ON STRONG CONSISTENCY OF DENSITY ESTIMATES¹

By J. VAN RYZIN

University of Wisconsin-Madison

1. Introduction and summary. Let X_1, X_2, \dots, X_n , be a sample of n independent observations of a random variable X with distribution $F(x) = F(x_1, \dots, x_m)$ or R^m and Lebesgue density $f(x) = f(x_1, \dots, x_m)$. To estimate the density f(x) consider estimates of the form

(1)
$$f_n(x) = n^{-1} \sum_{j=1}^n K_n(x, X_j), \qquad K_n(x, X_j) = h_n^{-m} K(h_n^{-1}(x - X_j));$$

where $K(u) = K(u_1, \dots, u_m)$ is a real-valued Borel-measurable function on \mathbb{R}^m such that

(2)
$$K(u)$$
 is a density on R^m

$$\sup_{u \in \mathbb{R}^m} K(u) < \infty$$

(4)
$$||u||^m K(u) \to 0 \text{ as } ||u||^2 = \sum_{i=1}^m u_i^2 \to \infty$$

and $\{h_n\}$ is a sequence of numbers such that

(5)
$$h_n > 0$$
, $n = 1, 2, \dots$; $\lim_{n \to \infty} h_n = 0$ and $\lim_{n \to \infty} n h_n^m = \infty$.

Such density estimates have been shown to be weakly consistent (that is, $f_n(x) \to f(x)$ in probability as $n \to \infty$) on the continuity set, C(f), of the density f(x) by Parzen [4] for m = 1 and by Cacoullos [1] for m > 1. In Theorem 1, we state conditions under which strong consistency (that is, $f_n(x) \to f(x)$ with probability one as $n \to \infty$) of such estimates obtains.

Theorem 2 gives conditions under which uniform (in x) strong consistency of the estimates (1) is valid. In this respect, our results are very similar in the case m=1 to those of Nadaraya [4], although the method of proof and conditions imposed are different. Theorem 3 concerns the estimation of the unique mode of the density f(x) when it exists.

2. A pointwise strong consistency theorem. Before stating our first theorem, we shall give a lemma which we will need and is of some interest in its own right. Lemma. Let $\{Y_n\}$ and $\{Y_n'\}$ be two sequences of random variables on a probability space $(\Omega, \mathfrak{F}, P)$. Let $\{\mathfrak{F}_n\}$ be a sequence of Borel fields, $\mathfrak{F}_n \subset \mathfrak{F}_{n+1} \subset \mathfrak{F}$, where Y_n and

1765

Received 3 September 1968.

¹ This research was partially supported by the National Science Foundation Grant NSF Contract GP-8381 at the University of Michigan while the author was a summer guest at the Applied Mathematics Department, Brookhaven National Laboratory, Upton, L.I., New York. This research was also partially supported by National Science Foundation Grant NSF Contract GP-9324 at the University of Wisconsin-Milwaukee.

 Y_n' are measurable with respect to \mathfrak{T}_n . If

- (i) $0 \leq Y_n$ a.e.
- (ii) $EY_1 < \infty$
- (iii) $E[Y_{n+1} | \mathfrak{F}_n] \leq Y_n + Y_n'$ a.e. (iv) $\sum_{n=1}^{\infty} E|Y_n'| < \infty$,

then Y_n converges a.e. to a finite limit.

PROOF. Let $Z_n = Y_n + S_{n-1}$, where $S_0 \equiv 0$ and $S_n = \sum_{i=1}^n \{Y_i - E[Y_{i+1} | \mathfrak{F}_i]\}$. Observe that by (i) and (iii), $Z_n \ge S_{n-1} \ge -\sum_{i=1}^{n-1} Y_i'$ a.e., and we have

$$\sup_{n} EZ_{n}^{-} \leq \sup_{n} \sum_{i=1}^{n-1} E |Y_{i}'| \leq \sum_{i=1}^{\infty} E |Y_{i}'| < \infty.$$

However, it is easy to verify that $\{Z_n, \mathfrak{F}_n\}$ is a martingale and that $\sup_n E|Z_n| =$ $2 \sup_{n} EZ_{n}^{-} + EY_{1} < \infty$ by the above observation and condition (ii). Hence, by a standard martingale theorem (e.g., see Theorem 9.4.1 in Chung [2]), $\{Z_n\}$ converges a.e. to a finite limit.

Since $Y_n = Z_n - S_{n-1}$ a.e., the proof will now be completed if we show S_n converges a.e. to a finite limit. Observe that $S_n = -\sum_{i=1}^n Y_i' + \sum_{i=1}^n W_i$, where $W_i = Y_i + Y_i' - E[Y_{i+1} | \mathfrak{F}_i] \ge 0$ a.e. by (iii) and that under (iv) $\sum_{i=1}^{\infty} Y_i'$ converges a.e. (see Chung [2, Ex. 7, p. 116]). Therefore, S_n converges a.e. to a finite limit if and only if $\sum_{i=1}^{\infty} W_i < \infty$ a.e. Note that from the inequality $S_n \leq Z_{n+1}$ a.e. (recall (i)) and the fact that $\{Z_n\}$ converges a.e. to a finite limit, we have $\limsup_{n} S_n \leq \lim_{n} Z_n < \infty$ a.e. Finally, since the W_i are non-negative, we have $0 \leq \sum_{i=1}^{\infty} W_i = \lim_{n} \sum_{i=1}^{n} W_i \leq \limsup_{n} S_n + \sum_{i=1}^{\infty} Y_i' < \infty$ a.e. This completes the proof.

DEFINITION. A real-valued function on the real line g(c) is said to be locally Lipschitz of order α , $\alpha > 0$, at 1 if there exists an $\epsilon > 0$ and $0 < M < \infty$ such that $|g(c) - g(1)| \leq M |c - 1|^{\alpha}$ for all $c \in (1 - \epsilon, 1 + \epsilon)$.

THEOREM 1. Let K(u) satisfy (2), (3) and (4) and let $\{h_n\}$ satisfy (5) and

$$(6) h_n/h_{n+1} \to 1 as n \to \infty.$$

Assume that K(u) and $\{h_n\}$ are such that

(7)
$$g_1(c) = \sup_{\|u\| \ge a} \|u\|^m \{K(cu) - K(u)\}^2$$
 is locally Lipschitz of order

$$\alpha$$
 at $c = 1$ for some $a > 0$,

(8)
$$g_2(c) = \int \{K(cu) - K(u)\}^2 du$$
 is locally Lipschitz of order α at $c = 1$,

$$\sum_{n=1}^{\infty} \frac{1}{n^2 h_{-}^m} < \infty, \quad and$$

(10)
$$\sum_{n=1}^{\infty} \frac{1}{n h_n^{m-\beta}} \left| \frac{1}{h_{n+1}} - \frac{1}{h_n} \right|^{\beta} < \infty, \qquad \beta = \min \left\{ \frac{1}{2} \alpha, 1 \right\}.$$

Then, $f_n(x) \to f(x)$ with probability one if $x \in C(f)$.

PROOF. Since $Ef_n(x) \to f(x)$ for $x \in C(f)$ by Theorem 3.1 of Cacoullos [1], it suffices to show that $f_n(x) - Ef_n(x) \to 0$ with probability one as $n \to \infty$ on C(f). The proof of this relies on the lemma with $Y_n = \{f_n(x) - Ef_n(x)\}^2$, $\mathfrak{F}_n = \text{Borel}$

field generated by X_1, \dots, X_n , and the fact that for each $x \in C(f)$, $\lim_n EY_n(x) = 0$ (Cacoullos [1, Lemma 2.1]). Observe that

$$f_{n+1}(x) - Ef_{n+1}(x) = f_n(x) - Ef_n(x) + \sum_{j=1}^{n} W_n(x, X_j) + (n+1)^{-1} \{K_{n+1}(x, X_{n+1}) - EK_{n+1}(x, X)\}$$

where

$$W_n(x, X_j) = (n+1)^{-1} \{ K_{n+1}(x, X_j) - EK_{n+1}(x, X) \}$$
$$- n^{-1} \{ K_n(x, X_j) - EK_n(x, X) \}.$$

Hence,

(11)
$$E[Y_{n+1} | \mathfrak{F}_n] = Y_n + U_n(x) + V_n(x) + \alpha_n(x),$$

with $U_n(x) = \{\sum_{j=1}^n W_n(x, X_j)\}^2$, $V_n(x) = 2\{f_n(x) - Ef_n(x)\}\{\sum_{j=1}^n W_n(x, X_j)\}$ and $\alpha_n(x) = (n+1)^{-2} \operatorname{Var}\{K_{n+1}(x, X)\}$.

Letting $Y_n' = Y_n'(x) = U_n(x) + V_n(x) + \alpha_n(x)$ for each $x \in C(f)$ and applying the above lemma the proof is then completed by merely verifying that $\sum_{n=1}^{\infty} E |Y_n'| < \infty$ for each $x \in C(f)$. We show that for each $x \in C(f)$: (i) $\sum_{n=1}^{\infty} EU_n(x) < \infty$, (ii) $\sum_{n=1}^{\infty} E |V_n(x)| < \infty$, and (iii) $\sum_{n=1}^{\infty} \alpha_n(x) < \infty$.

(i) By double use of the inequality $(a + b)^2 \le 2a^2 + 2b^2$ we obtain

$$EU_{n}(x) = nEW_{n}^{2}(x, X)$$

$$\leq nE\left\{\frac{K_{n+1}(x, X)}{n+1} - \frac{K_{n}(x, X)}{n}\right\}^{2}$$

$$= \frac{1}{nh_{n}^{m}} \int \left\{\frac{nh_{n}^{m}}{(n+1)h_{n+1}^{m}} K\left(\frac{h_{n}}{h_{n+1}}u\right) - K(u)\right\}^{2} f(x - h_{n}u) du$$

$$\leq \frac{2}{nh_{n}^{m}} \int \left\{K\left(\frac{h_{n}}{h_{n+1}}u\right) - K(u)\right\}^{2} f(x - h_{n}u) du$$

$$+ \frac{4}{n(n+1)^{2}h_{n+1}^{m}} \int K^{2}(u)f(x - h_{n+1}u) du$$

$$+ \frac{4}{nh_{n+1}^{m}} \left\{1 - \left(\frac{h_{n+1}}{h_{n}}\right)^{m}\right\}^{2} \int K^{2}(u)f(x - h_{n+1}u) du.$$

Note that since

(13)
$$(1-t^m) = (\sum_{j=1}^m t^{j-1})(1-t),$$

we have under (6) that

(14)
$$\left\{1 - \left(\frac{h_{n+1}}{h_n}\right)^n\right\}^2 \sim (mh_{n+1})^2 \left(\frac{1}{h_{n+1}} - \frac{1}{h_n}\right)^2 \quad \text{as } n \to \infty.$$

Also, (2), (3), (4) and (5), Theorem 2.1 of Cacoullos [1] yields

(15)
$$\lim_{n} \int K^{2}(u) f(x - h_{n+1}u) du = f(x)K^{*}, \quad K^{*} = \int K^{2}(u) du,$$

for all $x \in C(f)$. This result (6) and (14) combine to show that the second and third terms in the upper bound of (12) are respectively asymptotically equivalent for $x \in C(f)$ to

(16)
$$\frac{4K^*f(x)}{n^3h_n^m} \text{ and } \frac{4m^2K^*f(x)}{nh_n^{m-2}} \left(\frac{1}{h_{n+1}} - \frac{1}{h_n}\right)^2.$$

Furthermore, for each $x \in C(f)$ we have the following inequality for every $\epsilon > 0$ and some $\delta = \delta(\epsilon, x) > 0$,

$$\int \left\{ K\left(\frac{h_{n}}{h_{n+1}}u\right) - K(u) \right\}^{2} f(x - h_{n}u) du$$

$$\leq \int_{\|h_{n}u\| \leq \delta} \left\{ K\left(\frac{h_{n}}{h_{n+1}}u\right) - K(u) \right\}^{2} f(x - h_{n}u) du$$

$$+ \int_{\|h_{n}u\| < \delta} \left\{ K\left(\frac{h_{n}}{h_{n+1}}u\right) - K(u) \right\}^{2} f(x - h_{n}u) du$$

$$\leq \delta^{-m} \sup_{\|u\| \leq \delta/h_{n}} \left[\|u\|^{m} \left\{ K\left(\frac{h_{n}}{h_{n+1}}u\right) - K(u) \right\}^{2} \right]$$

$$+ \left\{ \epsilon + f(x) \right\} \int \left\{ K\left(\frac{h_{n}}{h_{n+1}}u\right) - K(u) \right\}^{2} du.$$

Hence, for n sufficiently large such that $\delta/h_n \geq a$ (see condition (7)), we have

$$\int \left\{ K\left(\frac{h_n}{h_{n+1}}u\right) - K(u) \right\}^2 f(x - h_n u) \ du$$

$$\leq \delta^{-m} g_1\left(\frac{h_n}{\overline{h_{n+1}}}\right) + \left\{\epsilon + f(x)\right\} g^2\left(\frac{h_n}{\overline{h_{n+1}}}\right).$$

Therefore, by conditions (6), (7) and (8), the first term in the upper bound of (12) has an upper bound asymptotically equivalent as $n \to \infty$ to

$$\frac{M(x)}{nh_n^{m-\alpha}} \left| \frac{1}{h_{n+1}} - \frac{1}{h_n} \right|^{\alpha}$$

for some $0 < M(x) < \infty$ for each $x \in C(f)$. Combining the asymptotic results (16) and (17) with inequality (12), we have now shown that for each $x \in C(f)$ there exists $M^*(x)$, $0 < M^*(x) < \infty$ such that for n sufficiently large,

(18)
$$EU_{n}(x) \leq \frac{M^{*}(x)}{nh_{n}^{m-2\beta}} \left| \frac{1}{h_{n+1}} - \frac{1}{h_{n}} \right|^{2\beta} + \frac{4K^{*}f(x)}{n^{3}h_{n}^{m}}$$

This inequality under conditions (5), (6) and (10) completes the verification of (i).

To verify (ii) note that

(19)
$$\{E|V_n(x)|\}^2 \le 4E\{f_n(x) - Ef_n(x)\}^2 EU_n(x)$$

$$= 4n^{-1} \operatorname{Var} \{K_n(x, X)\} EU_n(x).$$

By Lemma 2.1 of Cacoullos [1], Var $\{K_n(x, X)\} \sim h_n^{-m} K^* f(x)$ for all $x \in C(f)$. Hence, inequalities (18) and (19) yield for n sufficiently large and each $x \in C(f)$

a $M^{**}(x)$, $0 < M^{**}(x) < \infty$, and a M'(x), $0 < M'(x) < \infty$, such that

$$E|V_n(x)| \le \frac{M^{**}(x)}{nh_n^{m-\beta}} \left| \frac{1}{h_{n+1}} - \frac{1}{h_n} \right|^{\beta} + \frac{M'(x)}{n^4h_n^{2m}}$$

This inequality and conditions (5) and (10) completes the verification of (ii).

Verification of (iii) is an immediate consequence of Lemma 2.1 of Cacoullos [1] and condition (9) of the theorem. As noted earlier, this completes the proof.

REMARKS. (1) It can be shown that all the kernel functions K(u) given in Table 1 of Parzen [4] in the case m=1 and their natural product kernel generalizations (see Cacoullos [1, page 186]) in the case m>1 satisfy conditions (7) and (8) with $\alpha=1$ in Theorem 1 as well as conditions (2), (3) and (4). It can be shown that all K(u) in Table 1 of Parzen [4] except the first entry satisfy conditions (7) and (8) with $\alpha=2$ in Theorem 1.

(2) If $h_n = \alpha_n^{-1} n^{-p}$, where $0 , <math>\alpha_n > 0$, and $\alpha_{n+1} = \alpha_n + O(n^{-1})$, $n\alpha_n \to \infty$ as $n \to \infty$ and $\limsup \alpha_n < \infty$, then it is straightforward to show that conditions (5), (6), (9) and (10) hold for the sequence $\{h_n\}$. In particular $h_n = cm^{-p}$, 0 , <math>c > 0, is such a sequence.

3. Uniform strong consistency and estimation of the mode. Let

$$k(t) = k(t_1, \dots, t_m)$$

be the characteristic function of K(u), that is,

$$k(t) = \int e^{it'u} K(u) du$$

where $t'u = \sum_{j=1}^{m} t_j u_j$. Also define

(20)
$$\varphi_n(t) = n^{-1} \sum_{j=1}^n e^{it^{\prime}X_j}$$

and following Parzen [4, equation (3.3)] as in the case m = 1, we see that if

$$(21) \qquad \qquad \int |k(t)| \, dt < \infty$$

then

(22)
$$f_n(x) = n^{-1} \sum_{j=1}^n K_n(x, X_j)$$
$$= (2\pi)^{-m} \int e^{-it'x} k(h_n t) \varphi_n(t) dt$$

We now state and prove

THEOREM 2. Let K(u) be such that (2), (3), (4) and (21) hold and assume

(23) $g(c) = \int |k(ct) - k(t)| dt$ is locally Lipschitz of order 1 at c = 1.

Let $\{h_n\}$ be a sequence such that (5) and (6) holds and assume

$$\sum_{n=1}^{\infty} \frac{1}{(nh_n^m)^2} < \infty.$$

(25)
$$\sum_{n=1}^{\infty} \frac{1}{nh_n^{2m-1}} \left| \frac{1}{h_{n+1}} - \frac{1}{h_n} \right| < \infty.$$

(26)
$$\lim_{n\to\infty} nh_n^{2m} = \infty.$$

Then, if f(x) is uniformly continuous on R^m , $\sup_x |f_n(x) - f(x)| \to 0$ with probability one as $n \to \infty$.

Proof. We first show

(27)
$$\sup_{x} |f_n(x) - Ef_n(x)| \to 0 \text{ a.e. as } n \to \infty.$$

Let $\varphi(t) = Ee^{itX}$ and note that from (22), we see that

$$\begin{aligned}
\{\sup_{x} |f_{n}(x) - Ef_{n}(x)|\}^{2} &= \{ (2\pi)^{-m} \sup_{x} |\int e^{-it'x} k(h_{n}t) \{\varphi_{n}(t) - \varphi(t)\} dt \}^{2} \\
&\leq \{ (2\pi)^{-m} \int |k(h_{n}t)| |\varphi_{n}(t) - \varphi(t)| dt \}^{2} \\
&\leq \{ (2\pi)^{-2m} \int |k(h_{n}t)| dt \} \{ \int |k(h_{n}t)| |\varphi_{n}(t) - \varphi(t)|^{2} dt \} \\
&= \{ (2\pi)^{-2m} \int |k(t)| dt \} Y_{n}
\end{aligned}$$

where $Y_n = h_n^{-m} \int |k(h_n t)| |\varphi_n(t) - \varphi(t)|^2 dt$.

Let \mathfrak{F}_n be as in Theorem 1. Since

$$\varphi_{n+1}(t) = \varphi_n(t) - (n+1)^{-1} \{ \varphi_n(t) - e^{it'X_{n+1}} \},$$

we have a.e.

(28)
$$E[Y_{n+1} \mid \mathfrak{F}_n] = n^2 \{ (n + 1)^2 h_{n+1}^m \}^{-1} \int |k(h_{n+1}t)| |\varphi_n(t) - \varphi(t)|^2 dt + \{ (n + 1)^2 h_{n+1}^m \}^{-1} \int (1 - |\varphi(t)|^2) |k(h_{n+1}t)| dt \\ \leq Y_n + Z_n + \delta_n$$

where

$$Z_{n} = \int |h_{n+1}^{-m}k(h_{n+1}t) - h_{n}^{-m}k(h_{n}t)| |\varphi_{n}(t) - \varphi(t)|^{2} dt$$

$$\delta_{n} = \{ (n+1)h_{n+1}^{m} \}^{-2} \int |k(t)| dt.$$

With ${Y_n}'=Z_n+\delta_n$ in (28) the proof of (27) follows immediately from the lemma in Section 2 and the fact that $\sum_{n=1}^{\infty}\delta_n<\infty$ under (21) and (24) provided we show that

(29)
$$\sum_{n=1}^{\infty} EZ_n < \infty \text{ and } \lim_n EY_n = 0.$$

Note that $E |\varphi_n(t) - \varphi(t)|^2 = n^{-1} (1 - |\varphi(t)|^2) \le n^{-1}$ implies

$$EY_n \leq (nh_n^m)^{-1} \int |k(h_n t)| dt = (nh_n^{2m})^{-1} \int |k(t)| dt$$

and hence $\lim_{n} EY_{n} = 0$ under (26). Furthermore,

(30)
$$EZ_{n} \leq n^{-1} \int |h_{n+1}^{-m} k(h_{n+1}t) - h_{n}^{-m} k(h_{n}t)| dt$$

$$\leq \frac{1}{nh_{n+1}^{m}} \left| \frac{1}{h_{n+1}^{m}} - \frac{1}{h_{n}^{m}} \right| \int |k(t)| dt + \frac{1}{nh_{n}^{2m}} g\left(\frac{h_{n+1}}{h_{n}}\right).$$

From (13) and condition (6), we have

(31)
$$\left| \frac{1}{h_{n+1}^m} - \frac{1}{h_n^m} \right| = \frac{1}{h_n^m} \left| 1 - \left(\frac{h_n}{h_{n+1}} \right)^m \right| \sim \frac{m}{h_n^{m-1}} \left| \frac{1}{h_{n+1}} - \frac{1}{h_n} \right|.$$

Therefore, the first term in the upper bound of (30) is asymptotically equivalent under (6) to

$$\frac{m}{nh_n^{2m-1}} \left| \frac{1}{h_{n+1}} - \frac{1}{h_n} \right| \int |k(t)| dt.$$

Observe also that under conditions (6) and (23), the second term in the upper bound of (30) is bounded by a term asymptotically equivalent to

$$M (n h_n^{2m-1})^{-1} |h_{n+1}^{-1} - h_n^{-1}|$$

for some M, $0 < M < \infty$. Using condition (25) this result and the asymptotic result (31) combine with inequality (30) to complete (29).

To complete the proof we need only show that $\lim_n \{\sup_x |Ef_n(x) - f(x)|\} = 0$. Let $\delta > 0$. Then, with $K_n(u) = h_n^{-m}K(h_n^{-1}u)$, we have

$$\sup_{x} |Ef_{n}(x) - f(x)| \\
\leq \sup_{x} \int_{\|u\| \leq \delta} |f(x - u) - f(x)| K_{n}(u) du \\
+ \sup_{x} \int_{\|u\| > \delta} |f(x - u) - f(x)| K_{n}(u) du \\
\leq \sup_{x} \sup_{\|u\| \leq \delta} |f(x - u) - f(u)| + 2 \sup_{x} f(x) \int_{\|u\| > \delta/h_{n}} K(u) du$$

By uniform continuity of f(x) the first term can be made arbitrarily small by choosing δ sufficiently small, while the second term for such a fixed δ approaches 0 as $n \to \infty$. This completes the proof of the theorem.

We point out that Theorem 2 in the case m = 1 is closely related to Theorem 1 of Nadaraya [3], although it can be shown that neither theorem implies the other.

Under condition (21), K(u) is continuous on R^m and under (4), $K(u) \to 0$ as $||u|| \to \infty$. Therefore, there exists an m-dimensional random variable θ_n such that

$$(32) f_n(\theta_n) = \max_x f_n(x).$$

THEOREM 3. Under the conditions of Theorem 2, if the mode of f(x), θ , defined by

$$f(\theta) = \max_{x} f(x)$$

is unique, then $\theta_n \to \theta$ with probability one as $n \to \infty$, where θ_n is defined in (32). Proof. The proof follows from the fact that for every $\epsilon > 0$ there exists a $\delta > 0$ such that $|f(\theta) - f(x)| \ge \delta$ if $||x - \theta|| \ge \epsilon$. (See Nadaraya [3, Theorem 2] in the case m = 1.)

REMARKS. (1) It can be shown that except for the first entry (the uniform kernel) in Table 1 of Parzen [4] for m = 1 all the kernels given therein satisfy the conditions of Theorems 2 and 3. This remark clearly extends to the case m > 1 for product kernels of the same type (see Cacoullos [1, p. 186]).

(2) If $h_n = \alpha_n^{-1} n^{-p}$, where $0 , <math>\alpha_n > 0$, $\alpha_{n+1} = \alpha_n + O(n^{-1})$, $n\alpha_n \to \infty$ as $n \to \infty$ and $\limsup \alpha_n < \infty$, then it is easily verified that conditions (5), (6), (24), (25) and (26) of Theorems 2 and 3 hold.

Acknowledgment. I wish to thank Professor H. Robbins for arranging for the support given this work during the summer of 1968 and for certain discussions regarding this work. I thank also the referee for pointing out some needed changes.

REFERENCES

- [1] CACOULLOS, THEOPHILOS (1966). Estimation of a multivariate density. Ann. Inst. Statist. Math. 18 179-190.
- [2] Chung, Kai Lai (1968). A Course in Probability Theory. Harcourt, Brace & World, New York.
- [3] NADARAYA, E. A. (1965). On non-parametric estimates of density functions and regression curves. Theor. Probability Appl. 10 186-190.
- [4] PARZEN, EMANUEL (1962). On estimation of a probability density function and mode. Ann. Math. Statist. 33 1065-1076.