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ON DETECTING CHANGES IN THE MEAN OF NORMAL VARIATES'

By L. A. GARDNER, JR.

Sperry Rand Research Center

A test statistic for the hypothesis of no change in the mean within the first n
observations against general alternatives, having prescribed prior distribution,
is derived. In the special case of a uniform temporal distribution of at most one
change (hereafter abbreviated by AMOC), we prove that the statistic has the same
limiting distribution as Smirnov’s w,”. Critical values for finite n, obtained by nu-
merical integration, are presented.

1. Introduction and summary. The problem considered is that of detecting
changes in the mean of independent unit variance normal random variables
when the times of change are assigned an a prior: distribution. Two situations
are considered: The unknown amounts of change are (A) arbitrary, or (B) suc-
cessively plus and minus the same unknown quantity. Model B is appropriate
in certain problems involving angular tracking of an evading target.

In calculating the likelihood of the observations, conditioned on an arbitrary
sequence of change indices, we assign the nuisance parameters, viz. the initial
mean level and the amount(s) of change, normal probability distributions. Their
respective variances are then allowed to approach infinity and zero at appro-
priate points in the argument. Let x1, x2, - - - , Z, be the first n observations, and
let w; equal 1 or 0 according to whether there is or is not a change in the mean
between z; and zi11. In the indicated fashion we find (Sections 2, 3) that the
log-likelihood ratios are, up to additive constants,

(IIA) A(-)(xl y Ty xn) = Jn=—11 wj[Z?;jl (xi+1 - jn)]z
(1.1B) = 2205 Clia (—1) %) (2301 — &)
wherein

Q=14+ - + o,

and %, is the arithmetic mean of the first n observations. These ratios are for
testing no change against a specified sequence © = (w1, +--, ws—1) of change
times under Models A and B, respectively. As required, the statistics are transla-
tion invariant. A test of the hypothesis of change in the mean at no point, against
a set of alternatives {®} having assigned nonzero prior probabilities, rejects the
hypothesis for large values of

(1.2) Qn = Z(a) pl@)Ay(T1, -+, Za).
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Under the null hypothesis, @, is a quadratic form in » independent standardized
normal variates. As such, its distribution is a mixture of chi-square distributions
(cf. Robbins and Pitman [7]) which, except in the case of AMOC, is too compli-
cated to handle. (The distribution theory for the Bayesian test based on the
weighted sum of likelihood ratios is even more difficult and hence not considered.)

Over and above derivation of (1.1), we do in fact restrict attention to AMOC.
Here we can get useable results. Suppose the change occurs, if it does, at the index
k with prior probability px. Then (1.1) and (1.2) combine and reduce to the
single statistic

(1.3) Qn = 20 pl 205 (252 — E0)T

because for AMOC Model A and Model B are identical.

Before continuing, we point out that our technique for deriving (1.1) follows
that of Chernoff and Zacks [2]. (See also [5]. A different approach to the problem
is taken in [1], [8] and [9]). They assume, however, that the sign of the change is
known beforehand, which is a presumption we do not wish to make. This makes a
world of difference from the standpoint of distribution theory. If we knew the
change would result in (say) a positive increase in the mean value, then the
appropriate statistic is (1.3) with the square deleted. For a uniform prior dis-
tribution it then agrees with the statistic given in Equation (8.9) of [2]. Without
the square in (1.3) the distribution theory is clearly trival. On the other hand,
calculation of the distribution of (1.3) as written is far from being a straight-
forward matter, even under the null hypothesis.

Let

Qn = S,QS

be a non-negative quadratic form in independent normal variates e, &, + -+ , €, ,
each with zero mean and unit variance. The distribution of @, is clearly invariant
under the rotation which diagonalizes the symmetric matrix Q. Thus

(14) Qn =10 i1 Brei’
(X =p Y means X and Y have the same distribution) where 8;, ---, 8, are
the strictly positive eigenvalues of Q and r is its rank, both of which generally
depend on n (cf. Kendall and Stuart [6], Section 15.11). In particular, the matrix
of (1.3) is

n—k

(1.5) Q=n"21a a a, = pi n_—klc

where we may assume without loss of generality that no p; vanishes. It is shown
(Section 4) that

(1.6) - Be = 1/%
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where v1, -+ -, vs1 are the eigenvalues of a certain symmetric positive definite
tridiagonal matrix. If ¢;()\) denotes pip. - - - pi times the characteristic polynomial
of the leading % by k& submatrix of said matrix, then we find a second order dif-
ference equation

(1.7) A2¢k - ()\pk+2 — oy = 0, o =1, o= A1 — 2,

‘where A is the first forward difference operator. The desired v’s in (1.6) are the
roots of g,—1(A) = 0.

Although (1.7) has normal Sturm Liouville form, and hence inequalities on
its eigenvalues obtainable (cf. Fort [3], Chapter X), we cannot write down an
explicit formula for the v’s except when p; is independent of k& (uniform prior
distribution). Taking p, = 1/n, rather than 1/(n — 1), we readily obtain
(Section 5)

(1.8) : Y& = 4n cos’ kr/2n k=1,2,---,n — 1).
We now scale (1.3) and introduce the sequence of positive random variables
(1.9) ' Y, = 6n(n® — 1)7'Q,.

This normalization makes §Y, = 1 for all n, as can be seen by direct evaluation of
8Q, = tr Q with Q given by (1.5). Combining (1.4), withr = n — 1, (1.6) and
(1.8) we get

(1.10) Y, =p6n’[x’(n* — )] 225 [(kn/2n) ™" cos (kn/2n)] "k "6l

after dividing and multiplying the summand by %*z”/n’. Since e’, - - - , ¢, are
independent x;” variates, the vth cumulant of (1.10) is

0(Ya) = 27 (v — D)1 (6n'[n*(n” — DI’
(1.11) - 285 [(kr/20) ™ cos (kr/2n)] 7K™
=30 — I B@ — DY i (cos kr/2n)7,
with 5a(Y,) = 1. Whenn = 2, (1.11) reduces to 2" (» — 1)!, so
Y: =p x’.

We have not been able to find a closed form expression for the sum appearing
in the first line of (1.11) for general » and n. We can, however, prove that it
converges to {(2v) asn — o« for every fixed » = 1, where ¢ is the Riemann Zeta
function (i.e., the limiting value is the same as that obtained when we set the
multiplier of 1/k” to unity). It follows that under the null hypothesis,

(1.12) Y, = 6(n' — 1) 2 p5 Dor (wi — F)]

converges in distribution to a random variable Y uniquely determined by the
cumulants

(1.13) (V) = 270 — 1)1 (6572 ¢(2).
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Stated in other terms
(1.14) Y =p 61 % D i b e

Fortunately, the distribution of (1.14) is tabulated. In fact, it is precisely
that of the limiting distribution of Smirnov’s w, -criterion, normalized to have
mean one (see von Mises [10], Chapter IX, Section 7). This statistic, it will be
recalled, is used to test whether or not observations z;, - - , 2, are drawn from a
population with a preseribed continuous cumulative distribution, say G. The
formula is

(1.15) wnr = (20)7 4+ 6 D2 i [G(zr) — (26 — 1)/2n].

It is somewhat remarkable that the limiting distribution of Y, is identical to
that of w,". Letting f»(y) denote the density of (1.12) and

Jowbn(y) dy = o,
we can thus obtain c:(a) and c¢.(a) from tables of the percentage points of the
xi* distribution and Table VIII of [10], respectively.
We are left with the problem of finding critical values, ¢, , for finite values of
n. Using (1.11), the cumulant generating function of (1.12) is

(1.16) Ta(t) = 2z1(Ya) (@)™ = —3 25 log (1 — dtey™)
wherein
(1.17) o, = $(n* — 1) cos® kr/2n

depends on 7. The density function
fn(y) = (27{)_1 fw e—itl[‘l"l’,,(t) dt

written in its real form is
(118) fuly) = o' [5 TIrs (1 + fou) % cos (ty — 3 D_i=i tan™ ta™) dt.
The density (1.18) was computed by numerical integration for selected values
of n in the range 3 < n < 20. The tails of —log f, were then fit by a quartic at
y-points so chosen to give an oscillatory constant peak amplitude error curve
in approximating f,. The results were integrated to yield the corresponding
critical values. Figure 1 is a curve drawn between these points, and suffices for
purposes of application. We note the approach to limiting values is extremely
rapid.

Figure 2 was obtained by drawing smooth curves through observed rejection
frequencies in 250 Monte Carlo runs. § is the amount of change taking place
between the kth and (k 4+ 1)st observation.

2. The distribution of the observations given the points of change. The obser-
vations are

(2.1) i = Wi+ €, (i=1:2,°"’n)’

2 The author wishes to express thanks to Mr. Robert Church of Sperry Rand Research
Center for doing the numerical work. Graphs of these functions are available upon request.
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or in (column) vector notation
X=u-+e

where the ¢’s are independently and identically distributed as a 91(0, 1) variate.
Let w1, - -+, w1 be the indicators defined in Section 1. Under Model A, let
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F1a. 2. The power function of the test using the statistic (1.12) for » = 20 and & = .05

81, -+, 8,—1 be the corresponding amounts of change. Then fors = 1,2, - -,
n — 1,

(2.2h) Birt = pi + wids

=p+ Dia b
wherein p = p; . For Model B, the equation for the means becomes
(2.2B) pis = g+ 8 2 wp(—1)%

Here the levels are successively u, p + 8, p, p + 8, --- with & 2 0. We assign
(fictitious) normal distributions

(2.3) £(w) = (0,7 £ or 8) = (0,0

and assume the €’s, p and 8’s or & are mutually independent.
Until otherwise stated, calculations will be based on the indicators
= (w1, *** , wp—1) being held fixed. Then, conditioned also on the initial mean
level u, we have from (2.1)-(2.3) &x = pe, where e is the n-vector of all 1’s. This
is true for either model. We have

T —p=ea D il @bk (A)
Ti — = ¢€ -+ |6 Z;;:}wk(—l)nk (B) (7: =2, 3; rn)'

In both ;rases &(xs — p)* = 1and &(z: — p) (21 — p) = Ofor s = 2. Furthermore,
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fors,j =2,3,---,mn,

2 min(i—1,j-1)
g Zk—l Wk (A)
8(xs — p)(z; — p) = 84 + . .
’ B =PACH DD Y =y ES DELING:)
wherein §;; is Kronecker’s delta. We thus obtain
(24) &(x|o, ) = (ue, I+ o’B)
where
| cc’  (A)
(2.5) B=5 ,
cc (B)
and
[0 0 0
0 w1
(26A) c=| @ = 0

w1y W2 W3

*Wp-2
_0 w1 W W3 Wp—2 Wp-1

(2.6B) c=| e ¢ = Dimt wn(—1)%,

. Cn—1

We now integrate out the unknown p. Let ¢ = (1|0, 7°) be the normal
density function, with mean 0 and variance 7, evaluated at u. Then from (2.4),
with all integrations over the whole real axis,

ex = [8(x|n)edu =€ [ podu =0,
and
8(xx) = [8(xx'|u)e du

= [le(x — pe)(x — pe)’ + pee'nlo du

=I+4 o"B + ree’.
There results
(2.7) £(x|o) = 920, X)

= =3+¢B =1+ ree.

The dependence on @ is via B given by (2.5) and either (2.6A) or (2.6B). The
zero subscript pertains to the no change case when B is the zero matrix.

3. The likelihood ratio for a specified alternative. The statistic used to test
the hypothesis of no change, i.e., » = 0, against a specified alternative set of
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change indices, o, is obtained as a monotone function of the likelihood ratio
(3.1) A = L(x|0)/L(x|0) « X ZoT "2 0x

after letting ©* — o and expanding to first order in ¢ as ¢® — 0. The positive
constant of proportionality in (3.1) depends on o but not on the observations.
(If we were to consider the weighted sum of likelihood ratios, rather than their
logarithms, then this constant would have to be retained.)

We carry through the calculation for Model A. The result for Model B follows
as a special case. Under either model, Woodbury’s formula (Householder [4],
p. 124) gives

(3.2) 2=l —(n+ 17 "ee’ > I — nlee
as 7" — . With B = CC’, (2.7) and the same formula yield
(3.3) ' =7 = 37— 2CMC =
where

M = (C's'C +o7T)7%
Setting A = —C'=;'C, and assuming A’s largest eigenvalue in absolute value
is less than unity, we have the convergent series
M=d/I—-FA)" =T+ A +AA+ ...).
Substituting this and the limiting expression (3.2) into (3.3), we obtain
= — 7 = S — nlee’)CC(I — nlee’) + 0(d’ee’),
aso” — 0. The rejection region corresponds to large values of A in (3.1), or equiva-
lenfly large values of twice the exponent,
(3.4) A= |C'd — nlee x|

after dropping the o”. This result holds true under Model B if we replace C by
the vector c¢. (The expansion step is not needed because M is then a scalar.)
After substituting (2.6A) and (2.6B) into (3.4), we see that (1.1A) and (1.1B)
obtain.

4. The AMOC case. We now restrict attention to Q. asdefined in (1.3). It is
not difficult to see that the matrix of this quadratic form is indeed (1.5), which
we write in the form

n’Q = AN A =[a;, @, -, 2l
To find the eigenvalues of Q, we introduce another » by n — 1 matrix

0

0

|
o
[

B=[b1,b2)"',bn—1] bk

Dk —1
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where of course we are assuming pips - -+ pn—1 # 0. From the definition of a;
in (1.5) we see that A'B = nl, where I is here the (n — 1)-dimensional identity.
Thus

(4.1) B'QB =1.
We easily find that B'B is a symmetric positive definite tridiagonal matrix:
2p1t —(p1p2)?
—(ppad 2p;~t —(p2pa)? 0
(42) BB= —(p?  2p7t
0 ' 2pnns — (Pn2 pn..l)‘*J
- (pn-—ﬂ pn—l)-! 22);-1-1

This can be diagonalized by a pure rotation, i.e.,
BB =RrR" RR=I
where I' = diag [v1, 72, - -+, Ynul). Letting

C = BRI,
which is n by n — 1, this is the same thing as
(4.3) cCc =1L

We return to (4.1) and post (resp. pre) multiply both sides by RI* (resp.
r'R’) to obtain

(4.4) c¢'QCc =1L

Now we note that the sum of the components of ai, given in (1.5), as well as
of by is zero forany k = 1,2, --- , n — 1. Consequently, if we introduce the unit
n-vector

we have u’A = 0 and hence u’Q = 0. Furthermore, u'B = 0 and hence u’'C = 0
by definition of C. Defining the n by n matrix

U = [C,u],
(4.4) and (4.3) therefore respectively yield

won- [ 5]+ [% 2]

, ¢c Cu I 0
Uy = [u'C u'u:l = [0 1] :

and
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These two equations prove that the n — 1 nonzero eigenvalues of Q are the re-
ciprocals of those of (4.2).

It is not difficult to see that pips - - - px times the characteristic polynomial of
the leading k& by k submatrix of (4.2) indeed satisfies the recurrence relation
(1.7) (see Householder [4], p. 174).

6. Uniform prior distribution. When p; is independent of k, the eigenvalues of
(4.2) are easy to compute. (Indeed, they are proportional to those of a matrix
consisting of 2’s on the main diagonal and —1’s on the first upper and lower
diagonals.) Taking (say) px = 1/n in (1.7), the difference equation is simply

eirr — (MWn) —2)oen + e =0, =1 @& = (Nn) — 2.

This is recognized as the recurrence relation which defines the Chebyshev poly-
nomials of the second kind in the variable

(5.1) cos§ = \(2n)" — 1,
viz. ’
(5:2). or(N\) = sin (kK + 1)60/sin 6 (k = 0).

The roots of ¢,_1 = O are 8y = kr/n (k = 1,2, --- ,n — 1). This combines with
the transformation (5.1) and cos 8 = 2 cos” 40 — 1 to establish (1.8), and con-
sequently (1.10) and (1.11).

It remains to prove that as n — o

(5.3) Syn = = [(kr/20)™" cos (km/20) 72K — ¢ (2v)

as claimed, and thus establish (1.13). The value of the sum is unaltered if we
replace the cosine by the sine. Thus, setting 8, = 7/2n,

(54) Sym = 205 (kda/sin k8,)"K™ 4 Dopm (kda/sin ks,) k%,

where the integers m = m(n) are at our disposal. We choose them going to
infinity with » in such a way that

m/n — 0 m/n — .
Since
1 < kb, /sin ks, < 37
foralll1 = k = n — 1 and all n, the second sum in (5.4) is bounded above by

(n — m)m™(x/2)” < const. nm™> = 0(1)

(8,/8i0 8,)” 27 k™ and  (mbd,/sin mo,)” D rt kY

Since both 8, and mé, tend to 0 asn — «, the quantities multiplying the common
sum both approach unity. In other words, both bounds approach {(2v), which
proves (5.3).

for every fixed » = 1. The value of the first sum in (5.4) always falls between



126 L. A. GARDNER, JR.

REFERENCES

[1] BATHER, J. A. (1967). On a Quickest Detection Problem. Ann. Math. Statist. 88 711-
724.

[2] CrERNOFF, H. and Zacks, S. (1964). Estimating the Current Mean of a Normal Distri-
bution which is Subjected to Changes in Time. Ann. Math. Statist. 35 999-1018.

[3] Fort, T. (1948). Finite Differences and Difference Equations in the Real Domain. Oxford
Univ. Press, London.

[4] HOUSEHOLDER, A. S. (1964). The Theory of Matrices in Numerical Analysis. Blaisdell
(Ginn and Co.), N. Y.

[6] KANDER, Z. and Zacks, S. (1966). Test Procedures for Possible Changes in Parameters
of Statistical Distributions Occurring at Unknown Time Points. Ann. Math.
Statist. 37 1196-1210.

[6] Kenparn, M. G. and Stuart, A. (1958). The Advanced Theory of Statistics. Vol. 1.
Hafner, N. Y.

[7] RosBiNs, H. and Pitman, E. J. G. (1949). Application of the Method of Mixtures to
Quadratic Forms in Normal Variates. Ann. Math. Statist. 20 552-560.

[8] SmirYEAV, A. N. (1963). On Optimum Methods in Quickest Detection Problems. Theor.
Probability Appl. 8 22-46.

[9] SEiRYEAV, A. N. (1965). Some Exact Formulas in a ‘“Disorder’’ Problem. Theor. Proba-
bility Appl. 10 348-354.

[10] von MisE’s, R. (1964). Mathematical Theory of Probability and Statistics. Academic

Press, N. Y.



