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ON BRANCHING PROCESSES IN RANDOM ENVIRONMENTS'

By WarteEr L. SMitH AND WiLniaMm E. WILKINSON

Unaversity of North Carolina and Duke University

0. Summary. {{,}is a sequence of iid “‘environmental” variables in an abstract
space ©. Each point ¢ ¢ © is associated with a pgf ¢¢(s). The branching process
{Z,} is defined as a Markov chain such that Z, = k, a finite integer, and given Z,
and ¢, Zns is distributed as the sum of Z, iid random variables, each with
pef ¢, (s). Set £(¢a) = ¢, (1) and assume that E [log£(¢)| < . Then: (i)
P{Z, = 0} — 1if E log £(tx) < 0; (i) ¢& =aet lim P{Z, = 0} < 11if

Elog£(¢n) > 0 and E |log (1 — ¢;,,(0))| < o, Furthermore {qk} k =1,2 -,
forms a moment sequence.

1. Introduction and description of the process. In the preface to T'he Theory
of Branching Processes, Harris (1963) defines a branching process as “a mathe-
matical representation of the development of a population whose members re-
produce and die, according to laws of chance. The objects may be of different
types, depending on their age, energy, position, or other factors. However, they
must not interfere with one another.” This assumption, that different objects re-
produce independently, unifies the mathematical theory and characterizes
virtually all of the branching process models in the literature. While this assump-
tion allows the definition to encompass a large number of models, it also limits
the application of the models of branching processes, since the natural processes of
multiplication are often affected by interaction among objects or other factors
which introduce dependencies.

The model with which we shall be concerned in this paper may be described
mathematically as follows. Let {¢,},n = 0, 1, 2, - - -, be an infinite sequence of in-
dependent and identically distributed “‘environmental variables” taking values
in some space ®. We suppose that associated with each point { ¢ © is a proba-
bility generating function (pgf)

(1.1) $(s) = 2imopi)s, 0=s=1,
and we further suppose that for each fixed s, 0 < s < 1, {¢¢,(s)} is a sequence of
independent and identically distributed random variables. Define a matrix (P;;)
with elements
1.2) Pi; = coefficient of s in El¢, (s)I, 4,7 =0,1,---.
Because of our assumptions, P;; is independent of n. Clearly P;; = 0 for all 7 and
J, and since
1.3) Dm0 Pys’ = Elgr, ()]
it follows, putting s = 1, that ) j=o Ps; = 1 for all 4.
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We can define a temporally homogeneous Markov chain {Z,} on the non-
negative integers by choosing initial probabilities

PZo=73)=06p=1, 1=k
=0, ©#k,
for some positive integer &, and defining
P(Zy=ao, - ,Zn=as) = P(Zo = a0)Pops; *** Pop_ya, -
If P(Z, = ) > 0, then Pj; is the transition probability
P(Zny = jlZu = 19).

While all our results follow from the mathematical description of the model
given above, we may interpret the process {Z,} as a branching process developing
in an environment which changes stochastically in time and which affects the re-
productive behavior of the population. For example, the development of an
animal population is often affected by such environmental factors as weather
conditions, food supply, and so forth. In the physical interpretation of the model,
each point in the space ® represents a possible state of the environment, and the
assumptions about {{,} imply that environmental states are independently
sampled from one generation to the next.

As in the classical Galton-Watson process [cf. Harris (1963), Chapter IJ,
we consider objects that can generate additional objects of the same kind. The
initial set of objects, called the zeroth generation, has offspring that constitute
the first generation; their offspring constitute the second generation, and so on.
Since we are interested only in the sizes of the successive generations, and not
the number of offspring of individual objects, we shall let Z,, n = 0, 1, ---,
denote the size of the nth generation, and shall hereafter assume that Zo = 1
unless stated otherwise.

In the Galton-Watson process, it is assumed that the number of offspring of
different objects are independent, identically distributed random variables with
probability generating function ¢ (s), say. In our model, the probability generat-
ing function ¢ (s) is replaced by one of a family of probability generating func-
tions {¢; (s), ¢ € O}, depending on the “state” of the environment at the genera-
tion under consideration. Thus the probability p;(¢,) in (1.1) is interpreted as
the probability that an object existing in the nth generation has j offspring in the
(n + 1)st generation.

More specifically, we assume that the environment passes through a sequence
of “states” governed by the process {¢.}. Given {,., the number of offspring of
different objects in the nth generation are independent, identically distributed
random variables with probability generating function ¢, (s).

As s T 1, for arbitrary fixed ¢ € O,

[A = ¢ (s))/A — s)]

increases to a limit £({), say, which is the mean family size for families born in



816 WALTER L. SMITH AND WILLIAM E. WILKINSON

environment {. It is not difficult to show that {£({,)} is a sequence of independent
and identically distributed random variables. We make the important assump-
tion, however, that

P{E(a) < o} = L

To avoid triviality we shall introduce two further assumptions, namely that,
for every n,

A@): Plpo(tn) < 1} =1
A(): P{po(n) + p1(ta) < 1} > 0.

In the theory of the classical Galton-Watson branching process the determina-
tion of conditions for almost certain extinction is of paramount importance. The
primary purpose of the present paper is to study the same fundamental question
of extinction, but for the more general branching process in random environ-
ments, as outlined above. If such a process will become extinet, with probability
one, we find it convenient to say the process is mortal; if the probability of ultimate
extinction is strictly less than one, we shall say the process is tmmortal. Our main
result, Theorem 3.1, shows: (a) the process is mortal if E log £(¢,) < 0; (b) the
process is immortal if E log £(¢,) > 0 and if additionally E|log {1 — ¢, (0)}| < .
Since a preliminary account of the present research appeared (Wilkinson, 1967)
it has been shown (Smith, 1968) that the conditions (b) are necessary for im-
mortality of the process. Thus the latter paper and the present one completely
settle, at an acceptable level of generality, the matter of necessary and sufficient
conditions for almost certain extinetion of a branching process in random en-
vironments. The striking feature of conditions (b) for immortality is the involve-
ment of the probability of no offspring to a particular parent; this feature of
conditions (b) can be seen in Smith (1968) to be concerned with preventing
“catastrophes’ in which almost the entire population dies out in a single genera-
tion.

It might be pointed out that the elegant functional equations that play such a
vital role in the theory of the classical Galton-Watson process, and many pub-
lished generalizations thereof, do not arise in the present study. Instead a certain
dual Markov process {X,} emerges, taking values on the unit interval. It
transpires that this X,-process converges in distribution, there being some
limiting ergodic distribution funetion G'(z) on [0, 1]. This df G'(z) has an intri-
guing and intimate connection with the Z,-process. If we write g for the prob-
ability of ultimate extinction of the Z,-process when, initially, Zo = k, then
Theorem 4.4 shows that

(1.4) a = [o2"dG (x).

In other words the extinction probabilities ¢, form a moment sequence. Important
use will be made of this faet in a further paper (Wilkinson, 1969) concerned with
actually calculating the probabilities {qx}.
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The present theory includes the classical theory as a special case; in that earlier
theory the ergodic df G'(z) reduces to a degenerate distribution placing unit
probability at some point ¢, 0 < ¢ < 1. As is well known in this case ¢ = ¢*,
in agreement with (1.4). Furthermore, it now appears that the present theory
can be generalized, with little difficulty, to cover the situation where the environ-
mental variables {{,} have Markovian dependence rather than being independent.
This generalization will be published in the near future.

2. Some preliminary results concerning Z, . In this section we shall prove a
number of theorems about Z, which are basic to our derivation of a.s. extinction

conditions.
TrEOREM 2.1. If I, (s) s the pgf of Z, then

(21) I, (8) = Ell,4 (¢’§‘n—1 (8))r ‘ n = 17 27 te
Proor. Clearly,
I, (s) = E(s™)

= > 20P(Zps = DEGE"™|Zpy = 1)
= 270 P (Zna = D)Eldr,_, (5)
from (1.3). By bounded convergence, we obtain
I, (s) = B{2 250 P (Zos = 9)ldr,_, ()]} = Ellps(dr,_, (5)),

and the proof is complete.
By repeated application of Theorem 2.1, we obtain the representation

(2.2) I, (s) = By (e, (- -+ b, ,(8) =+ +)).
TaEOREM 2.2. If m = Et(t,) < o and if Zo = 1 then
2.3) EZ, =m", n=0,1,---.

Proor. For convenience, let us write II,," (1), for example, for the left-hand
derivative of I, (s) at s = 1.If m < o, we can deduce from (2.1) by monotone
convergence that

I," (1) = Moy (DEE@En1) = m I, (1).

Thus (2.3) follows by an obvious inductive argument.
TurorEM 2.3. For every positive integer N,

PO<Z,<N)—0 as n— oo,
Proor. Letz > 0, be an integer. If P (¢, (0) > 0) > 0, then

P(Znss = 0| Z, = 2) > 0.
Hence
P(Zu = zforsomet = 1,2, -+-|Z,=2) =1 —=PZ,u=0|Z,=2) <1,

so the state z of the Markov chain {Z,} is transient.



818 WALTER L. SMITH AND WILLIAM E. WILKINSON

If P (¢, (0) > 0) = 0, then by 4 (ii)
P(Zpp>2Z,=2)>0.

But if ¢, (0) almost surely vanishes then {Z,} must be nondecreasing, almost
surely. Hence

P(Zu = zforsomet = 1,2, ++ |Zo=2) £ 1 = P(Znn > 2|Zy=2) <L

Therefore, once again, z is transient. A consequence of the transience of every
“state’” z > 0 is that

limpsw P (Z, = 2) = 0.

The theorem now follows.
TraeoreM 2.4. There is a constant ¢, 0 < ¢ =< 1, and for every s € [0, 1)

II.(s) — ¢, as n— oo,

Proor. Clearly II, (0) is a nondecreasing function of n, and so tends to a
limit ¢, say (0 < ¢ < 1), as n tends to infinity.
If N is a positive integer,

O, (s) = P(Zn = 0) + > Y0P (Zy = i)s' + Limwis P(Zn = 9)5".
Given s, 0 < s < 1, and an arbitrarily small ¢ > 0, choose N sufficiently large
that "™/ (1 — s) < ¢/2. Then

S 2w P(Z, = 0)s' < ¢/2.
By Theorem 2.3, we can choose n sufficiently large that
P (Z, =1) < ¢/2.
Thus, for n sufficiently large,
O,(s) < I, (0) + e
Hence, since e is arbitrary,
lim Sups-« I, (s) = c.

But II, (0) £ I, (s), s0 ¢ < lim infu.e II, (s) and the proof is complete.

Extinction is the event that the random sequence {Z,} consists of zeros for
all but a finite number of values of n. Since P (Znx = 0| Z, = 0) = 1fork = 1,2,
.-+, extinction is equivalently the event that Z, = 0 for somen = 1,2, - . It
follows that if ¢ is the probability of extinction, then

(24) g = lim.e I1,(0).

The following theorem shows that m =< 1 is a sufficient condition for extinction
with probability one; this condition is, however, not necessary.
TuroreM 2.5. If m =< 1, then ¢ = 1.
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Proor. Since EZ, = m", it follows that for m < 1 and N an arbitrary positive
integer,

P(Z.z N) = (1/N)EZ, = 1/N.
Given e > 0, we can choose N sufficiently large that
(2.5) P(Z,=2N) < ¢2
for all n, and then choose n sufficiently large that
(2.6) P(0<Z,<N)<¢2
(Theorem 2.3). It follows from (2.5) and (2.6) that for n sufficiently large,
P(Z,=0)>1—e
Hence
limp,e I,(0) = 1 — e
The theorem follows from the arbitrary smallness of e.

3. Conditions for almost certain extinction. Consider the diserete-parameter
Markov process {X,} on the unit interval, defined as follows: for arbitrary but
fixed s ¢ [0, 1), let Xo = s, and define

Xn—[—l = ¢§'n(X”)7 n = 0’ ]_’ e,

The stochastic process {X,} will be called the dual process associated with the

branching process {Z,}.
For the expected location of the dual process after n steps, we obtain straight-

forwardly
(3.1) E(X,|Xo = s0) = E¢g,_, (¢r,_o (- -+ 5 (50) +++)).

Since the random variables ¢o, ¢1, ---, ¢ are independent and identically
distributed, we may renumber them without affecting the value of the right-
hand side of (3.1). Hence, replacing ¢, by {1, 7 = 0,1, --- ,n — 1, we have

E(Xo| Xo = 80) = B¢y (g, -+ g,y (s0) - +)).
On comparing this expression with (2.2), we discover that
(3.2) E(X,|Xo = s0) = I, (s0)-

Let Uy, U, - - - be a sequence of independent, identically distributed random

variables such that E|Uy| < .
Define a sequence of random variables W, ,n = 0, 1, - - - , as follows: W, = 0,

and
Wn+1 = Wn + Un+1, if Wn + Un—[—l > O;

n = 0’ 1, .o
=0, if Wo4 Uppn =0,
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A sequence {W,} of nonnegative random variables defined in this manner will
be called a Lindley process. The following result is due to Lindley (1952), who
introduced such processes in connection with a waiting-time problem in queueing
theory.

TureoreM A. Suppose E|U| is finite and U, is not zero with probability one.
Then a necessary and sufficient condition that the distribution function P (W, < z)
tends to a nondefective limit distribution function as n — o s that EUy < 0. If
EU, 2 0, P(W, < z) tends to zero for any x = 0.

For typographical simplicity we shall henceforth write 7, for ¢;, (0). Note that,
in view of our assumptions, {#,} is a sequence of independent and identically
distributed random variables.

TueoreEM 3.1. Suppose that Ellog £(¢,) | < .

(a) If E log £(¢n) = 0, then P(Z, > 0) — 0 as n — o, i.e. the branching
process is mortal.

(b) If E log £(¢.) > 0 and f, additionally,

Ellog (1 — na)| < o,

then P (Z, > 0) tends to some strictly positive limit as n — «, i.e. the branching
process 1s tmmortal, :

Proor. (a) E log £(¢n) = 0.If £(¢n) = 1 with probability one, then m = 1,
and by Theorem 2.5, IT, (0) — 1 as n — . Thus we can henceforth assume
that P (¢(5.) = 1) < L.

Let My = {¢:6(¢) < 1} and M, = {¢:£(¢) > 1}. Define piecewise linear func-
tion ¥¢, ¢ ¢ ®, on the unit interval by

Ye(s) = (1 — @) + £@)s, ¢eMy,
(3.3) and
¥ (s) =0, s <1 —1/8@),
(I —£@)) +£Q@)s, s=1—1/E0),

Plainly (1) = 1 and ¥ (1) = ¢ (1). In addition, ¥;(s) < ¢ (s) for all
sel0, 1].

Let us now define on the unit interval a process {¥,},n = 0,1, 2, - - -, based
on the functions y; as follows:

§£M2.

[

Y, =
Yo = ¢, (Ya), n=201,---
It is not hard to see that
EYu|Yo=0) = By, (oo (- ¥1,0) --+))
By, ey (00 050(0) <+ +))

IIAIA - TIA

Ed¢,_y (b, (- ¢5,(0) -+ +))
= EX,|X, = 0).
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x

If we write s = 1 — ¢, z = 0, the equations (3.3) become
Ul —e") =1-2¢, z —log £(5) <0,
=1—¢ @18 5 _log£(r) 2 0.
At this point we introduce a further process:
W, = —log (1 — Y,), n=0,1---.
It follows that
PW, £2) =P, =1—-¢"), 20, n=01"---.

Let us write Uy, U, - - - for the sequence of independent, identically distributed
random variables given by .

Un = —log &(§n), n=12---.
Then
Yo = ¥, (Ya)
=, (1 —e")
{0, Wo+ Unn < 0,
L= ¢ "0l W4 Ups 2 0.
Hence

Wan = —log (1 — Yui1)
0, Wot U <0,

- (Wm + Unia, Wat Uns 2 0.

It appears, therefore, that { W} is a Lindley process. Since
EU, = E(—log £({a1)) 2 0,
it follows from Theorem A (Lindley) that
PW, =z)—0 forall =0, asn— o.
Hence
PY,=2=1—¢°|Yy=0)—>0 forall =0, asn— oo;

ie. Y, — 1 in probability, given Y, = 0. By bounded convergence,
E(Y,.|Ye=0)—1,and thus E (X, | Xo = 0) — 1. Finally, by (3.2), I1,(0) — 1
as n — oo ; that is, P (Z, > 0) — 0 so the process is mortal.

(b) Elog £(tn) > 0and E|log (1 — 7,)| < . Write a = E log £(¢,). Since
Ellog (1 — 1,)| < o, we can choose ¢, sufficiently close to unity that

(34) |20 log (1 — ma) dP| < a/4
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Janzeol0g E(tn) AP > 3a/4.
Then we can find a large M’ such that

for all ¢o = ¢o’. Next choose co = ¢ so large that

(3.5) Jrnzeottw sulog £(5a) AP > a/2
forall M = M. Finally, ix M = M " so large that
(3.6) log M > |log (1 — co)|
and

(3.7) Jecosalog £(5n) AP < a/4.
Since

[eomalog £(n) dP = (log M)P{E(a) > M)
it follows from (3.7) that

P{t(ca) > M} < a/(41og M).
Hence
(3.8) |J.E(§n)>Mvﬂn§00 log (1 — 5,)dP| < allog (1 — co)|l/ @ log M) < a/4,
by (3.6). Let us define

61&(8) =1- Nn y if M > Co,
= (1 —¢,6))/(L—=s), if 7 =co and &) = M,
= 1_7,7»; if nnéco and E(g-n)>M'

Thus, for each fixed 5,0 = s < 1, 8,(s) is a random variable. We wish to show
that for s sufficiently close to 1, £ log 8.(s) > 0. To this end we note that, by
bounded convergence,

1imy 11 [, <ot <o 10g [(1 — 1, (8))/ (L — $)]1 AP = [y, <cotcp < [log £(§4)] dP.
Hence
limy 11 B 10g Ba(s) = [p>eo 10g (1 — 1) dP + [y, zco.t0 <m [l0g £(5n)] dP

+ [rzcotansulog (1 — 1,) dP > — (a/4) + (a/2) — (a/4) = 0,

by inequalities (3.4), (3.5) and (3.8). Therefore there exists ¢ such that
E log B.() > 0.

We shall describe the construction of certain functions y; (s) which dominate
the functions ¢;(s) and are piecewise linear. For each { ¢ ® we set

F@) = (1 — ()1 —1t), if ¢0)=<co and ¢ (1) = M,
=1— ¢(0), otherwise.
() If ¢r(0) > coorif ¢;(0) < coand ¢’ (1) > M, let
Yr(s) = ¢ (0) + [1 — ¢ (0)s = [L — £ ()] + [£()ls.
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Since ¢ (s) is convex for 0 < s < 1 we must have ¢¢(s) = ¥ (s) for all s in this

range.
(b) If ¢ (0) < co, ¢’ (1) < M, and ¢ (t) 2 ¢, let

‘l’!‘(s) = ¢§'(t)7 0=s<t
=W +E@OIEs—1), t=s=1

The fact that ¥;(s) dominates ¢; (s) in the range t < s < 1, follows from the
observation that (since ¢;(s) is convex)

pex(t) + qpe (1) = & (vt + q)

with, in particular, p = (1 — s)/(1 — ¢) and ¢ = 1 — p. This yields, since
¢§(1) =1, that .

(A= 8)ec(t) + (s — /A —1) 2 &(s)

from which the required result follows by our definition of £©).
We note that our definition of y; (s) is this case is equivalent to the following:

¥ (s) = o (2), ' 0=<s<i

=D —-FON+ERs tss=1L

(¢) If ¢¢(0) < co, & (1) < M, and ¢¢(t) < ¢, let us write
y=E¢) — 0 =l/EEC]

and define

1A

Ye(s) =4, 0<s<y,
= —E@I+EEN v=s=1.
The arguments of case (b) must apply to the present case. It follows quickly
from the assumption ¢; (¢) < ¢ that v > ¢, and so from (b) we have
() SL =N+ EOh =1

by the definition of . Thus, for s < v, ¢;(s) < ¢:(v) =t = ¥;(s). On the other
hand, for y < s < 1, the fact that ¢¢(s) = ¥¢(s) is immediate from (b).

At this point we wish to introduce a certain sequence of independent and
identically distributed random variables {W.,}. It is clearer, however, if we lead
to these by means of some intermediate sequences. To begin with, let z = 0

and write
a = [log (1 —t).
(a) If ¢ (0) > coorif ¢;(0) < coand ¢ (1) > M we have
(1 —e¢7)=1—exp—{z —log[l — ¢:(0)]}
=1 —exp — [z — log £ §)].
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() If ¢ (0) < co, ¢ (1) < M, and ¢ (t) = t we have
Vel — ™) = ¢ (t), v < a
=1l—exp—[z—1logt ()], 2 a
(e) If ¢ (0) = co, & (1) < M, and ¢¢(t) < t, we have

Bl —e")=1-2¢" z < a4 log (),
=l—exp—[z—1logt()), 2 a+logt().
Define a Markov process { Y.}, n = 0, 1, - - -, on the unit interval as follows:
Yo=1—¢"
Yo = ¢, (Ya), : n=201---.

Because the y-functions dominate the corresponding ¢-functions it is easily seen
that

(3.9) EiX,|Xo=1—¢€¢" £ E{Y,|Yy=1—¢"}.
Furthermore, ¥, = 1 — ¢ * as is easily seen by an inductive argument.
Next define a Markov process {W,},n = 0, 1, --- , by the relation
W,= —a—1log (1 —Y,), n=01,---,
and let {U,}, n = 1, 2, ---, be the sequence of independent and identically
distributed random variables:
U, = _IOg éi(g‘n—l); n = 17 27 R

Since Y, = 1 — ¢ 7, it follows immediately that W, = 0(W, = 0). It is also
important to note that U, = 0 in cases (a) and (b), the reasoning being as

follows:
(a) Inthiscaset (fn) =1 — &¢,_, (0) so that, necessarily, —log £ (tna) = 0.
(b) In this case ¢¢,(t) = ¢t and

EGum) = (1 —¢r,_, 0)/(1 —1)

so that, again, —log £ (¢»—1) = 0.
Now, in view of our definitions, we have

Yo = dp, (1 — € 7).
If we consider the cases (a), (b), (¢) separately, we can then show that
¥, (1 — eIy =1 — ¢ Wa+ Unnn <0,
1—exp (—(Wa+ Una +a)), Wo+ Una = 0.

Hence we find that
Yn+1 =1 e_“, W, + Un+1 < 0,
=1- exp (_' (Wn + Un+1 + 0‘)), Wn + Un+1 ; 0.
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Therefore
Wi = 0, Wo+ Unn <0,
=W, + Un+1, W+ Un+1 2 0.

We have thus shown {W.} to be a Lindley process with W, = 0. But
EU, = E(—log £ (t»1)), and

Elog £ (¢a)
= [m>elog (1 = m) dP + [p<coicnsulog[( — ¢, )/ (1 — ¢)]dP
+ [nseosgooulog (1 — n,) dP
= E log B.(¢).

We have already shown that £ log 8. (t) > 0, so that EU,, < 0. By Theorem A it
follows that the W ,-process has a non-defective limiting distribution, i.e.

(3.10) limg e lim,,o P{W, < z} = 1.
Thus, given any y ¢ (0, 1), we can find 2o(y) and n(y) such that
P{W, <z} > vy, alln = ne.
This implies that
PlY,=1—e¢®|Yi=1—¢% >y aln = n,

and hence
EB{Y,|Yo=1—¢% =1 —ye ™ alln = ne.

Since the right-hand side of this inequality is independent of n, we infer that
lim supn.w B{Y,|Yo=1— ¢ % < 1.
From (3.9) and (3.2) we can conclude that
limp,e M, (1 — ¢ %) < 1.
It follows, from Theorem 2.4, that for all s ¢ [0, 1),
limy.e I, (s) < 1.

In particular, taking s = 0, we find that the probability of ultimate extinetion is
strictly less than one. This concludes the proof of Theorem 3.1.

4. The ergodic distribution. Let us write,fork = 1,2, --- ;0= s = 1,
P (s) = E{s™|Z, = k}.

For simplicity, we continue to write II{" (s) as II, (s).
TueorEM 4.1. For k = 1,2, - - - , the pgf II (s) 4s given recursively by

Hék) (S) — Sk

P (s) = B (¢, (s)).
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Since the proof of this theorem is so similar to that of Theorem 2.1, we omit it.
Similarly we omit the proof of the following, analogous to Theorem 2.4.

THEOREM 4.2. If for k = 1,2, - -+, q& is the probability of ultimate extinction
conditional upon Zy = k, then

MY () > g <1 as n— w,
for all s €0, 1).

At this point we shall establish a relationship between I’ (s) and the dual
process { X,}. Evidently, for so [0, 1),

E{X,"| Xo = s} = Elgr,_, @, o (- dto(50) -+ )"
= Eld, (b6, (- * bty (50) -+ NI
However, Theorem 4.1 shows that ’

LY (s0) = Eleo (5, (- bty (50) -+ NI,
and hence that
oL (s0) = B{X.F| Xo = so}.

From this equation and Theorem 4.2 we have:
THEOREM 4.3. Asn — o, for any sy [0, 1),

E{X," | Xo = s} = @i,

where g 15 the probability of ultimate extinction when Zy = k.

Because 0 = X, = 1 for all n, it follows from Theorem 4.3 that there exists a
random variable X such that X, tends to X, as n — «, in distribution; and
g = EX". If, for 0 < 2 < 1, we write G(z) = P{X < z} then we shall refer to
G (v) as the ergodic distribution (function) of the dual process {X,}. Theorem 4.3
shows that G'(z) is independent of X, provided 0 < X, < 1.

TrEOREM 4.4. To any branching process {Z,} in a random environment there cor-
responds on the unit interval o dual Markov process {X,} possessing a limiting
ergodic distribution G. The kth moment of G is the probability qx that the branching
process becomes extinct, given that Zo = k. Furthermore, if conditions (a) of Theorem
3.1hold,G(1—) =0andsoq. = 1forallk = 1,2, --- . On the other hand, if con-
ditions (b) of Theorem 3.1 hold, G(1—) = 1 and

¢ = [o2"dG() | 0, as k— .
Proor. (i) Under conditions (a) we have from Theorem 3.1 that
Q= ftl,xdG(x) = 1.
Necessarily, therefore, G(1—) = 0 and
¢ = [t2"dG () =1, all k.
(i1) Under conditions (b) we have, in terms of processes already defined,

P{Yn§2|Yo=-S‘o}éP{Xnélecu:so}, 0=s<Ll
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Hence,
liMgoe liMpeo P{X, =1 — e | Xo = 1 — €%
2 liMyse liMyew P{W, S 2| Wo = 0} =1, by (3.10).
Given a small e > 0, we can therefore choose z, sufficiently large that
limpw P{X, 1 —¢ | Xi=1—-¢">1—c
This establishes that
GA —e @)y > 1 —¢
and hence that G(1—) = 1 as claimed. From this result it is easily seen that
¢ = [o2"dG(z)
decreases to zero as k — co.
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