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INEQUALITIES WITH APPLICATIONS TO THE WEAK CONVERGENCE
OF RANDOM PROCESSES WITH MULTI-DIMENSIONAL
TIME PARAMETERS'

By MicuAeL J. WICHURA
University of Chicago

0. Summary. Bounds on the distribution of the maximum of the absolute
values of the “partial sums” constructed from a multi-dimensional array of
independent random variables are derived and used to establish the weak con-
vergence of certain random functions defined in terms of such “partial sums”.

1. Statement of the results. Let ¢ and n1, n2, - - -, ng be positive integers,
and let D, ..., ;. (1 £ j, £ np,1 £ p = ¢q) be independent random variables
with zero means and finite variances. Set

Sk by = Zlgpgq Zl§]‘p§kaf1,~--,iq
forl1 £k, =n,,1 < p = ¢, and set
M = max {[Sk,,..kJ:1 S kp = np, 1 £ p = ¢f,
o = BS, n, = Drsosa 2asipgny EDG iy

TurOREM 1. In the above framework,

A
A

(1) EM* £ 4%

Moreover, if o* < a, then

(2a) P{M > 2%} = (1 — (6/a)")"*P{[Suy,...n,] > al,
(2b) P{M > 2%} < (1 — (¢/a)’) %(c/a)’.

Also, if @ < (2a)/(q — 1), then
(3a) P{M > 2%} £ (1 — (¢/a)) (1 — (¢ — 1)(c/2a)*) "' P{|Sn, ... n,) > @},
(3b) P{M > 2%} £ (1 — (¢ — 1)(¢/2a)*)*(c/2a)".

When ¢’ is small compared to @’, the inequalities (3a) and (3b) are sharper
than (2a) and (2b) respectively. When ¢ = 1, (1) is a special case of an in-
equality of Doob ([2], p. 317), (2a) and (3a) reduce to a well known but name-
less inequality (see [4], p. 219), and (3b) is just Kolmogorov’s inequality. For
the case ¢ = 2, Galen Shorack has observed that a limited Hajek-Renyi type
inequality extending (3b) holds:
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w1 = 0 and if the assumptions of Theorem 1
4d’, where of, = D, ED3, 1, , one has
<

(Z '7120107201/40'2)/(1 - (Z 012616]%1/40’2) )-

It is not known whether a full Hajek-Renyi type inequality holds for general q.

Pyke and Shorack point out an application of (3b) in their work [5] on random
sample size Chernoff-Savage theorems. In this paper, we present an application
of (2a), an inequality which, like (3a), is rather strong whenever the number a
is sufficiently large and the distribution of S, ....,», is sufficiently close (in the
topology of weak convergence) to a distribution, such as the standard normal,
whose tail probabilities decrease very rapidly. We first introduce some preliminary
material concerning a mode of weak convergence of probability distributions over
a certain function space.

Let [0, 1]? denote the unit cube in R% Let us agree to call a function z:[0, 1] — R
(the real line) a step function if z is a linear combination of functions of the form

o

ProrosrrioN. Ifc; 2 ¢o = - -

>
hold, then, provided that Y _x, or,ch, <

(3b")  P{max, , c,|Sky 5] > 4a}

t — Igyxmyx-xm, (1),

where each E, is either a left closed, right open subinterval of the unit interval
[0, 1] or the singleton {1}, and where Iz denotes the indicator function of the set E.
Let D, be the uniform closure, in the space of all bounded functions from [0, 1]*
to R, of the vector subspace of step functions. The functions belonging to D,
are continuous from above with limits from below, in a sense made explicit in
[6]. Let @ be the o-algebra of subsets of D, generated by the projection mappings
iz — x(t) (tel0, 1]%). The mode of weak convergence with which we work is
given in the following

DerinttioN 1. Let P, (n = 1) and P be probabilities on (D,, @). The se-
quence (P,).z1 is said to converge weakly to P in the U-topology if for every
function f: D, — R which is both measurable between @ and the Borel s-algebra
of R and continuous in the topology of uniform convergence on D, , the sequence
(P.f~ 1),.;1 of induced distributions converges weakly (in the usual sense; see
[1] or [4]).

For each finite subset T of [0, 1]% let wr:D, — R” be defined by =(z)
= (2(t))wr, and for each 6§ > 0, let ws:D, — R be defined by

ws(z) = sup {|z(t) — z(s)]:s, £ [0, 1]% |t — s < 8},
where |u| = max, |uy| foru = (w1, -+, u,). Let
C, = {z ¢ D, : lim sups.ows(z) = 0}

be the subset of D, consisting of all continuous functions mapping [0, 1]? into R.
The next theorem is a direct consequence of Corollary 2.3 of [6] (weak con-
vergence in the U-topology on D, is the same kind of weak convergence dis-
cussed in [6], provided the limit is tight with respect to the compact sets of the
topology of uniform convergence in D,;—in which case the limit can be extended
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to the Borel o-algebra for the same topology; every probability on (D,, @)
concentrated in C, has this tightness property).

THEOREM 2. Let (P.)az1 be a sequence of probabilities on (Dy, @). Then there
exists a probability P on (D,, @), giwing probability one to C,, to which the P,
converge weakly in the U-topology +f and only if the following two conditions hold:

(i) for each finite subset T of [0, 1]%, the “‘finite-dimensional” distributions P,wy
converge weakly, and

(ii) for each ¢ > 0, lims.o lim sup, P,{ws > ¢ = 0.

In this case, the limiting distribution P is determined by the fact that its finite-
dvmensional distributions are the weak limits of the corresponding finite-dimen-
stonal dustributions of the P, .

Now, for each n = 1, let 8,,... ;,(n) (0 < j, = n,1 £ p = q) be any random

variables. For each t = (4, ---, t;) €[0, 1]% put

(4) Xa(t) = Digpsa 2o0gipsintg) Bitrenig(M),

where [c] denotes the greatest integer in the number ¢. The random function
X, = (Xa(t))tero,ne takes values in D, and is measurable with respect to the
o-algebra @; it therefore induces a probability distribution on @ which we shall
denote by L(X,). Here now is the promised application of Theorem 1:

TrEOREM 3. For each n = 1, let the random variables B;, ... ;,(n) be independent
with zero means and finite variances, and let the random functions X, be defined by
means of formula (4). If

(1) for each finite subset T of [0, 11, the distribution of X,z - converges weakly
to a normal limit Gr, and

(ii) there exists a positive number C such that for each s and t in [0, 1]%,

lim sup, E|X.(t) — X.(s)[* £ Clt — s,

then the L(X,) converge weakly in the U-topology to a distribution G on (D, Q)
such that G(C,) = 1 and such that Grr ' = Gy for every finite subset T of [0, 1]%

As a direct consequence of Theorem 3, we obtain the following extension of
the invariance principle for a sequence of independent identically distributed
random variables:

CoroLLARY 1. Let ajy,....;, (1 < jp < 0,1 = p = q) beindependent identically
distributed random variables with mean zero and variance 1, and let the random
functions X, (n = 1) be defined by the formula

Xa(t) = n Z1gp§q Zlg]’pgtm,ﬂ Ojy,eenidg

(t = (t, -+, tg) €10, 1]%). Then the L(X,) converge weakly in the U-topology
to a distribution G on (D, , @) such that

(a) G(Cy) =1,

(b) Gwr ' is normal for each finite subset T of [0, 1]7,

(¢) for each s, t €0, 1]7,

fde =0 f’n's'll'th = ngpéqmjn (Sp; tp)-
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With minor modifications, this last result was obtained in [3] for the case
¢ = 2 under additional assumptions about the common distribution of the
ajy .. i, - The distribution G defined by (a), (b), and (¢) is simply a Brownian
motion with time parameter ¢ in [0, 1]%

2. Proof of Theorem 1. We prove (1) by induction on g. The proof is based on
a submartingale inequality of Doob ([2], p. 317) : namely, if Y4, - -+, Y, isa posi-
tive submartingale, then

(5) E(maXicmen Yn)® < 4B(Y,2).

This inequality immediately implies (1) for ¢ = 1 (put Y, = [Sn|). Suppose now
that (1) holds for ¢ — 1 (¢ = 2); we will show that it also holds for g.
To this end, set for 1 = m = n,,

Sklw--.kq_l(m) = Zl§p<q Zlg;‘pgkaj;,m,jq_l,m

Um = (Skl,...,kq_l(m) )lékpénpy1§p<q & IBc

and put
Vo = (Skl,--..kq_l,m)1§k,,§n,,, 1< p<q
=Ui+Us+ - + UneR’,
where c=m+ - 4+ Ng.
Since the maximum norm of V, is ||V.| = maxi<k,<np1<p<a Sk kgorml,

one obtains the relation
M = max1§m§nq ”Vm”.

Now since the U,’s are independent random vectors with zero expectation,
(Vm)12mn, is a martingale in R°, and since | -|| is a convex function, (|| Val)1<mgn,
is a positive submartingale. Doob’s inequality (5) implies that

E(M*) = E(maXizmzn, [|Val)® < 4E(|Va|”)
with
(6) [Vl = max {[Sty,ceon, i[il Shp S mp, 1 £ p S g — 1,
where
Shyeedgor = 2tsp<a 2Asipshy (2itsisng Divigori)-
The induction hypothesis now yields
E(M*) < 4-4E(Sh, e n,_)’
= 4B (Sny e ng_1mg) = 4%,

thereby completing the proof of (1).
Proceeding to the proof of (2a), define the stopping time 7 over the event
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{M > 2%} by
7 = min {m: ||V > 2%]}.
Then
SP(M > 2%a) £ D2 mP(r = m)P(|Va, — Val| < 27%)
= 2 P(r=m,|[Va, = Vall < 27%) < P(|[V ]| > 27),

where
8 = Miticmen, P(||Va, — Val < 27%)

=1 — maXicmen, P(|Va, = Vaull > 27).
Then since
IVae — Vall = maxiciysnyicoce | 2tso<a 2orgipgin (Domeisng Divvoigri)s
the inequality (1) implies that

P(|Va, = Val > 2770) £ E|[V,, — Val*/ (4" £ (o/a)’
and thus
P(M > 2%) £ (1 — (¢/a)) "'P(||V.,,J| > 2 "a).

In view of (6), the inequality (2a) now follows by induction on ¢. Inequality
(2b) is obtained from (2a) by applying Chebychev’s inequality to the right
hand side.

Inequalities (3a) and (3b) are also established by induction on ¢. Using the
Kolmogorov type inequality (3b) for ¢ — 1 instead of inequality (1) in the
argument of the paragraph above, one obtains

P(M > 2%) = [(1 — (¢ — 2)d"/(20)")/
(1 — (¢ — 1)a*/(20))P(|Va ]l > 277),
which, together with (3a) and (3b) for ¢ — 1, implies (3a) and (3b) for g.

3. Proof of Theorem 3. Condition (i) of Theorem 3 implies condition (i) of
Theorem 2. To see that (ii) of Theorem 2 is also satisfied, and hence that Theorem
3 holds, let [f], = [nt]/n for ¢ in [0, 1] and let [u]l, = ([Uiln, -, [Ugln)
foru = (w1, -+ ,uq) in[0, 1]% Foreachm,n = 1 andz = (4, - - -, %,) such that
0, =m—1forl £ p £ ¢, put

Aim;n) = JTicpsa[lip/mla, [(4 + 1)/mla].
Note that
[(7:17 + 1)/m]n - [ip/m]n > l/m - 2/n.

Thusif s = (81, -+, 8,) and ¢t = (t, -+, t;) are any two points of [0, 1]? such
that |t — s| < 1/m, then for all sufficiently large n, s and ¢ lie either in the same
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Ai(m; n) or in a pair of 4;(m; n)’s with a common boundary point, since for
each p, s, and ¢, lie either in one and the same interval, or a pair of contiguous
intervals, of the form [[Z,/m]., [(7, + 1)/m].]. It follows that, for each m,

lims,o lim sup, P(ws(X,) > 4€) < lm sups 2 aomn P(@amn(Xa) > ¢,

where in the summation A (m; n) ranges over the m? sets A,(m; n), and where
waimin) (Xn) = SUPtea;mim | Xa(t) — Xa([e/m]a)].

Thus it suffices to show that, for each ¢ > 0,

(7) 1imyn s im SUPn 2 atminy P(@amim (X)) > €) = 0.

To this end, momentarily fix 2, m, and n. Set
Ky = n[(4 + 1)/mln — nliy/ml., (1 =p =9),
(k) = [ia/ml + k/n, wp(k) = nty(k), (0= k=K, 1=p=q),

and for0 < k, < K,,1 < p £ ¢, define

Digooiey = 0, ifky =y = -+ = kg = 0
= D0 sar 205y 5un® Biv iy skl Gyt e 7a(M),
lfkl = e = kp_l = kp+1 = e = kq = O,kp> 0,

= Buythy) - maglhop (M), otherwise.

Then w4 ;mn(Xa) equals
maxo<k, <x,1sp<a | Xn( (G(k), -+, te(ke))) — Xa((0(0), -+ -, 1,(0)))]
=MaXo<k,<Kplsp<a IZI sp=q ZOé:‘pgkp Dfl.---.:ql,

and since the Dj, ...,;, are independent with zero means and finite variances,
inequality (2a) implies that (provided m and n are sufficiently large)

(8) P(wasimm(Xa) > 2%) = (1 — BESS(m;n)/e) P (|Si(m;n)| 2 e),
where the random variable S;(m; n) equals
Xo([(6 + 1)/ml) — Xa(li/mln) = Xa((3 + 1)/m) — X.((z/m)),

4+ 1= (@41, 54+ 1)).

From (i) and (ii) of Theorem 3, it follows that as n — «, the distribution of
Si(m; n) converges weakly to a normal distribution with mean zero and variance

not exceeding
(9) lim inf, ES (m;n) < lim sup, ES’(m;n) £ C/m

(see [1], p. 32). Letting N(y) (y > 0) denote the probability that a standard
normal random variable exceeds ¥ in absolute value, we find from (8) and (9)
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that for each ¢ > 0 and all sufficiently large m,
(10)  Hm Sups D atmimy P(@amm (Xn) > 2%) < mi(1 — Clm™ ) "W (em?CH).

Since the right hand side of (10) tends to zero as m — oo, it follows that (7)
does indeed hold, and the proof is complete.
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