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SOME STRIKING PROPERTIES OF BINOMIAL AND BETA MOMENTS'

By MORRIS SKIBINSKY

University of Massachusetts

1. Introduction. For each positive integer n, let M, denote the convex body
of n-tuples (Ci, Cs, -+, Cn) with

C; = f[o,n xidg(x), i=1,2--,n,

where ¢ is allowed to vary over the class of all probability measures on the Borel

subsets of the unit interval [0, 1]. Detailed treatment of these spaces may be

found in [2] and [3]. For the moment sequence (C1, C, - - - ) corresponding to an
arbitrary o, write

Vn(Cly 02; "‘) = Cn

Vni(Cli 027 : ") = ::‘:: {d: (Cl, 02: Tt Cﬂ—ly d) SMn},

and take Ry = v, — v, .

Let M,’(n > 1) denote that subset of M, whose points (Ci, -++, Cp, Cr)
have (C1, - - - , Cn—1) interior to M, ; M. L = M .In[5], we defined “normalized”
moments p, = 1 — ¢, on M, by taking

(1.1) Pn = o — vi )/Ru.

Note that p1, P2, - - * , P may be viewed as functions on M. . and in appropriate
context below they will be so regarded (in this connection see Corollary 1.1,
page 107 of [3] and its proof). In [5] it was proved that everywhere on M "

(1.2) Ry = []i=1 pigi.

If we define the right hand side to be zero on M, — M 2 (1.2) holds there as
well. (1.2) and certain of its corollaries which appear in [6] (in particular Corol-
lary 2) exhibit in an emphatic manner the fundamental nature of the normaliza-
tion (1.1). The somewhat startling form of normalized binomial moments
(Theorem 2), the direct connection between moments of even index and the dis-
tribution’s support, and the simple form of normalized Beta moments (Theo-
rem 3) tend strongly to reinforce this judgment.

In Section 4, two general theorems are given. The first exhibits the connection
between two normalized moment sequences whose corresponding distributions on
[0, 1] are symmetrically related. The second theorem exhibits the invariance of
moment normalization under the standard 1-1 mapping that takes the class of
all distributions on a finite interval [a, b] onto the class of all distributions on

[0, 1].
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1754 MORRIS SKIBINSKY

The theorems proved in Sections 2 and 3 and some additional propositions
there remarked upon rest squarely upon Theorems 1, 2 and Corollary 5 of [6].
We restate these here for convenience and completeness as a single theorem.

TaEorREM 1. Let

(1.3) 1 —po=q =8y =1, J=12---.
Take

(1.4) §$i = gi1p;, J=12 -,
and recursively define

1.5) 8ij = Dimi ti-irrSi1, J=d4i+1 =12,

then the following functional equalities hold.
(16) Vn = Snn = Z'E:{)ﬂ S%,n—i H;L':lzz g-j = Z:‘:Ol Si,n—l II,;“:I1> g-j .

vn 18 obtained by putting p, = 0 in S,. and deleting the term corresponding to index
1 = 0 in the two sums. [n/2] denotes the integral part of n/2.
Theorem 1 shows that the vector-valued onto map,

Pr = (D1, -+, Dn), meMﬂo-—>In°,
where
L= {(a, " ,81,8,)0<a:;<L,i=1---,n—1, 0=<a,=<1},

is one-one, and in essence it exhibits the inverse map in three distinet forms. These
yield three distinct identities on I,,’.

Some additional remarks concerning Theorem 1 may be of interest. By Corol-
laries 4 and 1 of [6], we have forz = 1,2, - -,

o= i — i)/ in —vima), Il =vi— i,

(taking the denominator on the right hand side of the first equation to be 1 when
1 = 1). The equalities (1.6) derive in part from the fact that », may be repre-
sented in the form

-1 ’
Vn = (V[‘}(n+1)] y "y "'n)Vn (V[%(n+1)] » T "n) )

where V, is the lower Hankel matrix of order n. (See the definition following
Theorem 2 of [6]). Reduction of this quadratic form by a method due to Lagrange
yields a sum whose form is essentially that of the sum on the right hand side of
the second equation in (1.6). (See Theorem 3 of [6]). The squared terms in that
sum are squares of ratios of certain minor determinants of the Hankel matrix.
In Lemma 2 of [6], these ratios are shown to have the form S; ,._;. The recursive
nature of the S;; is a reflection of the recursive nature of these ratios.
The author apologizes in advance for the inductive nature of the proofs of
Lemmas 2 and 3 with the hope that the results (namely, Theorems 2 and 3)
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will compensate for the means by which they are derived. Of course, the results
in question were discovered before they were proved.

2. The binomial moments.
LemMA 1. Let N be a positive integer, 0 < 0 < 1. Define

(2.1) C* (N, 0) = 2-@/NY' WA — o),  i=1,2 -,
then
(2.2) C*(N,0) = N~ 2 iy g: ®N ®¢*) =12 .-
where

N®=NWN-1)--- (N —Fk+1), k=12 -

and the g; ® are Stirling numbers of the second kind.

Proor. This may be seen directly if we expand (I — 6)" 7 on the right hand
side of (2.1), interchange the order of summation, and observe the well-known
closed form for Stirling numbers of the second kind; see 24.1.4, A and C, page
824 of [4].

TureoreM 2. Let N, 0, C* (N, 6),2=1,2, --- be given as in Lemma 1 and for
each positive integer n, take

Cﬂ*(N7 0) = (Cl*(N: 0); 02*(N, 0)2 ) Cﬂ*(N: 0))
We then have that
(2.3) p2a(Cia(N,8)) =6, pu(CHW,0)) =N, =12 ---,N.

Thus C.* (N, 0) s interior to M, forn = 1,2, ---, 2N — 1, on the boundary of
M, forn = 2N, 2N + 1, --- ; and the binomial (N, 0) law with support at 0,
1/N, 2/N, ---, 1 is the unigque distribution on the unit interval with moments

Cav (N, 6).

Proor. Let
(24) pav(N,8) = 6,1/N,6,2/N, ---,6,1).
In view of Theorem 1, (2.3) will be proved if we show that
@2.5) Civ(N, 8) = pax (Pav (N, 9)).

But this result (using Theorem 1 and Lemma 1) is in essence Corollary 1 to
Lemma 2 that we prove below. (2.5) and (2.4) imply moreover that C,* (I, 6)
is interior to or on the boundary of M, according as 7 is less than or n is equal to
2N. It follows (see Theorem 20.1 on page 64 of [2]) that it is also on the boundary
for n > 2N, and that the uniqueness property in the statement of the theorem
holds.

Without further comment we note at this point the striking fact that by the
above theorem the set of even indexed normalized binomial moments (taking the
normalized moment with index zero to be zero) is precisely the support of the

W
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distribution on [0, 1]. We observe moreover that the even indexed normalized
moments are independent of 8; the odd, independent of N.
Throughout the following we hold N and 6 fixed (as given in Lemma 1). Let

(2.6) prica = 6,  pas = /N, i=1,2 - ,N
Take

po* = 0, = 1 — pim)p, k=12 ---
following (1.3), (1.4), so that by (2.6)
(27) ¢t = (N —k+1)8/N, ¢ = k(1 — 6)/N, k=1,2---,N,

and similarly, following (1.3), (1.4), (1.5), let 8%; (forj = 4,4 + 1, ---, 2N;
i=1,2 ---,2N) denote the values of S;; that correspond. Take S}; = 0, when
j < 1. For integers m and n we adopt the conventions

2.8) 0™ =0= () when 0<n<m or m<0<n
and
(2.9) n™®=n® =1

A summation is taken to be zero when the upper limit of its index is smaller than
the lower. We shall have occasion below to use the well-known relationship

(2.10) g = mg, ™ + g, ™Y, 1=m=n,
and the simple facts that
(2.11) =1 " =)
(See page 825 of [4].)

LemMA 2. Fort=1,2,---, 2N,
(212) N'Siuej = 2o (WF)gi° NV —4) ©6, §=0,1,+,[N — 4.
(2.13) N'Siuaa = 2imo (i HgiP (VN — 5) ©6F,

7=1,2--,[N—3— 3]
Proor. By the definition (1.5)
Stai = 2o (eer + §3), j=1,2-,N.
Hence by (2.7)
NSLo = 2da [V — B+ 1)0 + k(1 — 0)] = (57) + NV — 5)e.
Moreover |
NSi1p; = N(Stas + 1) = ) + G+ DA — ).

Thus, by (2.11), the lemma holds when ¢ = 1. Now suppose the lemma to hold
for an arbitrary positive integer ¢ less than 2N. We show first that (2.13) and
then that (2.12) must hold for ¢ 4 1.
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Using (1.5), we have for
(2.14) Jj=0,1,2,---, [N —%3; ¢=1,2---,2N — 1,
that
Stire = Dt Eo-1SFaa + (08%ia)
Using (2.7) and multiplying both sides by N, we get
NSFiives = 200 (IS%aser + 0[N — 1+ 1)STusars — ISTasail).

If we multiply both sides by N*, use the induction hypothesis, and change the
order of summation, this equation takes the form

(2.15) N8 0 = Dt (Zz=1 )
where for 4, j satisfying (2.14) and for

1=1,2 -,7; k=01, ---,i+1,
and mindful of the conventions (2.8) and (2.9),

(216) ¢(t) Z(l+k)g(l+k) (N _ l) (k)
+ IV =1+ DERD = 1GEEDgET W - 1)

In view of (2.15), it will suffice (in order to prove (2.13) with ¢ replaced by 7z + 1)
to show that for ¢, 7 which satisfy (2.14) .

217)  2iawd = (hegdh v —5) @, k=0,1,---,2+ L
But to prove (2.17) we need only show that for all the indices in question

wid = (gl — 1)@ = (el TP -1+ 1) @,
By (2.16) and after simple manipulation, this equation takes the form

[(N —_ l + 1)(Z+I]:—l) _ Z(H'k—l)]g(l—}-lg—l)
= (N —1—k+ 1) — @+ kg™,

It may easily be seen that
(N -1 + 1)(l+£—1) _ (l+lc—1) — (N — 1=k + 1)(l+k—1)

But then the desired equality holds by (2.10). Thus (2.17) and hence (2.13)
(with ¢ replaced by ¢ 4 1) is true.
Finally, using (1.5), we have

St it = SErizei + ¢ ;+1Szi+1+2j,
so that using the above result together with the induction hypothesis we have
N8 it = i (JM_I)gg(zl-tl-c'-)1 (N — j) Pe*

+ NV — 5)8 2ico CEMVgsiiP (VN — 5 — 1) P,
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This easily yields the desired result that (2.12) is true with 7 replaced by ¢ + 1. []
COROLLARY 1.
NSt = Diy 9: ©®N ®e*, i=1,2 ---,2N.

Proor. Putj = 0in (2.12) and note that g; ® = 0,7 > 0.
CoROLLARY 2. Let N, 0 be given as in Lemma 1. Then form = 1,2, --- , N, we
have that

Ren(Can1(N, 6)) = NN ™ — 1)1 [0(1 — )™
Romi1(Can (N, 0)) = N2 'N ™1 [6(1 — 6)™

Proor. This is an immediate consequence of (1.2) and Theorem 2.
Note that by (1.1), Theorem 2, and the above corollary

(2.18)  Con(N,8) — v (Coma (N, 8)) = NN ™) [0(1 o)™
(2.19) Conia(N,0) — v2m1 (Com(N,0)) = N™'N (D), 1 gt a—oe)m™

As an unlooked for bonus which is derived from Lemma 2 used in conjunction
with Theorem 1, one may obtain several families of identities which involve
Stirling numbers of the second kind. One such family (see (2.17) and (2.16))
has already been demonstrated in the process of proving Lemma 2. Other iden-
tities may be obtained by substituting the results of Lemmas 1 and 2 into the
functional equations of Theorem 1. For example, let » = 2m. By the second
equality of (1.6),

Comn(N, 0) = D7y KA § Al

By (2.18) and corollary 1 of [6],
e = NN - 0)

Thusby (2.2) and (2.12) wehaveform =1,2,--- ,N;N=1,2,---;0<0 =1,
that
(2.20) i1 ginN O

= S (O gm TPV — 4) Pe*)% NG (L — 6)°.
Note that if we delete the terms with index ¢ = 0 on the right hand side of (2.20),
the resulting expression is by Theorem 1 precisely N*™vz, (Com_1 (N, 6)).

If we equate coefficients of equal powers of 6 on both sides of (2.20) this yields
fore =1,:--,2m

i ) 2> in (i—j,m—k) (2
(2.21) gz(:n)N ¢ = ;I:;(a‘x,’?o) i—m) Ic—() y;‘:l;xd).?—j—k) TJ kml‘)
where
(k) ®
it k l i 1 D kel
TEmS = (—1)%* [77(k + 1™] NN — k)PP 00,

C—7-DIG+k+1—-19]1
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For example, if we take ¢ = 2m, (2.21) yields as a special case that
N = N 3ie (1) @)m P @ — k) ™.
This may in turn be put in the form
) = 2= (=16 k),

which is itself a special case of (12.15), page 62 of [1].
Other families of identities analogous to (2.20) and (2.21) may be obtained
by starting with » = 2m — 1 or by using the other relationships of Theorem 1.

3. The beta moments. Let a and b denote positive real numbers. Define
Ci(a,b) =T(@+ )T @r®)}™ ez —2) de, 1=1,2---

where I' denotes the Gamma function. It is well-known and easily seen that these
moments take the form

(3.1) Cie,b) =[[IB{a+k)a+b+k)Y, i=12- -
TuroreM 3. For each positive inieger n, take
C.(a,b) = (Ci(a, b), Ca(a, b), -+, Cula, b))

then
Pn(€ale,0)) = (1 — e (a, b)), n=12---,
where
@+bd—14+n)e(a,b) =b—a when n s odd,
=a+b-—1 when n s even.
Proor. Let
3.2) Pi =311 — &(a, b)), 1=1,2 -
and take

ﬁn=(ﬁ1,ﬁ2,"’:ﬁn), n=12 ---.
Following the pattern of Theorem 2, it will suffice to prove for any positive integer
n that C,(a, b) = p» " (Pn). But this by Theorem 1 is in essence the substance of
Corollary 3 to Lemma 3 which follows below.

We note as of some interest at this point that e (a, b), e2(a, b), - - - is a simple,
explicitly defined null sequence for each positive ¢ and b, so that identically for
a, b > 0, we have that lim,,. pn (€. (a, b)) = %

Let i = (1 — pra)Pr, k= 1,2, .-+, and take d = a + b. By (3.2)

(33) §y = ot I = L N CES ESNCEY)
B R D R R A RS TR VDN

7=0,1,---.
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Using (1.3), (1.4), (1.5),let 8;; (forj = 4,5+ 1, -+ ;4 = 1,2, ---) denote the
values of 8;; that correspond.
Lemma 3. For each positive integer © and each non-negative integer j we have that

Sies = COILGS VG E),  Suwasn = (T) L VG, k),
where
V(G k)= (a+j+k)/ @+ 2+ k).
Proor. We show first that the lemma holds when 7z = 1, i.e., that
B4) Sz =G+ DVE0),  Sape= G+DVEL), §=0,1,2 -
By (1.3), (1.5), (3.3),
(3.5) Su = ?1 =p1 = a/d = V(0,0),
Slz = Su + ?2 =a/d +b/(dd+ 1)) = V(0,1).
Now let j be a positive integer and suppose (3.4) to hold with j replaced by 7 — 1.
We then have that
Jla +J) n d+j— 1+
(d+ 25— 1)@+ 2j)

Sl,2j+1 =3V —1,1) + & = T¥3 -1

o . G4DEt) ., GEDGLD
Sioipe = (7 4+ 1V(5,0) + Foiye = T+ 2; + CESDICESIES)

Now suppose the lemma holds for an arbitrary positive integer 2. We show that it
must then continue to hold for ¢ + 1, i.e., that forj =0,1,2, - - -,

(3.6) Siiein = () [ VG, B),
Seepse = (O ILE VG, k).
Again by (1.3), (1.5), (3.3), and the induction hypothesis,
Sirin = &S = V(0,0) ITiza V0, &).

Moreover

Si+1. 2 = Si+1. i+1 + ?ﬂgi,u-z

iz V0, %) + %—i% V(L k)

Ca(d i+ 1) + b6+ 1)y
dla+:+ 1) ILE v (o, k).

But the ratio in front on the right hand side is 1 and the product is precisely the

I
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right hand side of the second equation in (3.6) when j = 0. Thus (3.6) holds for

= 0. Now let j be a positive integer and suppose (3.6) to hold for j — 1. To
complete the proof we need only show that it must then continue to hold for j.
We have by (1.3), (1.5), (3.3), and both induction hypotheses that

S, ivaier = S, ivej + Sopr1Si, ivaip

= 1t.’l ’tl‘V i — 1.k (d+j‘_1)(a+j)
]1)Hk1 (g ’)+(d+2]-—1)(d+2j)
) I v, &)
(d+2y+z)+(z+1)(d+3—1) i1y TTE .
; - V(J, k).
The ratio in front on the right hand side above is 1 which verifies the first equation
of (3.6). But then in a similar way we have that ’

Sira, ivzive = Sisn, ipaipr + Eo:0Si, iago

= Y TTie V(G k) + (J+ 10+

@Fr2p@d+25+1)
(CHM IS VG + L, k)

= (Y ILE v, B).

which verifies the second equation of (3.6) and completes the proof.
CorOLLARY 3. For each posttive integer ¢

i =TIV, k) =I5 {@+ k)@ + k)7

Proor. Put 7 = 0 in the first equation of Lemma 3.
By Theorem 1 and (1.2) we have
CoRrOLLARY 4. Form = 1,2, - -

Roni1(Con(a, ) = [5G+ 1)@ +9)(@+9) O +19)/{(@ +20°@ + 2 + 1)},

Form =0, 1,2, - - - multiplication of the right hand side above by (a + m) (b + m)/
(d + 2m)* yields Romy2 (Comir(a, ). (When m = 0, the above product is taken to

be 1.)
Expressions analogous to (2.18) and (2.19) are easily obtained using (1.1)

and Theorem 3.
In the following corollary we examine several special cases of the Beta distribu-

tion which are perhaps of some interest.
CoROLLARY 5. For the arcsine distribution, we have

pn(én(%7 %)) = %7 n = 1, 2, e
For the uniform distribution
Prica (€ (1, 1)) = 3, pu(Cu(, 1)) =¢/@i+1), =12



1762 MORRIS SKIBINSKY

The first part of this corollary is a known result. See Theorem 25.3 page 78 of
(2].
4. Two General Theorems. Let (p1, ps, - - -) denote a sequence of normalized

moments corresponding to some probability measure P defined on the Borel
subsets of [0, 1]. Let

IIA
8
IIA

flz) = 1— g 0
define P © by taking for each Borel subset 4 of [0, 1],
PY(4) = P(f(4));

and let (71, po @, - -+ ) denote the sequence of normalized moments correspond-
ing to P . We then have

1;

() (s)
THEOREM 4. Dai = Daoi, P21 = Qaiya .,

Proor. This is an immediate consequence of Theorem 26.5, page 85 plus
formulas (18.1), (18.2) page 59 of [2] together with the definition of normalized
moment. We sketch below a proof which is somewhat more elementary and
direct. Let Cy , Cy, - -+ ;C1®,Cy®, - . . denote the moment sequences which
correspond respectively to P and P . Let C;, C; ® denote the obvious i-
tuples for each positive integer ¢. Clearly

C:® = [on 1 —2)'dP@), Ci=fpu(Q—2)dP®x) i=12---,
Thus after suitable manipulation we may write
C:®¥ = Ki(C2) + (—1)'Cs,

where

Ki(Ci%y) = im0 (=176 @,
Hence

v (Ciila) = Kai(Ciiha) + i (Caina),
while on the other hand

vais1(C?) = Koin (CsP) — #iga (Cas).

The conclusions now follow directly from the definition of normalized moments.
COROLLARY 6. When P = P, we have that

(8) .
Poi1 = P2 = 3, 1 =1,2,--.

Thus, each distribution on [0, 1], symmetric about 3 has each of its odd indexed
moments at the midpoint of the range permitted by the moments which precede it.
The special cases of Corollary 5 exhibit this property.

Let a < b denote two finite real numbers, and let M, denote the space of
the first n moments for the class of all probability measures defined on the Borel



BINOMIAL AND BETA MOMENTS 1763

subsets of the interval [a, b]. Thus the space defined in the first paragraph of
Section 1 is M, Y. Clearly, maximum, minimum, and normalized moments
v and p,*?, say, may be defined relative to M, in precise analogy to
their definition for 27,4,

Now let Y denote a random variable distributed on the interval [a, B].
(Y — a)/(b — a) is then distributed on [0, 1] and this transformation yields in
effect a one-one correspondence between distributions on [@, b] and those on
[0, 1]. We may now state the following invariance principal as

THEOREM 5. Let p,'*" (V) denote the nth normalized moment of the distribution

of Y on [a, b]. Then
P (Y) = p "N (Y — @)/ (b — a)).
Proor. Let X = (Y — a)/(b — a); then
(4.1) BY" = 235 (1) ()" BY +7 (b — a)"EX"

for each positive integer n. Let (p, 72, - -+ ) denote the moment sequence cor-
responding to some arbitrary but fixed distribution on [a, b]. It is easily seen that

Vn:‘:,[a’b] (m s M2yt Ma1)

are respectively the maximum and minimum values of EY™ as ¥ varies over the
class of all random variables which are distributed on [a, b] with the property
that

EY® =y, i=1,2---,n—1
Thus by (4.1)
Vni’[a'b] My, oty o)
=205 ()@ T+ b — @), by e Ea).

where

= (b —a) Zie (=17, i=12-...
As an immediate consequence (letting7; = EY",4 =1, ..., n — 1, for the par-
ticular Y under consideration) we now have that
EY" — =04 (m,me, - M) = (b— a)"(BX" — =01 Gy by e, ).

When we divide by the range of the nth moment, (b — a)" cancels and we have
the desired result. []

Relative to the example considered in Section 2, we may now remark, using the
above theorem, that the normalized binomial (N, #) moments relative to the class
of all distributions on [0, N] are precisely the same as those (relative to the dis-
tributions on [0, 1]) of the binomial (N, 6) distribution with support at
{0, 1/N, - - - , 1} that we considered.
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