The Annals of Mathematical Statistics
1969, Vol. 40, No. 5, 1784-1790

A ROBUST POINT ESTIMATOR IN A GENERALIZED
REGRESSION MODEL

By P. V. Rao anp J. I. THORNBY
University of Florida

1. Introduction and summary. The objective of the present paper is to define
a robust point estimator of the parameter 8 in the model

(11) yj=a+gj(ﬂ)+zi: j=1’2;'°',n7
where a and 8 are unknown parameters, g1, g2, -+ + , g» are real-valued functions
of real variable satisfying suitable conditions and 21, 2, - - - , 2, are independent

identically distributed random variables having a distribution function belonging
to a specified class.

An important special case of (1.1) is the regression model obtained by taking
g;(8) = Bz;,j = 1,2, .-+, n, where the 2’s are known constants. Robust point
estimators of 8 in this case have already been given by Adichie 1], who followed
the method of Hodges and Lehmann and by Brown and Mood [7], who considered
the so-called “median” estimators. The estimator presented in this paper, which
is also a Hodges-Lehmann type estimator, therefore, provides a third alternative
for the regression model.

In Section 2 of this paper, a robust point estimator for 8 in the model (1.1)
under some suitable regularity conditions on g; and z; is defined. In Section 3, a
simple computational technique for the calculation of this estimator is given. A
small sample property of the estimator is given in Section 4, and in Section 5,
asymptotic normality is established under some regularity condltlons In Section
6, some special cases of the model are considered.

2. The model and the estimator. Let 41, %2, - - - , ¥ be independent random
variables with distribution function:

(21) Paa(yjéy)=F[y—a—g,(ﬂ)], j=172:""n7
where Pus( ) indicates that the probability is computed for parameter values
aand B, g1, - -, g are known functions of 8 that are not all equal, and, for all

1 < j, the functions ¢;;(8) = ¢:(8) — ¢;(8) are either all never-increasing or all
never-decreasing. Without loss of generality, we may assume that the functions
gi; are never—decreasing, the other case being obtained by simply replacing the
subseript jbyn —j+ 1iny;,5 =1, 2, , n. The parameter 8 will be assumed
to belong to a bounded interval @ of the real line.

Now for each pair1 = 72 < j = n, and a ¢ Q let,

(2.2) Zii(@) =1 ify;— y; = gs(a),

0 otherwise.
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Put 4, (a) = Zléiqén Z;(a), and define 8,* and 8,** by

B = SUPae {G:ha(a) < in(n — 1)},
B, * = infug {aiha(a) > In(n — 1)}.

Then B, defined by
will be taken as a point estimator for 3.
Clearly, Z;;(a) is never-decreasing in a for all 2 < j so that A, (a) is also never-
decreasing. This implies that 8.%, 8,** and f, are well defined and that
(24) Bn* = B = B

3. Computation of 3, . A simple method for computmg the estimator 8, is
given in Theorem 1.

TaroreM 1. Let y;and g;(j = 1,2, -+, n) be as in (2.1) and for each 7 < j
define'
(3.1) a;; = inf,.o {a:yi —y; = gij(a)} 1=21< J =< n.

Then B, is the median of the set of 3n(n — 1) numbers a:;,1 £ 7 <j = n.

Proor. The proof is analogous to the proof of equation (4.1) of Hodges and
Lehmann [6].

As an application of Theorem 1, consider the problem of computing 8. for
Graybill’s data given in [1]. If we take g;(8) = z;8, where x1 > 2, > --- > a7,
we can easily see that g;;is never-decreasing for all 7 < j and that ai;; = (ys — y;)/
(x; — ;). Hence 3, is the median of the numbers (y: — y;)/ @i —2;);1 S 1 <j =7,
1. e.

B, = Medic; { (y: — yi)/ (@ — 23)},
which can be easily seen to be equal to 4.00, a value equal to Adichie’s [1] esti-

mate of 8 for the same data.

4. Median unbiasedness. In general, the estimator 3, will neither be unbiased,
nor possess invariance and symmetry properties similar to those given in Lemmas
4.1 and 4.2 of [1]. However, median unbiasedness of §, can be established for
many cases as can be seen from Theorem 2.

TraEOREM 2. Let F be continuous and Pg( ) indicate that the probability is com-
puted with parameter value B fixed. Then,

H1 — Pglha(B) = pal} = Pp(Bn = B) = ${1 + Pslha(8) = ual},
where u, = in(n — 1). If n(n — 1) £ 0 mod 4, then
Pﬂ(ién = B) = %)

so that B is a median of By .

LIf y; — y; > gsi(a) for all a e Q, then we put ai; = sup Q.
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Proor. The proof is analogous to the proof of Lemma 5 of Hodges and Leh-
mann [6].

It must be pointed out that even in the case where n(n — 1) = 0 mod 4,
Pglh, (8) = mn] will be typically small, so that 8, is at least “approximately”
median unbiased.

5. Asymptotic normality. We shall now consider the large sample distribution
of the estimator 3, defined by (2.2). Theorem 3 gives a set of conditions under
which 8, will have an asymptotic normal distribution.

TarorEM 3. In (2.1) assume the following:

(I) F s absolutely continuous with an absolutely continuous, square integrable
density f.

(I1) (a) There exists a function G such that hm._,o G(e) = 0and forallt < j,
a and u, |gi;(a + ) — gii(@)| = G(w), and

(b) For the parameter value B, there exists a constant A(B) satisfying,

limpae 6078 2 ics [958 + un™?) — gi;(8)] = wA(B) for all wu.

Then

(5.1) limpe Ps (0 (Bn — B)/K(B) < u) = ®(u),

where & 1s the normal distribution function with mean 0 and variance 1 and
(52) K@) =@ 1.1 @) da]™.

The proof of Theorem 3 will depend on the following lemma. Let k,(a) be
defined as in Section 2 and g, (@) and o5, (a) denote the mean and variance, re-
spectively, of h,(a) for the parameter value .

LemMma 1. Under the assumptions of Theorem 3, the statistic

(5.3) Ea(w) = [n (8 + un™) — uga(8 + un™)]/opu (8)
1s asymptotically normal with mean 0 and variance 1, and

(54) limg.e @, (u) = —u[K ()],

where,

an () = [upn(8) — man (8 + un™)]/osn (8).
Proor. We may write,

En() = {(hn(8) — upn(8)}/08n (8) + (Ho(8 + un™) — BolH, (8 +un™)]} /o5 (8)
=N+ Ta, say,

where,
H,B+ un™) = h,(8 + un™?) — h,(8),

a,nd E;( ) stands for expectation with parameter value 8. It is well known ([3]
page 241) that 7, is asymptotically normal with mean 0 and variance 1. Hence our
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proof is complete ([2] page 254 ) if we show that plim 7, = 0. We shall establish
this-by showing Vs (r,) — 0 as n — «, where V( ) stands for the variance with
parameter value 3.

Since 5, (8) ~ n*/36 ([3], page 241), it follows that

Ve (ra) ~ 360 *Va[H, (B + un™?)].
For u = 0, writing,
Ho(B +un™) = 2i; Hy(8 + un™),
where

(6.5) Hi@B+uwn™) =1 ¢;8) <yi—yi < 956+ un?),
=0 otherwise;

we get
(5.6) Vs(Ha) = 2oici Ve(Hy) + 2 2icics Covp(His, Ha)
+ 22 s Covp (Hyj, Ha) + 22 s Covp(Ha, Hy),
where H, H;;, - - - ete., have obvious meanings. Hence,
Va(Ha) ~ en 2ici Polgss () < ys — y5 = 9458 + un™)]
= on 2ici L2 IF (y + 958 + un”) — g45(8)) — F (y)] dF )

where ¢ is a generic constant. Expanding the integrand above in a Taylor series
we obtain,
Va(Ha) ~ on 2icilgss B + un™) — g5B)] [22 fy + v @)) dF (),
where
(6.7) lva@) = lgs (B + un™) — g, 8).
By (5.7) and II (a) of Theorem 3, we have lim,..,, v:; (¥) = 0 uniformly in <, 7 and
y. This fact, together with the absolute continuity of f and II (b) of Theorem 3,
implies
Vﬂ (Hn) ~ mgu[K (6)]_17

so that Vs(H,) = o(®®). Thus Vs(ra) = o(1) if w = 0. That the same result
will hold if 4 < 0 can be easily seen by making obvious modification in the defini-
tion of H;; given in (5.5). Hence the proof of the first part of Lemma 1 is com-
plete.

To prove the second part, note that

—an(u) = 6171 Xic; Polgii (8) < yi — ¥i = g8 + un”P)],

which tends to u[K (8)]™" as can be seen from the proof of the first part. This
completes the proof of Lemma 1.

Proor or THEOREM 3. Since 8,* < B,

B8,**, we have
+(5.8) Ps(B.** < a) < Ps(Bn < a)

=
S a) £ P(8." = a)
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for all @. Also, h,(a) > psn(8) = B.** < a and B." = a = hu(a) = us(8)-
Hence from (5.8) we get

(5.9) Pyl (a) > uen(8)] = PglBr = a] = Pglha(a) = upn(B)]-
By taking a = 8 + untin (5.9) it is easy to see that

Polta(u) > an(u)] < Pgln* (B — B) < ul < Pylta(u) 2 an(u)].
Theorem 3 now follows from Lemma 1.

6. Some particular cases of the model. Some interesting particular cases of
the general model defined in Section 2 are obtained by taking (i) g;(8) = =6,
(i) g;8) = Klz; — g, (iii) g;(8) = KB™, 8 = 1 and (iv) ¢;(8) = K log
B8 + z;), 8 > 0, where z;, z2, -+, x,» and K are known real numbers. It is
clear that (i) gives the regression model whereas the model given by (ii) will
arise, for example if y; — « is the time required by a particle traveling at a con-
stant velocity K to travel to the point z; from an unknown origin 8. Case (iii)
is an example of exponential regression frequently used in the analysis of experi-
ments with fertilizers to express the relationship with crop yield y; and the amount
x; of fertilizer applied to the crop. Finally, (iv) is an example of dose response
function usually used in biomedical research.

In this section we shall give properties of the estimator 8, of 8 in cases (i)
and (ii). The problem of estimation with models (iii) and (iv) will not be taken
up here since they do not present any new difficulty.

Case (). Letsy =2 2 = --+ = z, and

(6.1) 9;(B) = zB.

Then ¢:;(8) = B(r: — ;) is a never-decreasing function of 8 for all = < j, so
that a robust point estimator for g8 is given by (2.2). In fact, as pointed out in
Section 3, this estimator 3, is given by the median of the a;; where a;; = (y: — y;)/
(s — 2;),1 <7 =1,2, -+, n In order to study the asymptotic distribution of
B, using Theorem 3, we have to ensure that our model satisfies condition II (a)
of the theorem. One method of doing this is by introducing a spacing function to
determine the values of the independent variables z; as done by Hill [5]. Let p
be a strictly increasing continuous function on [0, 1] and put

(62) x1=p(1—.7/n)7 .7= 1:27”'777"

The function p, called the spacing function, will determine the values of z; for
every n. In applications, p will be typically linear, say, p(¢) = A + Bt.
With z; defined according to (6.2) it is easy to see that

lg:; 8 + u) — g:B)] = lul(@: — ;) < |ullp(1) — p(0)],

for all ¢ < j, so that condition II(a) of Theorem 3 is satisfied with G'(u) =
[u|[p(1) — p(0)]. Straightforward calculation will show that

(6.3)  limn.e 607 D ici[g5;(8 + unt) — g;;(8)] = 6u [ (2t — L)p(¢) dt.
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Therefore, by Theorem 3, 8, has an asymptotic normal distribution with mean 8
and variance n'[6 [T% f*(z) dz [3 (2t — 1)p (¢) dt] %, For the special case p (t) =
A + Bt, the asymptotic variance of 8, reduces to n '[B [*a f* () dx] ™"

In [1] Adichie proposed a class of estimators for 8 in the regression model and
demonstrated asymptotic normality under somewhat more restrictive assump-
tions than those needed for Theorem 3 of this paper. An important member of
Adichie’s class of estimators is an estimator 3, based on Wilcoxon’s 2-sample
statistic. If the spacing function p is linear, then by taking ¢ () = win (5.1) of
[1] it follows that the asymptotic variance of B, is same as that of B.. Thus, in
this particular case, 8, and §, are asymptotically equivalent, even though B. is
computationally simpler. That 8. and 3, turn out to be asymptotically equivalent
for linear spacing functions is not surprising if one observes that while A, (8)
is essentially the Kendall 7, the statistic 7' (see (2.9) in [1]) on which B, is based
is Spearman p, and that = and p are asymptotically-equivalent ([4], page 61).

Cass (). Letzy S 2 = -+ = 2, and
9;(8) = Klz; — 8l J=12 ,mn
where K is known. Without loss of generality, we may take K = 1, so that we have
(6.4) 9:(8) = |z — Bl, lsj=mn

Simple calculations will show that the g; defined by (6.4) do satisfy the condi-
tions required by the model (2.1), and that for all u,

lgi; (B 4+ u) — gi; ()| = 2Jul,

so that condition II(a) of Theorem 3 is satisfied with G (u) = 2|u|.

Now, let \,(z) denote the sample distribution function of z1, zz, -, Za.
Then putting 71 = 7\, (8), 72 = n[l — M (B + un H]andng = n — 0y — ng,
we can show, after some simple algebra, that

61t Xic; [955(8 + un™') — g4 (B)]

= 12nmam 2w + 120740y 272 @nrs — B) + M2 > B+ unt — Tpps)
+ 21§’5<7'<no @nsti — Tngri)]
120, (8)[1 — M (8 + un™)u + o (1).

Hence, if there exists a function \ such that lim,., A\, (8) = X (8) and X is con-
tinuous in some neighborhood of 8, then (6.4 ) satisfies condition IT (b) of Theorem
3 with A(8) = 127 (8)[1 — A(B)]. Therefore, if N with the specified properties
exists, then §, has asymptotically a normal distribution with mean g and vari-
ance n {127 (8)[1 — N (8)] ff2 () dx} 2
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