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ON STRONG CONSISTENCY OF DENSITY ESTIMATES!
By J. Vaxn Ryzin

University of Wisconsin-Madison

1. Introduction and summary. Let X;, X,, --- , X, , be a sample of n inde-
pendent observations of a random variable X with distribution F(x) =
F(x,- -, zn) or R™ and Lebesgue density f(xz) = f(x1, -+, &m). To estimate
the density f(x) consider estimates of the form

(1) fn (x) = n—l Z;;l Kn (x: XJ')) K, (x’ XJ) = hn—ml{(hnﬂ~1 (il} - Xj));

where K (u) = K(u1, -+, un) is a real-valued Borel-measurable function on
R™ such that ‘

@) K(u) isa density on R™

@) SUpuerm K (u) < o

@) ful" K@) =0 as ulf = Ziauf—

and {A,} is a sequence of numbers such that
bB) h.>0, n=12--; My hs =0 and lim,,,nh,” = .

Such density estimates have been shown to be weakly consistent (that is,
fa(@) — f(x) in probability as n — « ) on the continuity set, C (f), of the density
f(x) by Parzen [4] for m = 1 and by Cacoullos [1] for m > 1. In Theorem 1, we
state conditions under which strong consistency (that is, f, (x) — f(x) with prob-
ability one as n — ) of such estimates obtains.

Theorem 2 gives conditions under which uniform (in z) strong consistency of
the estimates (1) is valid. In this respect, our results are very similar in the case
m = 1 to those of Nadaraya [4], although the method of proof and conditions
imposed are different. Theorem 3 concerns the estimation of the unique mode of
the density f(x) when it exists.

2. A pointwise strong consistency theorem. Before stating our first theorem,
we shall give a lemma which we will need and is of some interest in its own right.
LemMma. Let {Y,} and {Y,'} be two sequences of random variables on a probability
space (Q,F, P). Let {F,} be a sequence of Borel fields, F, C Fnia C F, where Y, and
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1766 J. VAN RYZIN

Y.’ are measurable with respect to ., . If
i) 0 = Y,ae.
(i) EY:1 < =
(i) E[Yp1|Fa] £ Vo + V., ace.
(v) B[V, < w,
then Y, converges a.e. to a finite limit.
Proor. Let Z, = Y, + Sn_y, where So= 0and S, = >t {V; — E[Y 1| 5]},
Observe that by (i) and (iii), Z, = Say = — 212t Y/ a.e., and we have

sup, EZ,” < sup, )i E|Y| £ 2 E Y| < .

However, it is easy to verify that {Z, , &,} is a martingale and that sup, ¥ |Z,| =
2sup, EZ,” 4+ EY; < « by the above observation and condition (ii). Hence,
by a standard martingale theorem (e.g., see Theorem 9.4.1 in Chung [2]), {Z,}
converges a.e. to a finite limit. .

Since Y, = Z, — 8,1 a.e., the proof will now be completed if we show S, con-
verges a.e. to a finite limit. Observe that S, = — .7 ¥’ + D i W, where
W:=Y;+ Y/ — E[Yi1|F] = 0 a.e. by (iii) and that under (iv) Z?=1 Y/
converges a.e. (see Chung [2, Ex. 7, p. 116]). Therefore, S, converges a.e. to a
finite limit if and only if D s W: < « a.e. Note that from the inequality
Sn = Zppa ae. (recall (1)) and the fact that {Z,} converges a.e. to a finite limit,
we have lim sup, S, = lim, Z, < « a.e. Finally, since the W; are non-negative,
we have 0 < D i Wi = lim, D i Wi < limsup, Sn + D im Vi < « ae.
This completes the proof.

DEFINITION. A real-valued function on the real line g(c) is said to be locally
Lipschitz of order &, « > 0, at 1 if there exists an e > 0 and 0 < M < « such
that |g(c) — g(1)] S M|c — 1|*forallce (1 — ¢ 1 + ¢).

TrEOREM 1. Let K (u) satisfy (2), (3) and (4) and let {h,} satisfy (6) and

6) ho/bngs —1 as n— oo,
Assume that K (u) and {h,} are such that
(7) gi(c) = supjupza [[ul™ {K(cu) — K(u)}® s locally Lipschitz of order
a at ¢=1 forsome a >0,

(8) gi(c) = [{K(cu) — K(u)}*du s locally Lipschitz of order o at ¢ =1,

© 1
(9) : n—lm< 0, and
w 1 1 1P g
(10) et o | 8 = min {30, 1}.

Then, f.(x) — f(x) with probability one if x £ C (f).

Proor. Since Ef,(x) — f(z) for x ¢ C(f) by Theorem 3.1 of Cacoullos [1], it
suffices to show that f, (x) — Ef,(x) — 0 with probability one asn — « on C(f).
The proof of this relies on the lemma with Y, = {f.(z) — Ef. (x)}?, §. = Borel
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field generated by Xi,:--,X., and the fact that for each ze&C(f),
lim, EY,.(x) = 0 (Cacoullos [1, Lemma 2.1]). Observe that
fo1 @) = Efasi(@) = fu(®) — Efa(®) 4+ 227« Walz, X;)

+ (0 + 1) K1 (@, Xoa) — EKppa (2, X)}
where
Walz, X;) = (n + 1) {Kna1 (@, X;) — EKpi1(z, X))}
— n"YK. (%, X;) — EK4(z, X)}.
Hence,
(11) ElY 1|5l = Ya + Un(®) + Va(z) + aa(z),

with Un(e) = {2ja Wale, X)), Va) = 2(fa@) — Efa@)}H{ 2=
Wz, X;)} a,nd an(x) = (n + 1) Var {Kn(z, X)}.

Letting YV,,' = Y,/ (x) = Un(x) + V() + an(z) for each z £ C(f) and apply-
ing the above lemma the proof is then completed by merely verifying that
D E|Y.| < o for each zeC(f). We show that for each zeC(f):
(1) Dome1 BEUA(z) < o, (ii) Donat B |Va(@)| < 0, and (i) Dopei an(z) < o.

(i) By double use of the inequality (a + b)* < 2a° 4 2b* we obtain
EU.(z) = nEW, (z, X)
é nE [Kﬂ-l-l(x; X) _ Kn<x7 X)l2

+1 n
m 2
(12) = 1 f {(n ¥ Vit K(izh_,,:l u) - K(u)} f(z — hyu) du
= nhz,,"' {K (h’:—; u) - K(u)}ﬁf(x — hau) du

+ n(n—+41)W f K (u)f(x — hapu) du

+ %:“ {1 - (""“) } f K*(W)f (& = hayiu) du.
Note that since
(13) 1=t = (XA -1,
we have under (6) that
(14) (1= (B)} ~ b (2= k) msne.

Also, (2), (8), (4) and (5), Theorem 2.1 of Cacoullos [1] yields
(15) lim, [ K@)f(z — huu) du = f@)K*,  K* = [ K*(u) du,
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for all z & C(f). This result (6) and (14) combine to show that the second and
third terms in the upper bound of (12) are respectively asymptotically equiva-
lent for z £ C'(f) to
4K*f(z) 4m’K*f(z) ( 1 1)2

1 e AC2) dmB&jz) (1 1y
(16) n3h,™ and M™% \lpp1r P

Furthermore, for each z ¢ C'(f) we have the following inequality for every
e > 0 and some § = d(e, ) > 0,

[ {K <}::1 u> _ K(u)}2 £(@ — hy) du

< {K ( i u) - K(u)}zf(x — ha) du

= Jihgulzs hnt1

+ f",,num {K (h’:—:—l u) - K(u)}zf(x — hqu) du
< 8" SUPjulzo/ha [Ilull"' {K (hh” u) — K(u)}z:l

e
e+ s [ (K () - k@) aw

Hence, for n sufficiently large such that /A, = a (see condition (7)), we have

f {K <hh“ u) — K(u) }2f(x — hau) du

i < (h%) + {e+ f(2)}d’ (7;%_45)

Therefore, by conditions (6), (7) and (8), the first term in the upper bound of
(12) has an upper bound asymptotically equivalent as n — o« to

M) | 1 1

W™ | B ha

for some 0 < M (x) < o for each z £ C'(f). Combining the asymptotic results
(16) and (17) with inequality (12), we have now shown that for each z & C (f)
there exists M* (x),0 < M™*(z) < o such that for n sufficiently large,
M*(z) 1 4K*f(z)
nhﬂm—%ﬂ hn m n3hnm
This inequality under conditions (5), (6) and (10) completes the verification
of ().
To verify (ii) note that
(19) {(EV.(@)}* £ 4E{fa(z) — Efa@)EU.(2)
= 4n"' Var {K, (z, X)}EU,(z).

By, Lemma 2.1 of Cacoullos [1], Var {K, (z, X)} ~ k., "K*f(z) for all z & C (f).
Hence, inequalities (18) and (19) yield for n sufficiently large and each x £ C (f)

a

(17)

(18) EUL(z) < - % rﬁ n
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aM**(z),0 < M**(z) < ,and a M (z),0 < M (z) < «, such that

M¥@)| 1 1/ n M (z)
nhamB hn_-a-l h—n nh,2m
This inequality and conditions (5) and (10) completes the verification of (ii).

Verification of (iii) is an immediate consequence of Lemma 2.1 of Cacoullos
[1] and condition (9) of the theorem. As noted earlier, this completes the proof.

Remagrks. (1) It can be shown that all the kernel functions K (u) given in
Table 1 of Parzen [4] in the case m = 1 and their natural product kernel generali-
zations (see Cacoullos [1, page 186]) in the case m > 1 satisfy conditions (7) and
(8) with @ = 1 in Theorem 1 as well as conditions (2), (3) and (4). It can be
shown that all K (u) in Table 1 of Parzen [4] except the first entry satisfy con-
ditions (7) and (8) with @ = 2 in Theorem 1. R

(2) If hy = 0y ' ®, where 0 < p < Bm™, an > 0, and a1 = an + 0m™),
Nio, — © asn — o and lim sup @, < o, then it is straightforward to show that
conditions (5), (6), (9) and (10) hold for the sequence {h,}. In particular
ho = em™®,0 < p < B/m, c > 0,is such a sequence.

E|V.(z)| £

3. Uniform strong consistency and estimation of the mode. Let
k@) =k, -, tn)
be the characteristic function of K (u), that is,
k@) = [ K (u) du
where t'u = Y7 tju; . Also define

(20) on(t) = 07 e

and following Parzen [4, equation (3.3)] as in the case m = 1, we see that if
(21) J k@l dt < oo

then

(22) fa@) = 07t 207 Ka (z, X;)

I

@r)™ [ ek (hat ) (t) dt

We now state and prove
TaEOREM 2. Let K (u) be such that (2), (3), (4) and (21) hold and assume

(23) g(c) = [ |k(ct) — k(¢)| dt s locally Lipschitz of order 1 at ¢ = 1.
Let {h,} be a sequence such that (5) and (6) holds and assume

21
(24) 2wy <
21 1 1
ﬂ25) = n_——h,.z""l hn_.‘_l —_ }—l—n < o,

(26) ].imn—»o nh,.zm = 0o,
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Then, if f(x) ©s uniformly continuous on R™, sup, |fa(x) — f(x)| — O with prob-
ability one as n — .
Proor. We first show

@7 Sup; |fo(z) — Efa(x)] > 0 ae. as n — o,
Let ¢ (t) = Ee™™ and note that from (22), we see that
{sup, Ifn (x) — Efn(x), { (2m)™ sup. lf e (Bt Yon () — @ ()} dt}2

IIA

{@m)™ [ |k (Rat)| len (t) — o (t)] dt}?
= {@m)7" [ ke at)] a3 {[ |k Rat)| len(t) — o (@) dt}
= (@)™ [ k()| d}Y.

where ¥, = hy ™ [ [k (hat)] lon (t) — o(2)[* dt.
Let F, be as in Theorem 1. Since

oni1(t) = @n(t) — (0 + 1) Heu(t) — &5y,

we have a.e.
EY 1 |Fal = 7' { (0 4+ 1)Hoa} ™ [ |k (rngat)] loa(t) — o) dt
(28) + {0+ R [ (1 = e@)k (ragat)] dt
SY.+Z,+ 6
where

Zn = [ Btk (hagat) — ko™ (hat)| e (t) — 0 (2)[* dt
= {(n + Dk} [ ()] dt.

With Y, = Z, + &, in (28) the proof of (27) follows immediately from the
lemma in Section 2 and the fact that D18, < « under (21) and (24) provided
we show that

(29) >wi1BZ,< o and lim, EY, =

Note that E |¢a (1) — o (@) = 27 (1 — |o(#)[’) = n~" implies
EY, £ k") [ [k(hat)| dt = (k™) [ |k (2)| dt

and hence lim, £Y, = 0 under (26). Furthermore,

(30)  EZ. <n f W (hasat) — ho~"H(hat)| dt

1 ] 1 1 1 (b
é nh,::+1 h1:+1 B hnm f Ik(t)l dt + nh'nzm g ( h’n > )
From (13) and condition (6), we have
. L _ 1 |_ 1|, _(lY]_m |1l L
(31) 1::+1 - h”m - h’nm 1 (h”l) ~ h m—1 h”.l.l h .
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Therefore, the first term in the upper bound of (30) is asymptotically equivalent
under (6) to
_m (1 _1
nhn2m—1 hn+1 hn
Observe also that under conditions (6) and (23), the second term in the upper
bound of (30) is bounded by a term asymptotically equivalent to

M (nhn2m—l )—1 'h;—ll—l . hn—l

f k(2)]| dt.

for some M, 0 < M < «. Using condition (25) this result and the asymptotic
result (81) combine with inequality (30) to complete (29).

To complete the proof we need only show that lim, {sup. |[Ef.(z) — f(z)|} = 0.
Let 6 > 0. Then, with K,(u) = h, "K (h, u), we have

sup, |Efa () — f(2)|
< sup, [rurss 1F @ — w) — f@)| Ka(u) du
+ sup, [1urss [f @ — u) — f@)| Ka(u) du
SUp, SUpjuy g3 [f (@ — w) — f(w)| + 2sup. f(2) [rursam, K @) du

By uniform continuity of f(z) the first term can be made arbitrarily small by
choosing & sufficiently small, while the second term for such a fixed § approaches
0 as n — . This completes the proof of the theorem.

We point out that Theorem 2 in the case m = 1 is closely related to Theorem 1
of Nadaraya [3], although it can be shown that neither theorem implies the other.

Under condition (21), K (») is continuous on R™ and under (4), K () — 0 as
||| = c. Therefore, there exists an m-dimensional random variable 8, such
that

(32) fa(0n) = max, f,(z).
TraeorEM 3. Under the conditions of Theorem 2, if the mode of f(x), 9, defined by

- f(6) = max, f(z)

is unique, then 6, — 0 with probability one as n — o, where 8, ¢s defined in (32).

Proor. The proof follows from the fact that for every e > 0 there exists a
8 > 0 such that [f(6) — f(x)| = §if ||z — 0]| = e. (See Nadaraya [3, Theorem 2]
in the case m = 1.)

Remarks. (1) It can be shown that except for the first entry (the uniform
kernel) in Table 1 of Parzen [4] for m = 1 all the kernels given therein satisfy
the conditions of Theorems 2 and 3. This remark clearly extends to the case
m > 1 for product kernels of the same type (see Cacoullos [1, p. 186]).

) If hp = an 0™ where 0 < p < (2m) ™, atn > 0, @tpys = an + O(n7™"),
Na, — % asn — « and lim sup a, < «, then it is easily verified that conditions
(5), (6), (24), (25) and (26) of Theorems 2 and 3 hold.

IIA
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