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THE ASYMMETRIC CAUCHY PROCESSES ON THE LINE

By S. C. Port anp C. J. Stong!
University of California, Los Angeles

1. Main results. The one dimensional Cauchy processes X; are those stable
processes on the line R having log characteristic functions

(1.1 log E(e®**9) = —¢|6|[1 + 7 sgn (8)hlog |6]],

where h = 28/7,8 = p — ¢, ¢ = 1 — p, and p is the mass put at 4+1 by the
Isotropy measure of (X; — X,). If 8 = 0 the process is the usual symmetric
Cauchy process. We will henceforth assume that 8 % 0. We will also assume that
we have selected versions of our processes that are standard Markov processes.
[See [1] for a description of a standard process.] The transition density is

(1.2) , ft, 2) = (20)7" [ e E(*F0) gp,

and the potential kernel is g(x) = [7 f(t, x) dt. For a Borel set B, let
Ty =inf{t>0:X.,eB} (= »if X;2Bforallt > 0) be the hitting time of B.
The dual process is the process —X; . Quantities referring to this process will be
denoted by * e.g. §(z) = g(—=z). Let ‘

Hp(z,dz) = Po(Xrzede; Te < ),

where P.(-) and E,(-) denote the conditional probability and expectation rela-
tive to Xo = z. Our principle aim will be to investigate the asymptotic behavior,
for large x of Hp(x, dz), and of

P.(t < Ts < »;Xryedz)

for large ¢, for bounded Borel sets B.

If p = 1 then the process X, takes only positive jumps, and it easily follows
from this fact that one point sets are non-polar, i.e., P.(Ty; < «) > 0 for some
2. In [4] Orey inquires whether or not y is regular for {y}, ie., does
P,(T\, = 0) = 1. Our original motivation was to answer this question. To our
great surprise we found the following.

TueEoREM 1. Assume 8 # 0. Then for any y and all z,

PQ(T(,,) < °°) >0 and PG(T(;;) = 0) = 1.

This was quite unexpected since for the symmetric Cauchy process (8 = 0) one
point sets are polar! (For a proof see Section 5 of [5].) Theorem 1 will be aneasy
consequence of the following basic

ProrosiTiON 1. Assume B = 0. Then g(x) s a continuous function on R.

To establish our asymptotic results on Hz(x, dz) we need to know the be-
havior of g(z) for large z.
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138 S. C. PORT AND C. J. STONE

ProrositioN 2. Assume 8 = 0. Then
limg» o log |z] g(z) = 2p/xh® = ¢,
lim,._,, log |z] g(z) = 2¢/«h’ = ¢.
Using these facts we will be able to show the following
THEOREM 2. Assume 8 % 0, and let B have compact closure B. Then there are
unique bounded measures wp and #5 supported on B such that nz(B) = #5(B);
(1.3) Py(Ts < ) = [59(y — z)ms(dy);
P(Ts < ) = [59(z — y)#a(dy);
and for any continuous function f on B,
(14) lim, . log lxl Hpf(z) = C;("?B )
(1.5) ' lim,..+o log |] Hxf(x) = *(7s, 1),
where for a measure p on B, (4, f) = [af(z)u(dx).
The measures 75 and #5 are called the capacitory, respectively co-capacitory
measures of B. Their common total mass is the capacity of B. The existence of

such measures satisfying (1.3) is a consequence of the Hunt potential theory (see
Chapter 6 of [1]). It is immediate from (1.4) that when 0 < |8| < 1, then

(1.6) limlzl—»w E.a[f(XTB)l TB) < °°] = (71'3 ) f)/(ﬁB ) 1)’

thus showing that the normalized co-capacitory measure is in these cases just the
conditional hitting distribution at .
Our final result concerns the asymptotic hitting time.
TuareorREM 3. Assume 8 # 0 and let B be compact. Then for any continuous func-
tion f on B,
lim;m (].Og t)Ea;[f(XTB)7 t < TB < oo]
= (2¢/7h*) (75, )Po(Ts = =), if B> 0
= (2p/7h*) (%5, f)Po(Ts = =), i B<O.
The analogue of the results in Theorems 2 and 3 for other stable processes can
be found in [5] and [6].
2. Proofs. If follows easily from (1.1) and (1.2) that the density f(f, z) satisfies
the scaling relation
(2.1) ft,z) = f(1, o™ — hlog )t
Since p for X, is g for — X, it suffices to establish our results for the case p > q.
Hence forth then we will always assume 8 > 0. It is well known that the distribu-

tion of X; — X is unimodal, and consequently f(1, z) is monotone decreasing for
|z| sufficiently large. Also (see e.g., Feller [3], p. 547.)

limzsye Po(X: > 2)z = 2pr 7, limgs—o Po[Xy < 2]|z| = 2¢7"
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Consequently, by a familiar Tauberian theorem
(2.2) limgye f(1, 2)2° = 2pr Y, limgeo f(1, z)2® = 2¢g7 .

Since f(1, z)z* is bounded on compacts we see that thereisak, 0 < k < « such
that for all z, f(1, ) < k |z|™>. We may now establish Proposition 1. To accom-
plish this we will require two lemmas.

Lemma 2.1. Suppose zo # 0. Given € > 0 there is a neighborhood V., of o and
ad > 0 such that

[ef(t,z)dt < e
forzeVa,.

Proor. Suppose zo > 0. Let V., be a compact neighborhood such that z > 0
for z ¢ V., . Then for § sufficiently small it follows from (2.1) that

foft,z)dt < & fon% log tdt < e

On the other hand if 2y < 0 then choosing V., so 2 < 0 for z ¢ V, , and setting
a = max {z: zeV,}, we see that if § is small enough so that htlog ¢ = — e,
t < 9, then
[of(t, z) dt < [ Ktlx — htlog ] * dt
< 3k (la] — )7
This establishes the lemma.

Next we show that the same thing is true for z, = 0.
LeEMMA 2.2. Given € > 0 there is a neighborhood V of 0 and a & > 0 such that

[87@t, ) dt < e

forxzeV.
Proor. If z = 0 and § sufficiently small

[iit,z)dt <k [SR% log™ "t < e
Now consider z < 0. Choose & > 0 so that
log (1 —a)/(1 —a)) <e
and set y = —x/h. Then
f(t x) = t7f(1, —hlyt™ + log#]).

If 0 < y < ¢ the function (y/t) + logt has two roots p; and p, . The root
p1 < ylog™ (1/y) while p, = 1/e. Set py = p and let § < 1/e. Decompose

IS oas [§70 + [GEXD + [l
Ift < (1 — a)p then
7y + tlogd] = ¢ty + (1 — a)plog (1 — a)p]
=t'y+ (1 —a)plogp + (1 — a)plog (1 — a)]
=tay + (1 — a)plog (1 — a)
= ayt (1 — coy ],
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where
¢c=(a — 1a'log (1 — a).
Since p(y)/y — 0 we see that for y sufficiently small,
(1—cpy™) Z (1 —ce) >0,
and thus
J§790 58, 2) < 0(o%™") = o(1), y—0.
Next
(s f(t, ) dt < [sup.f(1, )] log ((1 + a)/(1 — @))]
= [sup. f(1, 2)]e.
Finally, as to the last integral, one easily verifies that for (1 4 a)p(y) < t < 1/e,
oyt I+ a) T logt = (1 + a)tlog (1 + a),
and thus for t < (1 4 a)™"
yt ' +logt < (14 a)log (1 + a) + (a/(1+ a)) logt < 0.
But then
' + log f] 2 = (1 + a)’a log {1 + (c/log 0O
where ¢ = (log (1 + a))/a. Consequently if § is sufficiently small
[ranf(t, 2)dt < K(1 + a)’h a1 + (c/log 8)]7" [Tss log™? s ds < e

The lemma now follows from the above three estimates.
Proor or ProrosiTiON 1. Write

g(z) =[S£, 2) dt + [4 (¢, ) dt + [7 f(¢, ) dt.
By Lemmas 2.1 and 2.2 for § small enough and z in a small enough neighborhood
of z, the first integral on the right is <e. The function of z defined in the second
integral is clearly a continuous function of z. As to the third, given any compact
set K we may choose 4 so that
|z/htlog t| < €
forxe Kandt > A. Thenforz e K,
[27t, z)dt < O(J2¢" log™ ¢).

The continuity of g(z) now easily follows from the above facts.

We now turn our attention to the proof of Proposition 2.

Proor or ProposrTioN 2. Consider first z — + . If z is large and positive
then (z/t) — log t has for £ > 1 a unique root p, z/(log ) < p, and in fact
p(z) ~ z/(log ). Write

g(hz) = [ 5(1, hzt™ — log t]) dt
= [i 4+ [ + [&38 + [Ghwn + [5.
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We now proceed to estimate these integrals.
[4£(t, hz) dt < Ka%/2RY,
JEP < KR [ (2 — tlog 1)t dt
< Kn? fil““)" (z — tlog (1 — a)p) 2t dt.

By computing this last integral explicitly and then examining the terms we
find that

J‘§1—a)p = 0((log 1 - a)p)~2) = O0((log x)—z), T — x.

It easily follows from the monotoniety of f(1, z) for large z, the fact that f(1, z)
is a continuous positive function, and from (2.2) that f(z + y) ~ f(z) uni-
" formly in y € R. Using this we see that for a > 0 sufficiently small,

(XD f(1, h(xt™ — log t))t ™ dt
= [GI8 11, h(z(ps)™" — log p — log s)s™* ds
~ [GI3 5L, h(@(ps)™ — @p™))s M ds = [ED-1S(L, hlap ™ (w — 1))w ™ dw
~ p(zh) ™ [ 20, £(t) dt ~ (h log z)7".
Next
[sanf(1, Mzt — log ) dt £ K [Ga,lt log (1 + a)p — 2]t dt.
Carrying out the integration and examining the terms we find that
[@sa, = O(log log z/log® x).
Finally
[2 (1, bzt — logt))E " dt ~ (2¢/7h%) [7 (tlog’t)™" dt = (2¢/xh*)(log z) .
Combining these estimates we obtain
(23) g(a) ~ (K7 + (2¢/7h")) log™ z = (2p/nh’)(log ©)7, z — +eo,
We must now examine the case £ — — . Let y = —z and write

g(hz) = ﬁ + flll/lou + ﬂ/losv + f:

Then
fs =0,
Jylsv < Kh7® 418 (yi™ 4 log ¢) 7t dt
< 3 Y’ (log” y) ™ — 1] = O(log™" y).
Next

Jinogs £ KB [3p10ey (y + t log (y/log y)) "t dt.

Computing the integral and examining the terms we find that

J¥105y = O(log log y/log” y).
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Finally
7 ~ (@q/xk) [7 (tlog )7 dt = (2¢/xh") log™ [o].
Combining, we see that
(2.4) g(z) ~ (2¢/h) log™" |2, z— — oo,

Proposition 2 now follows from (2.3) and (2.4).

Having Propositions 1 and 2, it is an easy matter to establish our theorems.
Indeed Theorem 1 is a direct consequence of the continuity of g(z) at 0 and
Theorem 4.3 and Corollary 3.1 of [2]. Alternately, by an argument similar to
that used to establish Proposition 2.1 in [7] we may establish this result directly
without using Hunt’s capacity theory. Theorem 2 follows from the asymptotic
behavior of g(z) given in Proposition 2 by essentially the same argument as
used to establish the corresponding facts for the transient processes with ¢ < 1
in Theorem 2 of [6]. We will omit these details. To establish Theorem 3 we may
proceed as follows. Let

g'(z) = [5f(t, z)e™ dt,
Hi\(z, dy) = [3 P(Tseds, X(Ts) e dy)e™,
RNz) = [zd'(y — 2)9(y) dy = [g(z) — ¢ (@)™
Then
JoeMp(t < Ts < w)dt = [2g"(y — 2)py(Ts < =) dy
— [sH5\(z, d2) [26"(y — 2)pu(Ts < =) dy,
and using (1.3) we find that
(25) [SeMpa(t < Ts < w)dt
= [3RNy — z)ms(dy) — [sH5 (z, d2) [ R (y — 2)ma(dy).
But it follows from (2.2) thatif 8 > 0
I f(s, 2) ds ~ (2¢/xh*) [T s log™ sds = (2¢/h%)(log ¢) 7,
while for 8 < 0
JT1(s, ) ds ~ (2p/h")(log £)7,
the limits being uniform on compacts. But then
RMz) ~ (2¢/7h)\ log (N1, A1 0, 8>0
~ (2p/mE)N T log P (XY, A | 0, B<O.
Using (2.5) we then see that
[5e™Mp.(t < Tp < o) dt
(26) ~ p(Ts = ®) (w5, 1)(2¢/xk") (N )[log (1/N], 8> 0,
‘ ~ pTs = @) (75, 1)(2p/xk*) (X llog (1/N]™ 6 < 0.
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Theorem 3 for f = 1 now follows from (2.6) by Karamata’s theorem. Let
gs(t, x, y) be the density of the measure p.,(Ts > ¢, X;: e dy) and let o(z) =
ps(Ts < ). Then

Elf(Xrg);t < Tp < ]
(27) = [egs(t, 2, 2)e(2)Hse(2)(0(2))" — (#s, )(#5, 1)7] dz
+ (&5, ) (75, 1) 7pa(t < Tp < ).
If p = 1 or 0 then
log tE.[f(Xzp ;¢ < Ts < o] = [|f]lw log tp=(t < Ts < ®) — 0,

so we need only consider the case when |8| < 1, 8 # 0. Then it is clear from (2.7)
that we must show log ¢ fg — 0. Now, given ¢ > 0 there is an r such that

|Hsf(2)(e(2))™ — (#5, ) (75, 1)7| < e
if || > r and
Jusr £ 0 wgf(t, 2) de) = O(™).
The desired result now follows from these two facts.
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