii) »° = v,.
The Banach-Steinhaus theorem for barrelled spaces implies that 4, , viewed
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as a function of ¢, is continuous and linear on %':A(p) = A, defines 4 ¢ .
From the fact that & is a Montel space, it is known that the point-wise con-
vergence of ) J X dpai(X) to 4 is in fact convergence in . This proves (i).

It is worth noting here a réle of the bounded variance hypothesis, as distinct
from the weaker classical hypothesis of uniform asymptotic negligibility: In
the latter case, i.e., in the extended one-dimensional CCC, condition (5) is
weakened in such a way that A, , as a function of ¢, does not appear to be neces-
sarily a limit of linear functions on . In this case 4 could not be defined as
an element of .

To establish (ii) define

<¢', 0> = %(U%¢+ﬁ) - %2 - 0’02)

for each ¢ and 6 in %’. Using (4') and a change of variable to compute (o, 6)
vields the relations (4) and (ii). Temporarily fix # and e in this computation.
Since each summand in (4) is continuous and linear in ¢, the Banach-Steinhaus
theorem implies that the limit of the sum in (4) as » — « is a continuous linear
function of ¢ & ', Letting ¢ — O this new limit is also, for the same reason, a
continuous linear function of ¢ £ %’". Now fixing ¢ and letting 6 vary, the same
argument shows (g, 6) is a continuous linear function of 6 ¢ X’; i.e., {p, 6) is a
separately continuous bilinear function on &’ x . Since any nuclear sub-
space 9 of &’ is metrizable and barrelled, the separate continuity implies joint
continuity on each 9T x 9.

To finish conclusions (2), (4) and (5) it remains only to construct the measure
v for the generalized Poisson component of u. This is the work of the remaining
sections of the paper; we take » to be the » constructed in Theorem 5.1. Con-
dition (3) and the uniqueness of » are proved in Lemma 5.9. The remaining
assertions of uniqueness are simply the assertions of uniqueness (for each ¢)
of A, and ¢’ for the one-dimensional CCC.

Proor oF THE CONVERSE. If (3), (4) and (5) hold for every ¢ and 6 in %’ then
I1: #ake —n w, by the corresponding converse of the one-dimensional CCC.
This implies

ITknae(e) = Tlkpar(1) —n per (1) = pa(e)

and hence ] i unt —» » in view of Theorem 2.1.

4. v as a measure of cylinder sets. In this section the first phase of the con-
struction of the Poisson component of u is performed: A measure » of cylinder
sets is constructed which in Section 5 will be extended to the » promised in
Theorem 3.1.

LemMA 4.1 Let X be a fintte-dimensional space with Euclidean norm |xz|; let \
be a measure in X such that the measure |z|°\ is finite, and for each ¢ £ X', €™ — 1
— 1x(p) 28 \-summable. Then the function g, where

g9(e) = [«[e"® = 1 — iz(e)] dN(2),

uniquely determines the measure |z|*\.
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Proor. As in the case £ = & [4], continuity of g follows from the bounded
convergence theorem. By applying Theorem 2.1 to an approximating sequence
of Riemann sums it can be seen that ¢’ is the Fourier transform of a probability
measure in &, with finite variance [ |z|*d\(x). Relative to a given basis in
orthonormal for the norm | |, g can be regarded as a function on ®&"; as such
it has a Laplacian with value — [« ¢®|x|* d\(x) at each ¢ £ &". The proof now
follows from uniqueness of the Fourier transform.

To construct » as a measure of cylinder sets, a consistent family of measures
»¥ on the corresponding quotient spaces 9/U° is needed, as U runs through the
finite-dimensional subspaces of . Since ch Mok —n 4, for each U Hk Mnkay
—, uq is immediate from the notions of convolution and convergence for meas-
ures in X. Since the double sequence .z has bounded variances, the finite-
dimensional CCC applies. Let the element Aq of %/U° the seminorm |||
on U, and the measure »* in %/U°, be the entities guaranteed by the finite-
dimensional CCC corresponding respectively to the 4, ||¢||, and » of (2) through
(5). We shall denote the conditions in 9/U° corresponding to (2) through (5),
by (2”) through (5”) respectively. The family of measures »" enjoys the fol-
lowing consistency conditions:

TuEoREM 4.2 If § and 3 are finite-dimensional subspaces of X' and 8§ & 3,
and if Piy = X + 3° > = X + 8°, then »® = »*o P,

Proor. By conditions (5”) for W = $ and then U = 3,

Aq(e) = lima D oo 2(¢) dpmpu(2)
forallpin §, U = 8§ and U = 3. The relation

fac/g° z(o) dung(x) = fsc/3° y(¢) dunis(y)

(due to the condition wng = pug o P~') thereby implies A5(¢) = Ag(e) for
all ¢ in 8. Similar consideration of condition (4”), first in 9¢/3° and then in
%/8°, leads to the conclusion that |¢||5 and [|¢||s also agree on ¢ ¢ 8. Combining
this information with the fact that

(27) log wule) = ida(e) — Hllella’ + [ymo [€*F — 1 — d2(p)] dv¥(2)

foralloin$, U = 8§ and U = 3, it is seen that the two integrals here, correspond-
ing to U = 8 and U = 3, coincide for all ¢ in 8. But this integral for W = 3 can
be written

Jigo [€°9 = 1 — dx(e)] d(vs 0 P7) (),

since P(y)(¢) = y(p) for y e X/3° ¢ 8. If |z| is a Euclidean norm on X/8°
then by condition (2”) the measure |z[’»® is finite. Let |jy|| be a Euclidean
norm on %/3° such that |jy|| = |[P(y)| for y in %/3°. Then |z|*»" o P™" is a finite
measure on 9%/8° since ||y[*° is a finite measure on %/3° by condition (2”).

Thus Lemma 4.1 applies, proving |z|*»® = |2/>® o P™. Since by condition (2")

A(IsY) =A%) = 0, 48 =100 P
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If @ is any cylinder set, say € = {(X(¢1), -++, X(on)) € X}, let 8 be the
span of ¢1, -+, ¢n, define Q(X) = X + $° and define »(€) = »*(Q(€)).
Exactly as in the proof of Theorem 2.1, the consistency condition just established
implies that »(@) is well-defined. » is now a measure of cylinder sets, since for
each 8 »g = »%; i.e., the projections »g are measures.

6. The Poisson component of u. In order to construct a measure » in X such
that », = »* for ¢ %', the following extension theorem will be needed:

THEOREM 5.1. Let v be a measure of cylinder sets such that for each closed cylinder
set @ omatting a finite intersection of closed hyperplanes, the measure v(-n@C) of
cylinder sets s countably additive on cylinder sets; then v extends to a unique measure
in X such that v({0}) = 0.

Proor. Consider the ring B of cylinder sets contained in a @ of the above
kind. By hypothesis, » is a o-finite measure on R, in the sense of Halmos [2].
The Borel subsets of & ~ {0} form the o-ring generated by R; this is seen from
the fact that ¢ ~ {0} = U;{X(¢;) # 0} if o1, ¢z, - -+ is a countable dense
subset of &’. It follows that » has a unique extension to a o-finite measure (again
in Halmos’ sense) on the Borel subsets of & ~ {0}. We further define »({0}) = 0.
This extension will henceforth be denoted ». To finish the proof, it remains only
to show » is regular. Given any ® omitting {0}, »(&§) =< inf »(Z) is obvious,
where Z runs through the countable unions, containing ®, of closed cylinder
sets. To establish the opposite inequality it suffices to show that the class M of
Borel sets B omitting {0} for which it (the inequality =) holds, is a monotone
class: for M contains the ring R. Consider, then, an increasing sequence ®; of
Borel sets omitting {0}, for which

v(®) = inf {»(Z) : Z 2 Ry}

(with Z running only through countable unions of closed cylinder sets). Without
loss of generality assume »(U; ®) < . Given ¢ > 0, choose for each & a
countable union Z; =2 ®; of closed cylinder sets, such that »(Z;) — »(®) <
/2. Then »(U; Zi) — v(Ui ®) < e implies

V(Uk (Bk) = inf{V(Z) HVA 2 Uk&k} — €.

Since e is arbitrary, it can be ignored; so the inequality = is preserved under
increasing sequences. On the other hand if ®; is a decreasing sequence of such
sets with »(x ®:) < o, then for arbitrary ¢ > 0 there exists a K such that
v(®x) — v(Nr ®r) < e Thus »(Bx) = inf {»(Z) : Z =2 Bk} implies

V(nk(Bk) = 1nf{v(Z) T Z 2 nk CB];} — €

and e can be ignored. Since M is a monotone class containing the ring R, it con-
tains the {0}-omitting Borel sets. Since »({0}) = 0, v is regular.

The remainder of this section is devoted to showing that the measure » of
cylinder sets constructed at the end of the preceding section, satisfies the con-
ditions of Theorem 5.1. These conditions are established in Theorem 5.4, whose
hypothesis is shown in Theorem 5.8 to be satisfied by ».
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Two preliminary lemmas are needed, as well as the following notation: For
any measure 5 of cylinder sets define the measure 5, by

160 (B) = 9({(X(¢0), -+, X(on)) € B})

for any given (¢) = (o, **+, ex) iIn X" % .-+ x &', In these terms, the con-
dition that » be continuous on cylinder sets is simply continuity of the map
(¢) — n¢y) (relative to the product topology in &’ x --- x &’ and weak conver-
gence of measures). The notion of weak-star (w*) convergence of measures in
finite-dimensional spaces will be used; this condition for a sequence of measures,
Ae = Mw*), may be defined in either of the following two equivalent ways:
For every continuity point ¢ = (fy, -+, tx) of the map ¢ — A({s|s; = ¢;,
j=0,---,N),
)\a({SISj = tf’j = 07 R N}) —')a)\({SISj = ti; .7 = 07 ] N})7

equivalently, for every continuous g on ®”" vanishing at o,
fgdna— [gadn

In particular the w*-compactness theorem will be used: If A, is a sequence of
measures in &Y such that supe Ae(®") < oo, then it has a w*-converging sub-
sequence.

LemMma 5.2 If 8§ ¥s a finite-dimensional subspace of o with basis ¢y, -+ , o ,
then the map X — (X (¢1), -+ , X(on)) € ®" 4s open.
Proor. Let 91 be a nuclear subspace of &', containing ¢y, - , ox ; let the

dual of 9 have the strong topology. Then the operation on & that restricts each
X to 9 is an open map. But the map ¥ — (Y (¢1), -+, Y(¢w)) on the dual of
9 is open, since 9 is a Frechet-Schwartz space and ®” is a reflexive Frechet
space ([3], Proposition 3.17.18). Hence the map X — (X (¢1), -+, X(¢x)) on
&’ is the composition of two open maps.

LemMa 5.3 Let v be a measure of cylinder sets such that the measure-valued map

(¢) - ItI2 V() (t = (tﬂ, Tt tN)’ (‘p) = ((Po, "‘,‘PN))

is w*-continuous on X' x --- xX'. Fix ¢, , +++, ox and let oo vary. There exist
arbitrarily small neighborhoods V of (0, ---, 0) in ®" such that the map ¢o —
Fr(t) [t]* vy is w*-continuous at 0 € X', where f, is the indicator function on ®"*
for the set & x (R ~ V).

Proor. Let V be an N-dimensional rectangle with (0, ---, 0) in its interior,
and vertices at continuity points of the function

() t— v(Ni={X (i) S t}) (¢ = (4, - ).

Since this function has at most countably many points of discontinuity, V' can
be taken arbitrarily small. For any sequence ¢ converging in &’ to 0, write
(@)t = (pok, 1, *** , ox). Given any continuous g on ®"* vanishing at «, it
follows that

hIl}kfnxvg(t)ltlde(wk(t) = [vg(0, ti,-++, tn) Ay, e-om (D).
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Exactly as in the one-dimensional Helley-Bray lemma [4], this can be proved by
approximating these integrals with Riemann-Stieltjes sums formed from rec-
tangles whose vertices are continuity points of the map (). Since 8y X v(py,---om
= ¥(0,01,--+,0x the lemma is proved.

TueoREM 5.4. Let @ be a closed cylinder set that omits some finite intersection of
closed hyperplanes; Let v be a measure of cylinder sets such that the measure-valued
maps (@) = |1 vy are w*-continuous on X' x -+ xX'. Then the measure v(-n €)
of cylinder sets s countably additive on cylinder sets.

Proor. By [1], Chapter IV, Section 2, Theorem 6, it is enough to show =
»(-n @) is continuous on cylinder sets; i.e., that the map (¢) — 7, is continuous
(relative to the produce topology in &’ x --- x" and weak convergence of the
measures). A sequence (¢)a converges in & x --- x if and only if for some
nuclear subspace 9 of &', (¢). is eventually in 9t x --- x9U and converges
there. Hence one need only show (¢) — 5, is continuous on each S x --- x ;.
Given 9 let A be the projection of = »(-n @) into 9’; i.e., for each Borel set
® of continuous linear forms on 9 define

MB) = n({X eX: X|Ne®)).

Then n¢y = A whenever (¢) e N % --- x9I; thus ¢ is continuous on cylinder
sets if and only if for every nuclear subspace 9t of &', the corresponding X is
continuous on cylinder sets. In the dual of a nuclear space 9 any measure A of
cylinder sets is continuous on cylinder sets, provided its Fourier transform
is continuous at the null element of 91. For each 91, A+ agrees with 9+ on 9T;
thus the lemma will be proved once 5+ is shown to be continuous at 0 ¢ &":

Let ¢1, -+ , ¢i be such that € misses =1 {X(¢:) = 0}; then @ has the form
{(X(e1), -+, X(pn)) e C} for some N = k. The ¢1, -+, ox can be assumed
to be linearly independent. Let ¢ ¢ %" be variable, and let § = §,, be the (vari-
able) span of go, ¢1, -+, on ; then

74 (@o) = fp(@) e dl’g(f'?),

where P(X) = X + 8° Thus n+(¢0) = [axe €™ dvy(t);t = (to, -, tn);
(¢) = (¢0,¢1, "+, ¢n). Clearly (0, ---, 0) £C, and Lemma 5.2 implies C is
closed. By Lemma 5.3 there exists a measurable set D 2 C with (0, ---,0) £ D,

such that for any sequence ¢o, converging to 0 in &, writing (¢)r = (oo, 1, - - -
(24 ) )

limy [axoe™ dvey(t) = v({(X(e1), -+, X(ew)) € D}),

since ¢***/|t|" is continuous and bounded on ® x D and vanishes as |t| — . Thus
the Fourier transform of »(-n{(X(¢1), -+, X(¢x)) € D}) is continuous at
¢o = 0. This finite measure of cylinder sets is therefore countably additive on
cylinder sets. The conclusion follows from D =2 C.

It now remains to show that the measure » of cylinder sets satisfies the con-
tinuity condition of Theorem 5.4.

Given (¢) = (¢1, - - , on) ine'x .- XEI:,, let uariey(B) = pue({ (X (1), - -,
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X (¢n)) € B} define the measures pax(y in ®"; define u(, analogously. Then the
Measures inws have bounded variances and []i i) —n ke, so that the
finite-dimensional CCC applies. In this context, the CCC guarantees a unique
measure »* in ®”, a linear form A4, on ®" and non-negative definite bilinear

form |[ulle = (4, U in ®" , such that for all u and v in ®",
2") log uriey(u) = idey(u) — 3§ |lulltn
+ far [ — 1 — it(u)] &' (1),

together with the other analogues (3"), (4"), and (5") of (3"), (4) and (5)
respectively, obtained by replacing the symbol ¢ with (¢), A,u with A, (u),
tu with t(w) = D01 tsu;, [t with D 1= ¢, and o ,u’ with |/’

LemMA 5.5 For each u, as a function of (¢) = (e1, -+ ,on), Jar [e
#(u)] dv'? (t) is continuous relative to the product topology tn X % - - - x'.

Proor. This follows from (2”), from the identity ur(p) (%) = wr (D j= uje;),
and the continuity of u+, once it is shown that A4 () and |u|*, are continuous
in the variable (¢) = (o1, - -, on).

From (5"),

st(u) 1 —

Apy(u) = lim, Do fao X (231 use;) dua(X).

As in the initial argument in the CCC, continuity and linearity in (o) is assured
by the Banach-Steinhaus theorem, applied this time to the Barrelled space
o x - xx'.

For each u, (4”) can be used to compute % (||u]tn+@ — [ulltw — ||ulty)) for
the variables (¢) and (8) in " x --- xX'. Further repeating the argument for
N = 0, a double application of the Banach-Steinhaus theorem shows that this
quantity is continuous and linear (separately) in each of the variable n-tuples
(¢) and (). Taking (8) = (¢), |lul|%» is continuous on o x --- xX'; this
finishes the proof.

In the following result we use the uniformness over converging sequences, in
the notion of bounded variances.

LeMMA 5.6. For any sequence (¢)a = (@oa , * * * , Oxa) CONVErging in o$ % xL
the sequence |t|* v of measures in ®"*" is w*-compact.

Proo¥. By the w*-compactness theorem, it suffices to prove

supe [ |t dv®%(t) < .
- [ dv?%(t) is the value at u = (0, - - -, 0) of the Laplacian of g, where
gu) = [ [ — 1 — it(u)] dv' ().

/

Fix o and let $ be the span of ¢oa, * -+ , ¢va . With a change of variable, 2"
yields ‘

g(uw) = logur(Xjujpia) — Ag(Diuipia) + HDiUibia, D i Uieia)S

where Ag is continuous and linear on /8° and (-, -) is separately continuous
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and bilinear on &' x --- x%’. Using this to compute the Laplacian of g and
evaluating at w = (0, ---, 0) produces the value

2l X(eia)* du(X) = (f X(psa) du(X))*] + 2= @sal5 -
Since for each j ;. converges in * asa— o,
SUPe fX(¢ja)2 dﬂ(X) < ® 5

thus the first sum is bounded uniformly in «. As for the second sum, (4”) with
a change of variable yields

losally = Timess lima i [ o0 X (p5e)" di (X) = ([ X (01e) duae(X)),
where D(e) = {|X(¢ja)| < ¢. The condition
SUPan 2ok | X(0ja)® duni(X) < o

for each j implies sup. ||¢;a||§ < o ; 50 the second sum is also bounded uniformly
in a. Thus

supa [ [t d&vP%(t) < =,

finishing the proof.

LemmMa 5.7. The map (o) — |t v'? from ' x --- xX’ 4s continuous, relative
to w*-convergence of the measures |t|* v

Proor. Let (¢)« — be a converging sequence in &' x +-- XX, 58y (¢)a —a

(¢) = (00, -+, on). By Lemma 5.6 there exists a w*-converging subsequence

|t]* »9* of the sequence |¢|*”*, say
[t v —q [d" n(w™).
If V is a rectangle containing (0, - - - , 0) in its in interior, with vertices at points

t where n({t}) = 0, then
limg [or €9 — 1 — at(w)]dv?%(t) = [ [ — 1 — dt(w)]dn(t),

since (¢*'® — 1 — 4t(w))/|t|” is bounded and continuous on ¢ > 0 and vanishes

at . By taking V so that [v [¢|* dn(t) becomes arbitrarily small, the same con-
vergence can be seen, of these integrals over all of ®**. But by Lemma 5.5

lim, [ [ — 1 — dt(u)]dv?%(t) = [ — 1 — dt(u)] v (2),

so by Lemma 4.1, |t| n = |f’»'". Since any convergmg subsequence of [t|* »*

thus converges (w ) to |t|* »* and the sequence is w*-compact, it also converges
(w™*) to |t[* »*. This finishes the proof.

TurorEM 5.8. For each closed cylinder set @ omitting some finite intersection of
closed hyperplanes, the measure v(-n @) of cylinder sets is countably additive on
cylinder sets.

Proor. In view of Theorem 5.4 and Lemma 5.7, it will be enough to show
V) = wv(“” for any (¢) = (e1, -+, on). Since »** ({0}) = 0 by (2”) and
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) ({0}) = 0 by construction, the condition v,y (-n F) = »(-n F) for each
closed F omitting {0}, will suffice. By (3")

y?(-n F) = limg 2 ptaiey (-0 F).
On the other hand, letting 8 denote the span of ¢1, - - - , ow,
vy (-0F) = ¥¥(-n{X + 8" (X(e1), -+, X(on) e F})
= lim, 2 mg(-n{X + 8" (X (1), -+, X(ow) ¢ F})
= limy 2 sinecer (-0F),

by (3”) and a change of variable. This finishes the proof.
LemMA 5.9. If the pa, have bounded variances and Hk Hnk — &, then

Zk par(-N€) =, (N EC)

for every closed cylinder set C omaitting some finite intersection of closed hyperplanes.
Proor. By Theorem 2.1, it is enough to show the Fourier transforms con-
verge point-wise; i.e., that

2ok e €5 dua(X) —n [e ™ du(X)

for each ¢ in %". As in the proof of Theorem 5.4 we may write € =
{(X(¢1), -+, X(ox) € C} where € misses Nia (X(e:) = 0} forsome k < N
and C is closed in ®". Letting $ denote the span of ¢1, - - - , ¢y and any given o,
the above convergence is equivalent with

Zk f P(e) P dﬂmks(x) n f P(e) e=® du(X),

where P(X) = z = X + 8° P(e) is closed by Lemma 5.2, and omits {$°},
hence condition (3") of the finite-dimensional CCC applies:

Dk tmg(-n P(@)) —, »(-n P(€)).

The Fourier transforms therefore converge, completing the proof.

In conclusion, some remarks on infinitely divisible measures are in order:
If u is infinitely divisible and has finite covariances [y X (¢) X(6) du(X), there
exist measures p, (n = 1) such that 4 = (u,)". The double sequence u,; , where
wnt = pa (K =1, -- -, n) then enjoys the two conditions comprising boundedness
of variances: The first of these conditions in this case can be expressed

SUpP« fX(¢a)2 dun(X) =4 0

for every converging sequence {¢.}. This is satisfied, since n [ X (pa)’ dua(X)
= [ X(¢a)? du(X) and [ X(¢)® du(X), being continuous in ¢, is bounded on the
relatively compact range of {¢s}. The second of these conditions becomes
SUP« f X (pa)?du(X) < . Hence for any such g, log u+ (o) has the form indi-
cated in condition (2) of Theorem 3.1. Conversely, it is clear that any u for which
log u~ (o) has that form is necessarily infinitely divisible with finite covariances.
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