A REMARK ON THE KOLMOGOROV-PETROVSKII CRITERION¹

By P. J. BICKEL

University of California, Berkeley

Let $X(t,\omega)$ be any separable version of the standard Wiener process (Brownian motion) defined on a probability space (Ω, α, P) . Let ψ be any nonnegative function on $(0, \infty)$ such that $\lambda(t) = t^{-\frac{1}{2}}\psi(t)$ is monotone nondecreasing (\uparrow) . Define $T_{\psi}(\omega) = \sup\{t: X(t,\omega) \ge \psi(t)\}$ and $\Lambda_{\psi}(\omega) = \lambda\{t: X(t,\omega) \ge \psi(t)\}$ where λ is Lebesgue measure on $(0, \infty)$. The Kolmogorov-Petrovskii criterion (proved for coin tossing by Erdös) states that,

$$(1) P[T_{\psi} < \infty] = 1$$

if and only if,

(2)
$$Q(\psi) = \int_{1}^{\infty} t^{-3/2} \psi(t) \exp\left[-\frac{1}{2} \psi^{2}(t) t^{-1}\right] dt < \infty.$$

A beautiful treatment of these results is given in Strassen [3].

It is a trivial consequence of this criterion that if ψ is such that λ is \uparrow and (2) holds then,

$$(3) P[\Lambda_{\psi} < \infty] = 1.$$

The purpose of this note is to prove a partial converse of (3). Theorem. Suppose ψ is such that λ is \uparrow and

$$\sup_{t\geq 1} t^{-1} \psi(t) < \infty.$$

If $Q(\psi) = \infty$, then

$$(5) P[\Lambda_{\psi} = \infty] = 1.$$

We begin with a lemma which is well known.

LEMMA. Let $t_1 < t_2 < \cdots < t_n < \cdots$ where $t_n \uparrow \infty$ be a given sequence of numbers. Suppose $\mathfrak B$ is the σ field generated by the variables $\{X(t_i, \cdot)\}, i \geq 1$, and $\mathfrak B_j, j \geq 1$, is the σ field generated by the variables $\{X(t, \cdot)\}, t_{j-1} \leq t < t_j$ where $t_0 = 0$. Then the σ fields $\mathfrak B_1, \mathfrak B_2, \cdots$, are conditionally independent given $\mathfrak B$.

PROOF. This is, of course, a general fact about Markov processes. It evidently suffices to check the independence of events A_1, \dots, A_r where $A_j \in \mathfrak{G}_j$ is a cylinder set based on i_j of the variables $\{X(t, \cdot)\}, t_{j-1} \leq t < t_j$, where r, i_j and the variables chosen are arbitrary. Let $\mathfrak{G}^{(n)}$ be the σ field generated by $X(t_1, \cdot), \dots, X(t_n, \cdot)$. Since $\mathfrak{G}_n \uparrow \mathfrak{G}$ by the martingale convergence theorem it suffices to show that A_1, \dots, A_r are conditionally independent given $\mathfrak{G}^{(n)}$ for all n sufficiently large. Therefore we need only check that if X_1, \dots, X_N is

Received 20 September 1968.

 $^{^{\}rm 1}$ This research was partially supported by the Office of Naval Research, Contract, NONR N00014-67-A-0114-0004.

a discrete parameter Markov process $(X_1, \dots, X_{i_1}), (X_{i_1+1}, \dots, X_{i_2}), \dots$ $(X_{i_{r-1}}, \dots, X_N)$ are conditionally independent given $X_{i_1}, \dots, X_{i_{r-1}}, X_N$. It is easy to see that this follows from

(6)
$$P[X_{k+1} \in C_{k+1}, \dots, X_{k+r} \in C_{k+r} \mid X_1, \dots, X_k, X_{k+r+1}, \dots, X_N]$$

= $P[X_{k+1} \in C_{k+1}, \dots, X_{k+r} \in C_{k+r} \mid X_k, X_{k+r+1}].$

If I_c if the indicator of a Borel set C, (6) follows from

(7)
$$E(P[X_{k+1} \varepsilon C_{k+1}, \cdots, X_{k+r} \varepsilon C_{k+r} | X_k, X_{k+r+1}]$$

 $\cdot I_{C_1}(X_1) \cdots I_{C_k}(X_k) I_{C_{k+r+1}}(X_{k+r+1}) \cdots I_{C_N}(X_N))$
 $= P[X_1 \varepsilon C_1, \cdots, X_N \varepsilon C_N].$

But the left hand side of (7) equals

(8)
$$E(E(I_{C_{k+1}}(X_{k+1}) \cdots I_{C_{k+r}}(X_{k+r})P[X_1 \in C_1, \cdots, X_k \in C_k, X_{k+r+1} \in C_{k+r+1}, \cdots, X_N \in C_N \mid X_k, X_{k+r+1}] \mid X_k, X_{k+r+1})).$$

Now,

(9)
$$P[X_{1} \in C_{1}, \dots, X_{k} \in C_{k}, X_{k+r+1} \in C_{k+r+1}, \dots, X_{N} \in C_{N} | X_{k}, \dots, X_{k+r+1}]$$

$$= E\{[I_{C_{1}}(X_{1}) \dots I_{C_{k}}(X_{k})E(I_{C_{k+r+1}}(X_{k+r+1}) \dots I_{C_{N}}(X_{N}) | X_{1}, \dots, X_{k+r+1})] | X_{k}, \dots, X_{k+r+1}\}$$

$$= E(I_{C_{1}}(X_{1}) \dots I_{C_{k}}(X_{k}) | X_{k})E(I_{C_{k+r+1}}(X_{k+r+1}) \dots I_{C_{N}}(X_{N}) | X_{k+r+1})$$

$$= P[X_{1} \in C_{1}, \dots, X_{k} \in C_{k}, X_{k+r+1} \in C_{k+r+1}, \dots, X_{N} \in C_{N} | X_{k}, X_{k+r+1}]$$

by the Markov property (future and past; see Loève [2], p. 351-2). Substituting the left hand side of (9) in (8) we see that

(10)
$$E(I_{C_{k+1}}(X_{k+1}) \cdots I_{C_{k+r}}(X_{k+r})P[X_1 \in C_1, \cdots, X_k \in C_k, X_{k+r+1} \in C_{k+r+1}, \cdots, X_N \in C_N \mid X_k, X_{k+r+1}] \mid X_k, X_{k+r+1})$$

$$= E(I_{C_1}(X_1) \cdots I_{C_N}(X_N) \mid X_k, \cdots, X_{k+r+1}),$$

and (7) follows. \square

Returning to the theorem let $t_i = i$. We need to show that with the given assumptions,

$$(11) P^{\mathfrak{G}}(\Lambda_{\psi} = \infty) = 1 a.s.$$

(where the superscript (\mathfrak{B}) is used to indicate conditional probability). Write

$$\Lambda_{\psi} = \sum_{i=1}^{\infty} \Lambda_{\psi}^{(i)},$$

1088 P. J. BICKEL

where

(13)
$$\Lambda_{\psi}^{(i)} = \lambda[t: X(t, \cdot)] \ge \psi(t), (i-1) \le t < i].$$

Given \mathfrak{B} by our lemma the $\Lambda_{\psi}^{(i)}$ are independent. Since they are also bounded and nonnegative, the Kolmogorov three series theorem ([2], p. 237) states that (11) is equivalent to

$$\sum_{i=1}^{\infty} E^{\mathfrak{A}}(\Lambda_{\psi}^{(i)}) = \infty \quad \text{a.s.},$$

which by (6) and Fubini's theorem reduces to

(15)
$$\sum_{i=1}^{\infty} \int_{(i-1)}^{i} P[X(t)] \ge \psi(t) | X((i-1), \cdot), X(i, \cdot)| dt = \infty \quad \text{a.s.}$$

Of course, the right hand side of (15) equals

(16)
$$\sum_{i=1}^{\infty} \int_{(i-1)}^{i} \bar{\Phi}([\psi(t) - (i-t)X(i-1,\cdot) - (t-i+1)X(i,\cdot)] \\ [(t-i+1)(i-t)]^{-\frac{1}{2}}) dt.$$

where

(17)
$$\bar{\Phi}(s) = (2\pi)^{-\frac{1}{2}} \int_{s}^{\infty} \exp -\frac{1}{2} t^{2} dt.$$

Consider

(18)
$$H_i(t) = [(i-t)(t-i+1)]^{-\frac{1}{2}}[t^{\frac{1}{2}} - (i-t)(i-1)^{\frac{1}{2}} - (t-i+1)i^{\frac{1}{2}}]$$
 for $(i-1) \le t < i$.

We claim

(19)
$$H_i(t) \leq \frac{1}{4}i^{-\frac{1}{2}}(i-1)^{-1}.$$

To see this write

$$(20) \quad H_{i}(t) = \left[(i-t)(t-i+1) \right]^{-\frac{1}{2}} \{ (i-t)(i-1)^{\frac{1}{2}} \\ \cdot \{ (1+(t-i+1)(i-1)^{-1})^{\frac{1}{2}} - 1 \} - (t-i+1)i^{\frac{1}{2}} \\ \cdot \{ 1-(1-(i-t)i^{-1})^{\frac{1}{2}} \} \}$$

$$\leq \frac{1}{2} \left[(i-t)(t-i+1) \right]^{\frac{1}{2}} \{ (i-1)^{-\frac{1}{2}} - i^{-\frac{1}{2}} \}$$

by using $(1+x)^{\frac{1}{2}} \le 1+\frac{1}{2}x$ for $x \ge -1$. The same inequality yields (19). Now suppose

(21)
$$\lambda(t) = \lambda_i \quad \text{for } (i-1) \le t < i.$$

Let $A = \{\omega \colon X((i-1), \ \omega) \ge \lambda_i (i-1)^{\frac{1}{2}} \text{ and } X(i, \ \omega) \ge \lambda_i i^{\frac{1}{2}} \text{ for infinitely many indices } i\}$. For $\omega \in A$, and this λ by (14)–(16) and (19), $\sum_{i=1}^{\infty} E^{\mathfrak{G}}(\Lambda_{\psi}^{(i)}) = \infty$, if

(22)
$$\lim \inf_{i} \bar{\Phi}(\frac{1}{4}\lambda_{i}i^{-\frac{1}{2}}(i-1)^{-1}) > 0.$$

But (22) follows from assumption (4). Therefore, for a λ satisfying the assump-

tions of the theorem and of the form (23) we need only check that P(A) = 1. Now, by the Kolmogorov-Petrovskii criterion (in the form given by (Strassen [3], Corollary 4.5)),

(23)
$$P[X((i-1), \cdot) \ge \lambda_i (i-1)^{\frac{1}{2}} \text{ infinitely often}] = 1.$$

Let t_1 be the first index (i-1) such that $X((i-1), \cdot) \ge \lambda_i (i-1)^{\frac{1}{2}}$, t_2 be the second such index, etc. By (23) $\{t_n\}$ is a sequence of finite stopping times such that $t_n \uparrow \infty$.

Let
$$Z_i = X(i, \cdot) - X((i-1), \cdot)$$
. Evidently, $P(A) = 1$ if

(24)
$$P[Z_{t_n+1} \ge \lambda_{t_n+1} \{ (t_n+1)^{\frac{1}{2}} - t_n^{\frac{1}{2}} \} \text{ infinitely often}] = 1.$$

Define the σ fields \mathfrak{F}_{t_n} in the usual way as the set of all events $A \in \mathfrak{A} \ni A \cap [t_n \leq k] \in \mathfrak{B}(Z_1, \cdots, Z_k)$ for all k where $\mathfrak{B}(Z_1, \cdots, Z_k)$ is the σ field induced by Z_1, \cdots, Z_k . Clearly $\mathfrak{F}_{t_1} \subset \mathfrak{F}_{t_2} \subset \cdots$ and $Z_{t_{1+1}}, \cdots, Z_{t_{n-1}+1}$ as well as t_1, \cdots, t_n are measurable \mathfrak{F}_{t_n} . We may therefore apply the P. Lévy 0-1 law ([1], p. 398) to conclude that (24) holds if and only if,

(25)
$$\sum_{n=1}^{\infty} P^{\mathfrak{F}_{t_n}}[Z_{t_n+1} \ge \lambda_{t_n+1}\{(t_n+1)^{\frac{1}{2}}-t_n^{\frac{1}{2}}\}] = \infty \quad \text{a.s.}$$

By a theorem of Doob ([1], Theorem 5.2, p. 145) Z_{t_n+1} is independent of \mathfrak{F}_{t_n} and is distributed as Z_1 . We conclude that (25) is equivalent to

(26)
$$\sum_{n=1}^{\infty} \bar{\Phi}[\lambda_{t_n+1}((t_n+1)^{\frac{1}{2}}-t_n^{\frac{1}{2}})] = \infty \quad \text{a.s.}$$

But this readily follows from assumption (4) and the theorem is proved for functions ψ such that λ satisfies (21).

To obtain the general case we need only note that for any ψ satisfying the assumptions of the theorem there exists $\psi^* \geq \psi$ for t sufficiently large such that λ^* corresponding to ψ^* satisfies the assumptions of the theorem and (21). If $\lambda(t) \leq 1$ for all t this is obvious. Otherwise, if $\lambda(a) \geq 1$, $a \geq 2$, $\lambda(t) \exp -\frac{1}{2}\lambda^2(t)$ is monotone decreasing for $t \geq a$ and hence,

(27)
$$\sum_{n=a}^{\infty} \lambda(n) \left[\exp \left(-\frac{1}{2} \lambda^{2}(n) \right) \right] \log \left(1 + n^{-1} \right) \\ \ge \int_{a}^{\infty} \lambda(t) \exp \left(-\frac{1}{2} \lambda^{2}(t) \right) t^{-1} dt = \infty.$$

But

(28)
$$\sum_{n=a}^{\infty} \lambda(n) \left[\exp \left(-\frac{1}{2} \lambda^{2}(n) \right) \log \left(1 + n^{-1} \right) \right]$$

$$\leq \left\{ \sum_{n=a}^{\infty} \lambda(n) \left[\exp \left(-\frac{1}{2} \lambda^{2}(n) \right) \log \left(1 + (n-1)^{-1} \right) \right\} \right\}$$

$$= \int_{a-1}^{\infty} \lambda^{*}(t) \exp \left(-\frac{1}{2} [\lambda^{*}(t)]^{2} \right) t^{-1} dt$$

where $\lambda^*(t) = \lambda(n)$ for $(n-1) \leq t < n$, $n \geq 2$. This λ^* function will evidently do and the theorem is proved.

We do not know whether condition (4) may be dispensed with altogether. Evidently, we only used the fact that $\sup_n n^{-1}\psi(n) < \infty$ in order to conclude that (26) holds. Furthermore the choice of the natural numbers as "conditioning times" is arbitrary. Any arithmetic progression would have done.

REFERENCES

- [1] Doob, J. L. (1953). Stochastic Processes. Wiley, New York.
- [2] LOÈVE, M. (1960). Probability Theory (2nd Ed.). Van Nostrand, Princeton.
- [3] STRASSEN, V. (1967). Almost sure behaviour of sums of independent random variables and martingales. Proc. Fifth Berkeley Symp. Math. Statist. Proc. 2. Univ. of California Press.