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A REMARK ON THE KOLMOGOROV-PETROVSKII CRITERION!

By P. J. BickEL
Unawversity of California, Berkeley

Let X (¢, w) be any separable version of the standard Wiener process (Brownian
motion) defined on a probability space (2, @, P). Let ¢ be any nonnegative
function on (0, « ) such that N(¢) = ¢ ¥(¢) is monotone nondecreasing ( T ).
Define Ty(w) = sup{t: X (¢, w) = ¢(¢)} and Ay(w) = Mé: X (¢, w) = ¥(t)} where
M is Lebesgue measure on (0, o ). The Kolmogorov-Petrovskii criterion (proved
for coin tossing by Erdés) states that,

(1) P[T, < «] =1
if and only if,
(2) Q) = [T(t) exp [— W () dt < o.

A beautiful treatment of these results is given in Strassen [3].
It is a trivial consequence of this criterion that if ¥ is such that N is T and

(2) holds then,
(3) PlA, < o] = 1.

The purpose of this note is to prove a partial converse of (3).
TuEOREM. Suppose ¥ is such that A is T and

(4) SUp;z1 £ W(t) < .
If Q) = =, then
(5) Pl[Ay = ] = 1.

We begin with a lemma which is well known.

LeMMa. Let ty < t, < -+ < t, < --- where t, T o be a given sequence of
numbers. Suppose ® is the o field generated by the variables {X (4, -)}, 7 = 1, and
®;,J = 1, 1s the o field generated by the variables {X (¢, - )}, timx = t < t; where
to = 0. Then the o fields By, ®;, - -+ , are conditionally independent given ®.

Proor. This is, of course, a general fact about Markov processes. It evidently
suffices to check the independence of events A;, ---, A, where A;e ®; is a
cylinder set based on ; of the variables {X (¢, - )},¢;1 = t < t;, where 7, ¢; and
the variables chosen are arbitrary. Let ™ be the ¢ field generated by X (¢, -),
<+, X(tn, - ). Since B, T ® by the martingale convergence theorem it suffices
to show that A;, ---, A, are conditionally independent given ®&"™ for all n
sufficiently large. Therefore we need only check that if X;, -, Xy is
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a discrete parameter Markov process (Xi, -+, X4), (X1, -+, Xip), =+~
(Xi,_,, -+, Xx) are conditionally independent given X, , ---,X:,_,, Xn.
It is easy to see that this follows from

(6) PlXpr1€Chir, +  Xigr € Cogr | X1y o+, Xioy Xigrgr, -+, Xl
= P[Xi41€Crrr, -+ ) Xpgr € Choar | Xy Xigra]-
If I if the indicator of a Borel set C, (6) follows from
(7) E(P[Xit16Chaa, * - Xitr € Crpr | Xy, Xiprya]
Toy(X1) -+ Tep(Xi ) oy (Xiaraa) -+ Toy(Xw))

= P[Xlé'cl, ,XNSCN].
But the left hand side of (7) equals :

(8) E(E(ICk+l(Xk+1) Tt ICk+,(Xk+r)P[X1 & C1 y Tty Xk & Ck ,
Xigr1€Crgrga, -+ , Xn eCy I Xy Xigraal | Xy Xpgrq1))-

Now,
(9) P[Xlé‘Cl,"',Xkeck,Xk+r+1€Ck+r+1,"',XNSCNIXk,*",
Xk+r+1]

= E{llc,(X1) -+ Iop(Xi)E(Lcpppir(Xipgrsa) =+ Loy(Xw) | X,
;Xk+r+1)]|Xk, ,Xk+r+1}

= BE(Io,(X1) -+ Iop(X) | Xe)ET ey pin(Xiopran) =+ Toy(Xw) | Xigrin)

PX,eCry, X €Chy Xigrir € Crgrgr, ="

XyeCOx| Xy, Xpgral

by the Markov property (future and past; see Logve [2], p. 351-2).
Substituting the left hand side of (9) in (8) we see that

(10) E(Icpyy(Xpt1) -+ Loy (Xi4r )P X1 6 Cr,y -+, Xy & Gy
Xiotri1€ Crprr, -+ 5 X € Cn | Xy Xirpa] | Xy Xiprt1)
= E(IC1(X1) e ICN(XN) I X y "y Xk-i-’r+1)7

and (7) follows. []
Returning to the theorem let ¢ = 7. We need to show that with the given
assumptions,

(11) P8(Ay = ) =1 as.

(where the superseript (®) is used to indicate conditional probability ).
Write

(12) Ay = 2= A9,
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where
(13) AP =Nt X, ) 2 @), 6 —1) £t < 1)

Given ® by our lemma the A¢(i) are independent. Since they are also bounded
and nonnegative, the Kolmogorov three series theorem ([2], p. 237) states that
(11) is equivalent to

(14) S E®(AY) = »  as,
which by (6) and Fubini’s theorem reduces to
(15) 22 JunPIX(1) 2 (1) | X((5 = 1), -), X(5, )dt = ©»  as.
Of course, the right hand side of (15) equals X o
(16) 22 Jun ®(W(t) — (6 = )X(E — 1, -) = (t — ¢ + DX, -)]
[(t— 3+ 1)E— ) dy,
where
(17) &(s) = (2r)7H[7 exp — 1 dt.
Consider
(18) Hi(t) = [(6 — t)(t — ¢+ D7 — (6 — )5 — 1)’
—(t—i+ 1)) for (—1)=t<i.
We claim
(19) Hi(t) < 3G — 1)™
To see this write
(20) Hi(t) =[G —t)(t — i+ DIHE — )5 — 1)}
AL+ -+ DE-DY -1 — -+ 1
1 — (1= (@ — )
SHGE - 0@ — i+ DG — 1) =Y

by using (1 + 2 £ 1 + iz for z = —1. The same inequality yields (19).
Now suppose

(21) ANE) =N for 1 —1)=t<1.
Let A = {w: X((i — 1), o) = N(¢ — 1)} and X(4, @) = A’ for infinitely

many indices 7}. For w € 4, and this A by (14)-(16) and (19), > i E®(AG) =
©, if

(22) lim inf; ®(ra (i — 1)) > 0.

But (22) follows from assumption (4). Therefore, for a A satisfying the assump-
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tions of the theorem and of the form (23) we need only check that P(4) = 1.
Now, by the Kolmogorov-Petrovskii criterion (in the form given by (Strassen
[3], Corollary 4.5)),

(23) P[X(({ — 1), -) = M(s — 1)} infinitely often] = 1.

Let & be the first index (¢ — 1) such that X((4 — 1), ) = M(¢ — 1)}, & be
the second such index, ete. By (23) {t,} is a sequence of finite stopping times
such that ¢, T .

Let Z; = X(4, -) — X((¢ — 1), -). Evidently, P(4) =1 if

(24) PlZy 41 = Mpya{(tn + 1)} — 4,7} infinitely often] = 1.

Define the ¢ fields &, in the usual way as the set of all events 4 ¢ @ 2 4 n
[t £ kle ®(Zy, ---, Z) for all k& where ®(Zy, -+, Zy) is the ¢ field induced
by Z,, -+, Zy. Clearly §,, € &, C -+ and Zsy 41, -+, Zy,_,41 as well as
t1, -+, t, are measurable , . We may therefore apply the P. Lévy 0 — 1
law ([1], p. 398) to conclude that (24) holds if and only if,

(25) =1 PP Zy 40 2 Npa{ (8 + 1) — tn%}] = o a.8.

By a theorem of Doob ([1], Theorem 5.2, p. 145) Z, 4, is independent of
F,, and is distributed as Z;. We conclude that (25) is equivalent to

(26) Sr BN (b + 1) — )] = o as.

But this readily follows from assumption (4) and the theorem is proved for
functions ¢ such that \ satisfies (21).

To obtain the general case we need only note that for any ¢ satisfying
the assumptions of the theorem there exists Y* = ¢ for t sufficiently large such
that N* corresponding to ¢* satisfies the assumptions of the theorem and (21).
If \(t) = 1 for all ¢ this is obvious. Otherwise, if AN(a) = 1,a = 2, N(¢) exp —
1)\*(¢) is monotone decreasing for ¢ = @ and hence,

(27) D m=aA(n) [exp —3N*(n)] log (1 + n™7)
= ff AE) exp (—IN@))ETHdt = .
But
(28) Dm=aN(n) [exp —3N*(n)] log (1 +n7")
< { 20— M(n) lexp —5N(n)] log (1 + (n — 1)7)}
= [oiN*(¢) exp (—3N* ()P dt
where N(t) = \(n) for (n — 1) £ ¢t <mn, n = 2. This \* function will evi-
dently do and the theorem is proved.
We do not know whether condition (4) may be dispensed with altogether.
Evidently, we only used the fact that sup, 7 '¢(n) < o in order to conclude

that (26) holds. Furthermore the choice of the natural numbers as “condition-
ing times” is arbitrary. Any arithmetic progression would have done.
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