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1. Introduction. Let Z,=1,Z,,Z, -+ denote a super-critical Galton-Watson
process whose non-degenerate offspring distribution has probability generating
function F(s)=Y7os'Pr(Z,=j), 0<s<1, where 1 <m=EZ, <. The
Galton-Watson process evolves in such a way that the generating function F,(s)
of Z,, is the nth functional iterate of F(s) and, for the super-critical case in question,
the probability of extinction of the process, g, is well known to be the unique real
number in [0, 1) satisfying F(g) = g. It is the main purpose of this paper to establish
the following theorem which gives an ultimate form of the limit result for the case
in question.

THEOREM 1. There exists a sequence of positive constants {c,,n = 1} with ¢, > o
and c,” ¢, » m as n— oo such that the random variables c,”*Z, converge almost
surely to a non-degenerate random variable W for which Pr(W = 0) = q and which
has a continuous distribution on the set of positive real numbers. Let s, be any fixed
number in (0, —logq). Then, c, can be taken as [h,(s;)]~" where h,(s) is the inverse
Sunction of k,(s) = —log E{exp(—sZ,)}.

This result constitutes an extension of the main result of Seneta [6] where con-
vergence in distribution was established. It should be remarked that, when
EZ, = oo, it is not possible to find a sequence of positive constants {c,} for which
¢,~'Z, converges in distribution to a non-degenerate limit law ([7] Theorem 4.4).

By way of comparison with Theorem 1, we note that:

THEOREM A. (Stigum [8], Kesten and Stigum [3]). 4s n — co0, m™"Z, converges
almost surely to a random variable W, for which Pr(W, = 0) = q or 1 and which, if
Pr(W, =0) <1, has a continuous density on the set of positive real numbers.
Moreover, the following two conditions are equivalent:

(i) E(Z,logZ,) < c0.
(ii)) Pr(W, =0) =q.

Thus, when E(Z;logZ,) = oo, the norming by m" is not appropriate and a more
subtle norming is required to obtain a non-degenerate limit law. Almost sure
convergence in Theorem A is based on the fact (due to Doob) that the process
{m~"Z,} is a martingale. The process {h,(s,)Z,} is, as was noted in [6], a sub-
martingale but the submartingale convergence theorem is only applicable when
E(Z,logZ,) < o0.
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2. Proof of Theorem 1. Firstly we note the following results of [6]. k,(s) =
—log E{exp(—sZ,)},s = 0, is the nth functional iterate of

k(s) = —log E{exp(—sZ,)}.

k,(s) is continuous, strictly monotone, and strictly concave for s = 0 and its inverse
function A,(s) (the nth functional iterate of A(s) = k~!(s)) exists for 0 < s < —logg
and has properties which are dual to those of k,(s). Let s, be any fixed number

in (0, —loggq).
Now, for n > 1 let &, be the o-field generated by Z,,---,Z, and consider the

process {exp(—h,(s0)Z,)}. Then,
E[exp(—hy41(50)Zp+1) ‘ F ) = [E[exp (= hyy1(50)Z,)]]*
= exp(—Z, k(1 +1(50)))
= exp(—h,(s0)Z,),

so that {exp (—h,(s0)Z,), # ,} is a martingale. Furthermore, 0 < exp {—4,(s0)Z,} <
1, so the martingale convergence theorem gives the almost sure convergence of
{exp(—h,(s0)Z,)} to a finite limit. It has already been demonstrated in [6] that
h,(so)Z, converges in distribution to a non-degenerate limit so almost sure con-
vergence to a non-degenerate random variable W is established.

It is not shown explicitly in [6] that h,(so)[A,41(50)]” ' = m as n— co but it
follows readily from the results given therein since

Ra(50) [+ 1(50) 17" = hu(s0)[(u(50))] ™! — m

as n — 00. Furthermore, Seneta has not shown that the limit distribution function
is continuous on the set of positive real numbers. It follows simply, however, from
Equation 3.1 of [6], that the characteristic function ¢(¢) of W satisfies the functional

equation
6] P(mi) = F(¢(1))
which is just that studied by Stigum [8]. Then, following [8] and noting that
Pr(W = 0) = q, we define a characteristic function
Y@ = [¢((L—p)1)—q]/(1—q),
and a probability generating function
h(s) = [F((1 - q@)s+49)—q]/(1 - ).
so that, using (1),
Y(mt) = h(\P(1)).
It can then be deduced from Lemma 2 of [8] that lim -, , |¥(#)| = 0. This ensures
that the distribution function corresponding to ¥ is continuous ([5], 27), and hence

that W has a continuous distribution on the set of positive real numbers. This
completes the proof of the theorem.
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3. A Wald type identity. Let 7 be a stopping rule on the sequence {Z,}. That is,
T is an integer-valued random variable such that the event {7' < n}e &, for every
n =1 and P(T < o) = 1. We shall establish the following theorem.

THEOREM 2. For any s in [0, —logq), we have e*’E{exp(—h(8)Z)} = 1.

ProOOF. We have seen in the proof of Theorem 1 that, for fixed s in (0, —loggq),
{exp(—h,(s)Z,), #,} is a martingale. Also, the family {exp (—#h,(s)Z,)} is trivially
seen to be uniformly integrable so we may apply Theorem 2.2, Chapter 7, of Doob
[1] and obtain

E{exp(—h1(s)Z7)} = E{exp(—h(s)Z,)}

=exp{—k(h(s))} = exp{—s},
as required. .
Theorem 2 is included in this paper as it follows so simply from the proof of
Theorem 1. The result will be explored elsewhere.

4. An application of Theorem 1. In this section we shall establish the consistency
in a certain sense of the estimator ) _, Z;/> "2} Z; for m. This estimator has been
discussed by Harris [2] who has shown that it is a maximum likelihood estimator for
m and that, if EZ,2 < oo, it is consistent in the sense that

lim,, ., Pr (|21 Z,/3j26Z))—m| 2 8] Z, > 0) =0

for every ¢ > 0. We shall strengthen this result and remove the restriction that
EZ,? < 0.
Firstly, we need the following theorem which is of some independent interest.

TueorReM 3. If ¢,”'Z,—,, W where c,— ©,c,” ¢,y —>m as n— oo, then
e Y o0Z; s mW)(m—1) as n—> 0. (“a.s.” denotes almost sure convergence).

ProoF. Take c, = 1 for convenience. Since ¢, 'Z,— W —,; 0 as n — oo we have,
using the Toeplitz Lemma (e.g. Loéve [4] 238),

{ZZ:O ala” 'Z— W]/ZL 0Ckf a0,
which yields
(2 (ZZ:O )" ! ZZ:O Zy =, W

Also, since ¢, 'c,,.; = m as n — oo, a further application of the Toeplitz Lemma
gives

Or-oala tar1—m] Y=o —0, that is,
U+ (Cpe1 =D k=0ci} > m
as n — oo. This yields
(3) Yi-oCk ~ me,/(m—1)

and the desired result follows immediately from (2) and (3).
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THEOREM 4. Let & denote the event {Z, >0,k = 1,2,3,---}. Then, for arbitrary
e>0,
lim,, , Pr(max,, (%, Z;/Y526Z)—m| 2 ¢|6) = 0.
ProoF. Define the random variables U,, n =1,2,3, -, W* as follows:
U,=h(s0))-0Z; if Z,>0,

=1 if Z,=0;
w*=w if W>0,
=1 if wW=0.

Then, it is clear from Theorem 1 and Theorem 3 that U, converges almost surely
to mW*|(m—1) as n —> oo, the random variable W* having a distribution function
which is continuous at zero. We therefore have, since Pr(8) = 1 —gq,

Pr(maxys, |[(Yho1 Z;/Y 526 Z)—m| 2 ¢| &)
=(l—-¢q)” ! Pr(max;;, Uk_—ll |hk— 1(50){[hk(30)]_ 1Uk_ 1} _"1Uk—1i Z¢€;6)
=(1-9° ! Pr(max;;, Uk_—ll Ihk—l(so){[hk(so)]_lUk_ 1}_mUk—1| Ze).
The result of the theorem then follows readily because Pr(W* = 0) = 0 and
I~ 1S [(50)] ™ U= 1} = mU -,
= (b= 1(50)[uls0)] ™ =m) Uy = Iy _ 1(50) + m(Uy = Uy _ 1) = 4..0

asn — oo since Ay, _ (o) [A(s0)] ™! = m, hy_ (so) = 0 and U, converges almost surely.
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