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MINIMAX RESULTS FOR IFRA SCALE ALTERNATIVES'

By Kserun Doksum
Unaversity of California, Berkeley

1. Introduction and summary. Recent results by Birnbaum, Esary and
Marshall (1966), Barlow and Proschan (1967) and others suggest that the
exponential models used be Epstein and Sobel (1953) and others for life testing
problems should be extended to models in which the lifetimes have increasing
failure rate average (IFRA) distributions. In this paper, IFRA scale models
are dealt with. Consider two independent random samples X, ---, X, and
Yy, .-+, Y, from populations with distributions F(z) and G(y) = F(Ay)
respectively, where F' is a continuous, unknown, IFRA distribution. The null
hypothesis Ho:A = 1 is to be tested against the alternative Hi:A > 1. Since F
is unknown, it is not possible to maximize the power El¢ | F(-), F(A-)], A > 1.
However, it is shown (Theorems 2.1, 2.2, 3.1, 3.2) that the tests that maximize
the power for the exponential alternative F(Ay) = 1 — exp (— Ay) actually
maximize the minimum power infz(.) El¢ | F(-), F(A-)]. Thus these tests are
minimax. They have been computed by Lehmann (1953), Savage (1956), and
Rao, Savage and Sobel (1960). The results indicate that in the case of uncen-
sored samples, one should use one of the statistics

L= ITics (N + 4 — sa14), or

S = 2 my Jo(rs), with Jo(k) = X niis 1/7,
where N = m + nandr, -+, rm (81, -+, S,) are the ordered ranks of the
X’s (Y’s) in the combined sample of X’s and Y’s. L is minimax for A in an in-
terval about two, and S is minimax for A in an interval (1, §) to the right of
one.

The minimax statistics in the case of censored samples are more complicated
(see (3.1) and (3.2)) and one might use one of the approximations suggested by
Gastwirth (1965) or Basu (1967) (see (3.3)).

Only finite sample size properties are dealt with. Asymptotic results are given
in [6].

2. Minimax tests in the two-sample case. The failure rate of a distribution
F with density f is defined to be ¢(z) = f(z)/[1 — F(z)], and the failure rate
average is A(z) = " f’f, g(x)de = —log[l — F(x)l/z, x > 0, F(0) = 0.
Thus F is said to be an IFRA distribution if #(0) = 0 and

(2.1) —log [1 — F(x)]/x is non-decreasingin = > 0.
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Similarly, F is a DFRA (decreasing failure rate average) distribution if F(0) = 0
and —log [1 — F(x)]/z is non-increasing in z > 0.

Let Xy, -+, Xmand Yy, -+, Y, be two independent random samples from
populations with distributions F and G. The problem of interest is that of testing
the null hypothesis that the X’s are stochastically smaller than or equal to the
Y’s against the alternative that the Y’s are stochastically smaller than the X’s.
However, this model without further restrictions is too general to be used in the
derivation of optimal tests; moreover, one would like to have tests that are most
likely to reject for alternatives that indicate a definite distinction between the
distributions of X and Y. When X and Y are time measurements, then one such
model is the scale model in which Y has the same distribution as X/A for some
A > 0. Then [E(X) — E(Y)]/E(Y) = A — 1, and (A — 1) measures the
relative difference of the mean times. One thus tests Ho:A = 1 vs. HitA > 1
and considers the power function 8(¢; F; A) = Ere(¢) of each test ¢ for
the scale alternative with G(y) = F(Ay). A test ¢ is said to be monotone if

¢(x17 ,xm,f_lh,, e 7yn,) = ¢($1, s Ty Y1, 0 7yn) Wheneveryi = yj,
fory=1,:--,n.

Note that if V; is defined to be the number of Y’s among the % largest ob-
servations in the combined sample, then (Vi, ---, Vy) is equivalent to the
ordered ranks (71, -+, rm) of the X’s. Next it will be shown that in the class
of level a rank tests, the Lehmann level o test ¢ defined by
(2:2) ¢a =1 if JTEmlb+ (A~ DV 2 ca

=0 otherwise;

maximizes the minimum power infr 8(¢; F; A) for the IFRA scale model when-
ever A > 1. Here, a rank test ¢ is said to be of level « if B(p; F; 1) =
E(¢| (F,F)) = afor all continuous distribution functions .

TuroREM 2.1. The Lehmann test ¢ is minimaz for the IFRA scale alternative
i the sense that for each scale parameter A > 1 and fo~ F ranging over the class of
continuous IFRA distributions,

(2.3) infr B(¢; F; A) < infr B(¢a; F; A)
for each level o rank test ¢. Moreover ¢ s the unique minimax rank test in the
sense that any other level o rank test satisfying (2.3) coincides with ¢4 a.e.

Proor. Using the Neyman-Pearson Lemma, Lehmann (1953), Savage (1956 ),
and Rao, Savage and Sobel (1960, Corollary 3.4) have essentially shown that ¢a
maximizes the power for the exponential scale model, ie. if K(z) =
1 — exp (—=z), then for each A > 1,

(24) B(; K; A) < B¢ ; K; A)

for all level o rank tests ¢. On the other hand, the definition (2.2) shows that
éa is & monotone test, thus since K (z) = —log (1 — ), then the definition of
the IFRA property and Theorem 3.1 of [7] implies that ¢a attains its minimum
pawer for the exponential scale model, i.e.,

(2.5) infr B(pa ; F; A) = B(pa; K; A).
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Since K is an IFRA distribution, then
(2.6) infrB(¢; F; A) = B(¢; K; A)

and (2.3) follows. Uniqueness holds since if ¢ is a level a rank test satisfying
(2.3), then the above shows that it must satisfy

(2.7) B(¢; K; A) < B(¢; K; A)

for all level « rank tests ¢. Since ¢4 also satisfies this (see (2.3)), then the unique-
ness part of the Neyman-Pearson Lemma implies that ¢ = ¢4 a.e.
Note that (¢a , K) is a saddle point, i.e.,

(2.8) supy B(¢p; K; A) = B(¢a ; K; A) = infrB(¢a ; F; A), A> 1.

In order to be able to use the minimax test ¢a , one must choose a value of A.
Savage (1956) suggests using the level a test ¢, that maximizes the power for
the exponential scale model for A in a neighborhood (1, ) to the right of one,
i.e., when the relative difference of the means of X and Y is close to zero (and
positive). This test is defined by

(2.9) ¢ =1 if D0 Jo(re) = e,
=0 otherwise;

where Jo(k) = Zy=N+1—-k 1/]
Note that ¢, equivalently can be defined to reject for .1 Vi/k < co”. It can
now be shown that the Savage test ¢, is minimax for A in an interval of the
form (1, 6).

TurorEM 2.2 The Savage test ¢, is locally minimaz for the IFRA scale alternative
i the sense that there exists 8 > 1 such that for F ranging over the class of continuous
IFRA distributions,

(2.10) infr B(¢; F; A) < infr B(¢s ; F; A)

for each level a rank test ¢ and for all A in the interval (1, 8). Moreover, ¢, is the
unique locally minimaz rank test in the sense that any other level o rank test satis-
Sfying (2.10) coincides with ¢ a.e.

Proor. Savage (1956) has essentially shown that there exists § > 1 such that

(2.11) B(¢; K; A) = B(es; K; A)

for all level & tests ¢ and all A in (1, §). Since ¢, is monotone, the remainder of
the proof is as the proof of Theorem 2.1.

Remarks. (i) The Savage test maximizes the minimum power when the
relative difference of the means of X and Y, i.e.,, (A — 1), is close to zero. In
most situations, it would be better to use the test that is optimal when (A — 1)
is in a neighborhood of some fixed positive number A (say ). Thus one would use
the Lehmann test ¢a defined by (2.2) with A = X 4+ 1. For instance, if the
rélative difference of the means of X and Y is unity, then Lehmann (1953) has
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shown that ¢a = ¢ is equivalent to the test that rejects for large values of
(2.12) IIia (N + % — saai)-

Note that in the representation (2.12), the ranks of the stochastically smaller
variable, under H; , must be used.

(ii) Tables of the null distribution of the Savage statistic have been given by
Davies (1969) and Héjek (1969 ). Davies has computed the power of the Savage
test and the Lehmann test ¢a (for various choices of A) for the exponential scale
alternative. His results indicate that there is no substantial difference in the
power of these tests for e« = .01, m = n = 10.

Thus they are all approximately minimax for all values of the scale parameter
A>1(a= .01, m =n =< 10). Since the tests ¢ and ¢, defined by (2.12) and
(2.9) are the simplest ones, these tests are recommended, ¢ for small and
moderate sample sizes, ¢, for larger ones. The table of the null distribution of
the statistic (2.12) has been partially computed by Davies (1968).

(iii) The uniqueness parts of Theorem 3.1 and 3.2 can be extended as follows.
A test ¢ is said to be distribution-free (DF) if 8(¢; F, 1) = E(¢ | (F, F)) is
independent of F for F continuous. Thus rank tests are DF. For A close to one,
tests that are not DF have minimum power less than ¢ and ¢, , and they cannot
be minimax. To see this, note that if ¢ is of level a, a.e. continuous, and not DF,
then there exists a continuous distribution Fy such that E[¢ | Fo, Fo)] < o =
supr E[¢ | (F, F)]. Now for A close to one 8(¢; Fo; A) < o and ¢ is worse than
¢a and & .

(iv) It is known (Lehmann (1959, page 187), and Bell, Moser and Thompson
(1966, page 134)) that if ¢ is a monotone test, then 3(¢; F'; A) is an increasing
function of the scale parameter A > 0. This implies that for fixed A; > 1, ¢a, is
doubly minimax for the scale alternative in the sense that for testing
Ho:A £ 1 against HytA = A, it maximizes infp [infaza, 8(¢; F; A)] =
infasa, [infr B(¢; F; A)]. Here, F ranges over the class of continuous IFRA
distributions and only level a rank tests are considered. Note that (1, A;) is an
indifference region.

8. Minimax tests based on censored samples. The censored samples considered
here arise typically as follows: m objects of one type and n objects of a second
type are put on trial at the same time and one waits until a total of
N* < m + n = N of the objects have failed, where N* is a fixed number. More-
over, the experiment is conducted so that if one waited until all N = m + n
objects failed, then the times to failure Xy, -+ , Xn and Y1, -+, ¥, would be
two independent random samples.

Thus the situation is as in Section 2 except that only the first N smallest
order statistics in the combined sample are observed. Let m* and n* denote the
total number of X’s and Y’s observed respectively. Since the unobserved X’s
and ¥’s are all larger than the observed ones, it is possible to compute the ordered

cranks 73 < -+ < rme of the X-sample order statistics Xy < -+ < X(mw In
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the uncensored combined sample Xy, -+, X, ; Y1, .-+, Y, . Rao, Savage and
Sobel (1960, Corollary 3.4) have computed the most powerful test ¢2* based on

r1, -+ , r'ne fOr exponential alternatives. This level « test rejects H, if and only
if

(3.1) A TS AQ) +E+ (A — DV 2 e

where

A(A) = (m — m*) + A(n — n™)

and V; is as in Section 2. For tests depending only on 71, - -+ , 7+ one obtains
using the arguments of Section 2.

TurorEM 3.1. The test ¢o* is uniquely minimaz for the IFRA scale alternative
in the sense of Theorem 2.1.

The locally most powerful level « test ¢, (Rao, Savage and Sobel (1960,
Corollary 3.4)) for the exponential scale alternative G(y) = F(Ay) = K(Ay)
rejects H, if and only if

(3.2) m Jo¥ () + (m — m*)J(N*) — m* = é,

where Jo* (k) = 2 Vxe 1 1/[j + N — N*.

THEOREM 3.2. The test ¢,* is uniquely locally minimaz for the IFRA scale
alternative in the sense of Theorem 2.2.

Again, this is an application of the results of Section 2. Note that these results
also can be applied to other (Gastwirth (1965) and Rao, Savage and Sobel
(1960)) censoring plans than the one considered here.

REMARK. The tests ¢2* and ¢,* are complicated and one may use the approxi-
mations suggested by Gastwirth (1965) and Basu (1967). The latter’s paper
contains tables of rejection points and power for the test based on the statistic

(8.3) 2™ Jo(rs) + (m — m*)Y(N — N7 D ¥ pera Jo(k) — AN
= 2 Jo(rs) + (m — m*)Jo(N*) — m* + 3(n — m)
where, as in Section 2, Jo(k) = 2 w_t41 1/7.
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