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THE TAIL FIELD OF A MARKOV CHAIN'

By Avrax F. ABRAHAMSE

University of Southern California

1. Introduction. In [1] Blackwell characterized the invariant field of a Markov
chain in terms of subsets of the state space called almost closed sets. We generalize
Blackwell’s results, and obtain a similar characterization of the tail field of the
chain. Our discussion is modeled upon Chung’s exposition ([3], Part I, Sec. 17)
of Blackwell’s results, and many of our techniques are simple extensions of those
to be found in Chung’s book.

Let I denote a subset of the integers, which will be the state space of the Mar-
kov chain we are going to construct. Let I denote the space of all sequences
j= (Jo,51, ) of elements of I. Let z,:I° — I denote the nth coordinate func-
tion, 2,(j) = j» (n = 0, 1, - - - ). Let & denote the smallest Borel field of subsets
of I” with respect to which all the functions 2 , #; , - - - are measurable.

The shift function T':I” — I” is defined by setting

T(jo,jl, "') = (jl)j2,"')'

A set A ¢ § is said to be smvariant if T'A = A. The class of invariant sets, de-
noted by G, is a o-field, called the tnvariant field.

If Y1, Y., - - is a sequence of functions defined on I”, let &(Y;, Y5, ---)
denote the smallest Borel field with respect to which these functions are measur-
able. For n = 0, let . = ®(xn, Tny1, -+ ). Wenote that § = F,. Let F, =
Nuz0 Fn . T is called the tal field. When A is a subset of I”, by the expression TA
wemean TA = {Tj|je A}.

TeEOREM 1. T maps ., one-to-one onto itself,and G = {AeF., | TA = A}.

This theorem states that if we regard F,, as a set of “points,” then T acts as a
permutation on F. , and G is the set of fixed points. Blackwell has shown that
modulo equivalence relations, there is an isomorphism between G and the class
of almost closed sets. We will show that the class of almost closed sets can be
embedded in a class of objects which is isomorphic in the same way to &, . Within
this class, the almost closed sets correspond to objects which are invariant under
the action of a shift function. Furthermore, the isomorphism commutes with this
shift.

Proor oF TarEorEM 1. T is a countably additive map from & into &, so it is
easy to show that T—'F,, = Fpmys . For any set A S I°, T(T'A) = A, and so it
follows that T mi1 = Fn (m = 0) and these observations imply that T, = Fo .
To show that T is one-to-one, suppose for A, Az € Fo, , TA; = T A, . This means
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128 ALLAN F. ABRAHAMSE

that there is a j; € A1, j2 € Az such that Tj; = Tj, . Because A; and A; are in F, ,
we can assume without loss of generality that zo(ji) = z¢(jz). But since T5; =
Tj. , it follows that j; = j», hence A; = A, . Finally, if A £G, then A £ 5, so for
any integern = 0,A = T~ "A £, , hence A & F,, . Furthermore, A = T(T'A) =
TA. Hence, § © {A € Fo | TA = A}. The reverse containment follows from the
fact that 7 is one-to-one over F,, , and this completes the proof.

2. The structure of the tail field. Let p(%, j) be a stochastic matrix over I x I.
For each b ¢ I, there is a unique probability measure P, over § such that
Py(xy = b) = 1,and forj, %, tn, - - - € I,

P;,(x,.+1 =j|x,. = i,xn—l = 7:n—17 ) = p(ifj)‘

With respect to the probability space (I, &, P;), the sequence o, 21, - - - is a
temporally homogeneous Markov chain, with transition function p. For some
fixed element of I, say 0, we assume that for each j ¢ I, thereis ann = 0 such that
p"(0,7) > 0. Welet P = P.

We wish to consider briefly the space-time chain corresponding to o, 21, - - - .
Informally, this is the sequence (0, ,), (1, 1), - - - in the state space

J={n1)|n=01,2---;7¢1}.

However, we wish to consider the invariant field for the space-time chain, and to
do this a more careful definition is necessary. Our purpose in considering the
space-time chain is to motivate subsequent definitions, and the main results of
this paper will not be based on what follows.

Let J” denote the countable cross product space for J, whose elements are of
the form [(no, Jo), (71, j1), -+ -], where each n; is a non-negative integer, and
jreI. Let Y,:J” — J denote the usual coordinate function (n = 0), and let
F(Y)=®(Yy, Y1, ). We define a measure Q on F(Y), such that Yo, Yy, - --
is a Markov chain over (J*, 5(Y), @), and Q(Y, = (0,0)) = 1,

Q¥ = (0 + 1,) | Yo = (n,9)) = p(i, ).

The original chain zy, z;, - -+ can be “recovered” by defining a projection
w:J — I, such that x(n, 2) = 1, and setting z, = =(¥,) (n = 0). Let F(z) =
®(20, 21, +++). Then clearly the chain #z,, 21, -+ over the probability space

(J%, F(z), Q) is equivalent to the chain o, 2, , - - - over (I*, &, P).
Let

€Fm(Y) = ﬂngo@(Yn 3 Yn+l )y '):
S-‘Fw(z) = nngo (B(zﬂ yRng1, t 0 )7

and let G (') denote the invariant field for the space-time chain. In the following,
we write a.s. (almost surely) to mean with respect to the measure Q.

THEOREM 2. The fields F=(Y ), F(2) and F(Y) are a.s. equivalent.

Proor. Theorem 1 implies that G(Y) & Fu(Y).
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For each integer k = 0, let mx:1 — J by m(¢) = (k, 7). Then Y}, = m(2:) a.s.
and so ®(Y%, Yigr, ) © ®(2, 2k11, -+ ) a.8., hence Fo(¥) C Fo(2) a.s.
Now select A € F,(2). Let

f(n,7) = Q(A|2za = 7)
defined whenever Q(z, = ¢) > 0. Now Y, = (n,2,) a.s., hence
f(Y.) = Q(A]z) as.
=Q(A|2n, 2, ) as.

and so by a theorem in martingale theory ([4], p. 332), lim f(Y,) exists a.s., and
is equal to

limaow f(Va) = xa a.s.

where xa is the indicator function of A. Clearly, then, A is a.s. an invariant set,
hence F,(z) € G(Y) a.s., and the proof is complete.
From this point on, we write a.s. to mean with respect to the measure P.
Blackwell has shown that every invariant set A ¢ G is a.s. equivalent to a set of
the form {z, ¢ 4 i.0.} (i.0. means “infinitely often’) where A4 is an almost closed
subset of 7, that is, a subset such that

{xn e Aio0} = {2, ¢ A all large n} a.s.

If we apply this characterization to the invariant field §(Y) of the space-time
chain, and use the equivalence between G(Y) and F,, implied by Theorem 2, we
find that every set in the tail field ¥, is P-a.s. equivalent to a set of the form

{2 & Ay .0}
where 4o, 41, - - - is a sequence of subsets of I, such that
(1) {xn € Anio} = {z, € 4, all largen} a.s.

Thus, we obtain a characterization of &, in terms of sequences of subsets of I.
We now consider this characterization with respect to the shift T, and in light of
Theorem 1. Certain desirable properties are suggested. '

1) Suppose A € F., , and {4.;n = 0} is a sequence of subsets of I satisfying (1),
such that

A= {z,ed,i0} as.
Now T{x, € Ar 1.0} = {%n € Any1 1.0} and so it would be natural to expect that
(2) TA = {x, € Any1i0} as.
2) Let {Bs;n = 0} be a sequence satisfying (1), such that indeed
TA = {z, e B,i.0} as.
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Then comparing this identity with (2), it would be desirable to have An41 = B,
for all n, or some similar correspondence.

However, neither of the above properties hold. The basic problem is that it is
not sufficient that A; = A; a.s. in order to have TA; = TA; a.s. Therefore, a se-
quence {A,; n = 0} may satisfy (1), but the “shifted” sequence {An11; n = 0}
may not.

A characterization similar to the one above which achieves these desirable
properties can be obtained by strengthening (1). It appears to be more straight-
forward to begin again from scratch rather than to build upon the preceeding
discussion regarding space-time chains. This is the object of this section. Some of
the proofs will be seen to be very similar to those in [3].

An event A ¢ & is said to be a null set if P(A) = 0. We will call a set A & Fs, 2
small set if P(T*A) = 0 for every integer k (positive or non-positive). Theorem
1 shows that T*A is measurable for all such integers. Any small set is a null set,
and any null set which is also in G is small. We call two sets A; and A, inF.,equiva-
lent if the symmetric difference Ay A A; = (A1 — Az) U (A2 — Ay) is a small set.
When this equivalence relation is restricted to G, it coincides with the one Chung
places on G in his discussion of Blackwell’s results. Following Chung’s notation,
we will write A; = A, to mean that A; and A, are equivalent. When equivalence
classes of sets are considered, we will describe the situation by the phrase “modulo
small sets.”

Let A = {A,;n = 0} be a sequence of subsets of I. We define subsets £*(4)
and £x(4) of I” by the following relations:

£*(4) = limsupnsw {j | 2(3) € 44},

&x(A) = liminfr.q {j | 2a() € Aa}.
Equivalent expressions are the following:

L£*(4) = {j|2a(j) € Aniol},

L4(4) = {j|2.(j) € An all large n}.

Clearly for any sequence A, £x(4) and £*(A4) are elements of F.,, and £+(4) C
£*(A). A sequence A is a transient sequence if £*(A4) is a small set. It follows
that A is a transient sequence iff

P(z, € Anyi i.o. for some k) = 0.

If A is a transient sequence, then £+(4) = £*(4). If this relation holds for a
sequence A which is not transient, we will call A a tasl sequence. Equivalently, A
is a tail sequence if for every integer k such that P(z, &€ An4x i.0.) > 0, we have
the relation

P(z, & Anyx all large n | 2, € Apyr i0.) = 1.

Let 3 denote the class of sequences which are either tail sequences or transient
sequences. If A £3,let £ (4) = £%(4).
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When 4 = {4,;n = 0}, B = {B,;n = 0} are sequences of subsets of 7, natural
meanings are assigned to such set-theoretic symbols as A°, 4 u B, A C B etc. For
example

A° = {A,55n = 0}, AuB = {A,uB,;n =0},
A CBif A, C B, for all n.

We also define a shift function T' operating on such sequences, by setting 74 =
{An41;n = 0}. We will call A° the complement of A, A u B the union of A and B,
and TA the shift of A.

TaEOREM 3. (a) 3 s closed under the action of T, and under the operations of
complementation and finite unions (hence under all finite set-theoretic operations).

(b)For A,Be3, £(A) = £(A°)and £(AuB) = £(4)u £(B).

(e) £(4) = £(B)iff A A B is a transient sequence, for A, B £ 3.

(d) &(TA) = Te(A)if A 3.

Proor. The assertions in (a) and (b) regarding the union are implied by the
following observation regarding A, B £ 3:

£¥(4 uB) C £%4) u £4B)
= £x(4) u £«(B)
C e«x(AuB).

A similar relation implies the assertions regarding complementation. Now if
£(A) = £(B), by definition the set £(A) A £(B) is small, so for 4, B¢ 3,
L£(A A B) is small, i.e., A A B is transient. This proves (¢). The assertions in
(a) and (d) regarding T follow directly from the definitions, and the proof of
these assertions is left to the reader. This completes our proof.

If A and B are elements of 3, we will say they are equivalent if A A B is tran-
sient. When it is useful, we will write in this case A = B, and use the phrase
“modulo transient sequences’ to mean the obvious thing. Theorem 2, part (¢)
shows that £ maps J one-to-one into &, , modulo transient sequences in 3 and
small sets in F,, . We now show that this map is onto

THEOREM 4. (a) Let Ae T, , and let f,(2) = P:(T"A), where n is any integer,
and i € I. For any integer k, the limit of the sequence fr(xo), fri1(x1), -« - - exists a.s.,
and is given by

limn»oo fn+k(xn) = Xtk a.8.

(b) For eachn = 0,let A, = {¢|fa(i) > 3 and let A = {4, ;n = 0}. Then
AeJand £(A) = A
Proor. The chain is temporally homogeneous, so for any event A’ e &, if
P(z, = 7) > 0, then
Pi(A') = P(T™"A' |z, = 1).

Suppose A € F., . From Theorem 1, T*A ¢ Fo . Setting A’ = T4, it follows from
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the definition of f that
Fasi(i) = P(T*A| 20 = i)
hence
fosi(zn) = P(T*A | z,) as.
The Markov property implies that
Frin(Zn) = P(T*A | n , Tna, -+ +)

and so assertion (a) follows from a theorem in martingale theory in [4], page 332.
Let A = {A, ;n = 0} be constructed asin (b). For any integer k

T*e*(A) = (®ne Any 0]
| = {fass(za) > } o).
It follows from (a) that
T*C*(A) = {xoma > 3} = T*A as.
and hence, '
T £*(A)

{fagn(zn) > 3 alllarge n} a.s.
Tee(4) as.

Since % is arbitrary, £+(4) = £*(4 ), which proves the theorem.

We summarize the results of this section in the following theorem, which is
analogous to Chung’s summary of Blackwell’s results (Theorem 1 [3], Part I,
Section 17). The proof follows directly from Theorems 3 and 4.

THEOREM 5. For each A eF,, there is an A €3, unique modulo transient se-
quences, such that £(A) = A. This correspondence is an isomorphism with respect
to complementation and finite unions and intersections, and commutes with T
(modulo small sets in F., , transient sequences in J).

3. The structure of the invariant field. We define a subclass 3* of 5 by
3*={Ae3|TA = A}.

Clearly, the definitions imply that A = {4, ;n = 0} isin 5* iff there is an almost
closed or a transient set D such that A, = D(k = 0). Theorem 1, and the results
of the last section, show, once we have cleared away a technicality discussed
below, that 3* and G are isomorphic, hence, we obtain Blackwell’s result.

The technicality concerns the nature of the equivalence relation which we have
defined on %, , which is stronger than the one defined by Blackwell over G.
Theorem 6 implies that the class of sets A € F, such that TA = A, and the class
of sequences A4 £3, such that T4 = A are isomorphic. The following result,
however, shows that this is, in effect, enough to obtain the assertion in the first

paragraph.
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TrEOREM 6. (a) For each A € Fo, suchthat TA = A there is a set Ao € G such
that Ap = A.

(b) For each B ¢ 3 such that TB = B, there is an almost closed or transient set D
such that B = {D,D, D, - --}.

Proor. Suppose A = TA. Let

Ao = Upe_, T*A.
Clearly Ao e . Now T*A A A is small for each k, hence
AA A= Ui (T"A A A)

is small, i.e., A = A.

Now assume B e 3,and TB = B. Let A = .,G(B)

Let A = {4, ;n = 0} be the element of 3 constructed from A as in Theorem 4.
Then £(4) = A = £(B),so A = B. Since T*A = A for each k, it follows from
the construction that A, = A, for each £ = 0, and since 4 ¢ 3, it follows that A4,
is either almost closed or transient. This completes the proof.

4. Atomic tail sequences. An almost closed set is atomic if it does not contain
two disjoint almost closed sets. A corollary to Blackwell’s theory is that cor-
responding to each atom of the invariant field is a unique (modulo transient
sets) atomic set. We now consider a similar correspondence for the tail field.

A set A eF, which is not small is called an atom if for any element Ay e Fo
such that Ag © A, Aqis small or A — A, is small. The tail sequences which corre-
spond to atoms will be called atomic tail sequences; such a sequence cannot be
expressed as the union of two disjoint tail sequences. If A is an atomic tail se-
quence, then for any integer £ > 0, either T4 n A is transient, or T°4 = A.
Weset N = « if the latter never happens, otherwise, we set

N =inf{k > 0| T4 = 4}.

N is called the asymptotic period of the tail sequence A. We now show that atomic
tail sequences are cyclic, in the sense of the following theorem.

TarorREM 7. Let A be an atomic tail sequence with asymptotic period N.

(a) If N = o, then there exists a sequence B = {B, ; n = 0} of disjoint sets,
such that A = B.

(b) If N < o, then there exists a sequence By, By, - -+ , By_; of disjoint sets,
such that A = {Bo,Bl, oo ,BN_I,B(), "'}.

(¢) In either case, u By is an atomic almost closed set.

Proor. We will prove (a), and leave (b) to the reader. Let A be an atomic
tail sequence with infinite asymptotic period, and let Ay = £(4 ). When ¢ # j,
T'Ao n T?Ay is a small set. For any point b € I, we have assumed that there is an
n = 0 such that P(z, = b) > 0. Now, we have the relation

P(A|n = b) = Py(T"A)
for any set A € %, . Let A be the small set 7" "Aon T""A, , and we obtain
(3) . Py(T Ao n T?Ag) = 0.
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Now set fa(¢) = Pi(T"Ao), and let B, = {i | fa(3) > 3}. By Theorems 3 and 4,
B = {B, ;n = 0} isin 3 and is equivalent to A. By (3), By, By , - - - are mutually
disjoint. This establishes part (a).

For part (¢), if 4 is an atomic tail sequence, Ay = £(4) is an-atom of Fw .
Let

= U]:o-_go TkA.o .

A is in G. Suppose A; is in G, and A; € A. Then Agn Ay C Ao, hence Ao n Ay is
small, or is equivalent to Aq . In the first case, for every integer k, T*(Aon A;) =
(T*Ao) n Ay is small, hence Ay = An A; = uT*An A; is small. In the second case,
we have T*Agn Ay = T* Ay for every k, hence uT*Ao n A; = Ayie, An A= A
Since A; © A, this implies that A; = A. Thus we see that A is an atom of g. It
follows from Blackwell’s theorem (see [3], page 114) that D = {¢| P;(A) > &}
is an atomic almost closed set. Now (3 ) implies

Pi(A) = Pi(uT*A) = X Pu(T*Ao)
and so

={i| X fii) >3 2uB

where f and B, are defined in the proof of the first part of the theorem. Further-
more

P(z,eD 1io0.) = P(A)
= P(Ui-, T2, ¢ B, alllarge n})
= P(2n € Bayr alllarge n, some k)
< P(zne Uiz B, alllarge n).
Hence
P(zneD — uBiio.) < P(z,eDio.) — P(x,euB; alllarge n)

=0

so u By differs from the atomic set D by at most a transient set, hence u B is
itself an atomic set, and the proof is complete.

To simplify the interpretation of Theorem 7, we assume that G is a.s. trivial.
Then I is an atomic set: every almost closed set is the complement of a transient
set. An example in [2] shows that it is possible for G to be trivial, yet ., contain
no atoms. But if &, contains one atom A, it contains no non-atomic sets, and
every other atom is of the form T*A for some integer k. If T¥A = A for any k,
the asymptotic period of the chain is infinite. Otherwise, the asymptotic period
is N = inf { k > 0| T*A = A}. In this case there will exist a cycle of subsets
A1,A5, -+, Ax, through which, eventually, the chain z, circulates.

This, of course, is trivially the situation for a periodic chain. We will give an
example of an aperiodic chain, in which the asymptotic period is greater than
one. We first obtain a sufficient condition for F., to be atomiec.
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LemMa. Suppose G s trivial and there isa k > 0, an € > 0 such that (i) = e
or all v e I. Then F, is atomic, and has at most k atoms.
Proor. We show that the hypotheses imply that T°A = A for any set
AeF,.Let AeF,.Foranyiel,
P(A|@n =14) = 2 et P(A| @ns = §, %n = ©)P(Tnys = j | &0 = 7)

P(A | Znyr = 7, 20 = 7).

Y

By the Markov property, this implies
P(A|2, = i) = €P(A| Tk = 5) = eP(TA |z, = 7).
Hence,
, P(A|za)
Letting n — «, it follows that

(1%

eP(T*A | z,) a.s.

XA = exrha a8

hence A D T*A a.s. Applying this result to the complement of A, we obtain
A° D TPA° = (T*A)°, hence A = T*A a.s. It follows from this that for any integer
n, T"A = T*(T"A) = T"(T*A) a.s., hence A = T*A.

If F, is not atomic, then there is an event A & &, , such that P(T’A) < 1/k,
j=0,1,---,k—1,and 0 < P(A). We let

Ap=AuTAu ---u T A

then the above result implies that Ao £ G, a.s., hence P(A,) is zero or one. But we
have

0 < P(A) £ P(A) £ D5 P(TA) < 1

which is a contradiction. Therefore ., is atomic.

Let A be an atom of F,, . Then Ap = AUTAU --- u T *Ais in G, and P(Ay) =
1 = D %23 P(T’A), therefore every other atom of &, is of the form T°A, j = 0,
vk — 1.

Our example is the following Markov chain whose state space 7 is the integers.
Let an (n = 0) be a sequence of probabilities, such that Yoran < ©,0 <
aj < & Weset a, = 0for n < 0. The stochastic matrix p is defined by

p(n, m) = (1 — an)p, m=mn-+1,
= an, m = n,
= (1 — as)g, m=mn—1,
= 0, otherwise,

where p > ¢, p = 1 — ¢. The chain is aperiodic, and it is not difficult to show
it is transient, with 2, — « a.s., and that the number of “pauses,” i.e., occasions
in which z, = %41, is a.s. finite.
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The invariant field is trivial. For suppose A £ G. Set f(z) = P,(A). Then f
satisfies

f(n) = (1 — aw)pf(n + 1) + anf(n) + (1 — an)gf(n — 1).
The o’s cancel, and
f(n) = pf(n + 1) + g¢f(n — 1).

The only bounded solutions to this equation are constants, from this it follows
that P(A) = Oor 1.

We also note that p°(4, i) = %pg > 0. Hence ., is atomic, with at most two
atoms. But since the chain eventually stops pausing, F,, contains the following
two disjoint sets of positive probability:

A = {@3, iseven 1.0}, Ay = {x3, isodd 1i.o.}.

Hence F, has these two atoms, and so this aperiodic chain has asymptotic
period 2.

Let E denote the class of even integers, and 0 the class of odd integers. The
two atomie tail sequences are{dy,4:,---} ={E,0,E0,---}and{By, By, ---}

={0,E,0,E, ---}.

An example of an aperiodic chain with infinite asymptotlc period can be pro-
vided in a similar way.
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