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CONVEX CONES AND FINITE OPTIMALS

By T. E. S. RAGHAVAN

University of Essex and University of lllinois at Chicago Circle

1. Introduction. Among the continuous payoff kernels K(x, y) on the unit square
for an infinite zero-sum two person game, the separable kernels, the generalized
convex kernels and certain analytic kernels are known to possess optimal mixed
strategies for the two players with finite spectrum [5]. It is known that even among
C* kernels we can have very pathological optimal mixed strategies as their unique
optimals [4]. Thus the problem of classifying kernels with finite optimals is un-
resolved. Here an attempt is made to look at this problem from the topological
viewpoint. The binding geometric object between kernels and strategies could be
chosen as the cone generated by functions 4,(x) = K(x, &) where we fix o and view
K(x, o) as a function of x. Some of the properties of the cones are reflected in the
finiteness of the spectrum for an optimal strategy for a player. Similar versions
could be stated for the other player, by considering a related kernel where now the
second player becomes the maximizer. Further, these cones in certain other
topologies also characterize extreme optimals for a class of games.

Preliminaries. Let X, Y be compact metric spaces and K(x, y) > 0 be a continuous
payoff on X x Y. Let Ey, Ey be the Banach space of continuous functions on X and
Y with their supremum norm (|| - |). Let C be the closure of the convex cone in Ey
generated by functions 4,(x), where h(x) = K(x, a), aeY. Let K be the cone of
nonnegative functions in Ey. Let E, be the linear manifold C-C and E, its closure.
By a positive operator we mean a linear operator 4 from E, - Ex which maps the
cone C into K. We would call the image of the cone C under A the range cone. The
following is the main theorem.

THEOREM 1. Let A be a positive operator from E, — Ey continuous on the cone C.
If A is isometric on C and if the range cone has a relative interior point in the closed
linear manifold spanned by this cone, then player II has always an optimal mixed
strategy whose spectrum is finite. If the cone C itself possesses an interior point
relative to E, then the conditions are trivially satisfied for the identity map and in this
case the kernel is separable and both players have optimal mixed strategies with
finite spectrum.

PRrROOF. Let Py denote the set of all probability measures on the Borel sets of Y.
Py as a subset of Ey* (the dual of Ey) is compact metric in its weak topology [6].
Further by Helly’s theorem

:v - [y K(x, y) do(y)

is continuous from Py into Ey. Thus 1(Py) = B is compact in Ey. Trivially it is
convex. Let T be the convex cone generated by B, i.e. T= {Af:1 =0, fe B}. We
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will show that 7= C. To see this let pe C, p # 0. There exists p, = p, p, # 0 where
P, is the form p,(x) = Y 1"a; K(x, a;), @; 2 0, i = 1,2, -+, y,. By assumption some
a; > 0 and that 6, p, € B where 0, = (Y a;)"'. By the compactness of B, 6, - p, has a
convergent subsequence and without loss of generality 6,-p,— p.eB. Since
K(x,y) > 0, ||p.|| > 0. Also we have p, — p and that 6,’s are bounded. Without loss
of generality 6, — 0, > 0. Thus 6,-p = p. and thus p=0,"'-p.eT. Thus C = T.
Conversely let geT, g # 0. For some A >0, AgeB. Thus ¢ = A~ !7(v) for some
ve Py . But in Py those measures which have finite spectrum are dense [6]. Therefore
we have 1~ !7(v,) = g,,, v, = v, where v, is a sequence in P, where each one has
finite spectrum. Now g, is of the form g,(x) = A71 - Y 1mu; K(x, ;) p; 2 0, Y pt; = 1.
Thus g, € C. The continuity of t implies g € C. Thus the two cones coincide.

Continuing with our proof let H = A(B) be the image of B under 4 and by the
continuity of 4, H is compact. Further the range cone is given by |J > o AH. Let S be
the compact convex hull of 0 and H. Then the range cone is |Jz-, #nS. Since the
range cone has non-null interior in the closed linear span of its elements, by Baire
Category theorem some nS and hence .S has non-null interior. .S being a compact
subset of this Banach space, it is finite dimensional. Let k& be the dimension of S.
Then any point of H is the convex linear combination of at most k + 1 of its extreme
points. Now since B is the closed convex closure of /,(x), a € Y, the extreme points
of B are contained in the compact set {A,(x), a€ Y}. The linearity and continuity of
A implies that any extreme point of S is the 4 image of an extreme point of B.
Consider the kernel M(x, a) where M(x, o) = A(h,(x)). M(x, a) is continuous on
X x Y and M(x, a)’s as functions of x generate a finite dimensional space. Thus for
this kernel player II has an optimal strategy v, with finite spectrum. Let v, be the
value of this game with payoff M(x, «). Thus

fyM(x,a)dvo(a) S v, forall x.

But 4 maps C into the cone K and thus for any point he B where A(x) =
fy K(x, y)dv(y) for some ve Py we have by linearity and isometry

Ah(x) = [y M(x,y)dv(y) and |Ah| = max, [y M(x, y)du(y)
= [[h]| = max, [y K(x, ) dw(y).
This shows that
min, max, [y K(x, ) dw(y) = min, max, fy M(x, y) dv(y)
= max, fy M(x, y) dve(y) = vo.

Thus both games have same value v, and that v, is optimal also for the original
payoff K(x, y). This completes the proof of the main assertion in the theorem. If
the cone C possesses an interior point of E,, then by the above argument E, is
finite dimensional. Let A4,,, A,,, ", h,, span E,. Let x, y be generic points and
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X1s X3, s Xgs Y1, V2 *, Vs De any fixed set of points with the property (without
loss of generality) that the determinant

.K(xl" yl); Ty K(x.l’ys)

A= #0.

K(xs;y1)9 T 9K(xsayx)
Now Ay(x) = K(x, y) and A, - - h, form a dependent system and that

K(x, y) K(x,y1) - K(x, )

K(xlay) K(xla yl) T K(xb ys) = 0

K(xs’ y) K(xs’ yl) e K(xs’ ys)
Expanding the determinant we have

AK(x, ) +Y: Y K(x, y)K(x;, y)a;, = 0.

Here a; s are the suitable cofactors got by deleting the column i+1 and row j+1
in the above determinant. Since A # 0, we have

K(x,y) = =Y K(x,y) K(x;, y)a; JA,

i.e. K(x,y) is separable. But in this case we know that player I possesses an
optimal strategy with finite spectrum [5]. The following theorem relates the cone C
to extreme optimals of player I.

THEOREM 2. Let for some optimal mixed strategy v for player II the spectrum o(v)
of v be the whole space Y. Then an optimal strategy p with spectrum X, for player I is
extreme if and only if the cone C generates a dense linear manifold in L,(X,, B, 1)
where we view elements of C as functions restricted to X, .

The proof follows closely the proof of this theorem for finite games [1]. Also it
follows from a more general theorem of Douglas [3]. Since the dual of L, is the
space of p-essentially bounded functions, the proof by contradiction uses separation
theorem to get such a function and treating this as the Radon—Nykodym derivative
we arrive at a contradiction to the extremity of u if C-C is not dense in L (X, B, p).
The converse is trivial.

The following two examples illustrate the existence of isometries for non-
separable kernels to which our main theorem is applicable.

ExaMPLE 1. Let K(x, y) > 0 be continuous and convex in x for each y in 0 £ x,
y £ 1.Foranyain0 < a £ 1 let the function A,(x) = K(x, «) be mapped to the func-
tion g,(x) = (1—x)K(0, o) + xK(1, o). Since the maximum for a convex function is
either at 0 or 1 we have |4, = ||g,|. Further for any finite 1,4, "+, 4 20,
0= ay, 0y, 7,0 = 1, Y Ak, is convex and that if we define

A:Zlihai_’z;tiga:

then we check that A is an isometry and it is linear and continuous in C. The range
of A consists of functions of the form a-+bx and that the range Cone has relative
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interior. Thus continuous kernels on the unit square which are convex in x for each
» have finite optimals for player II (of course also for player I).

ExAMPLE 2. Instead of demanding convexity in x we could weaken the condition
by demanding K(x, y) < (1—x)K(0, y)+ xK(1, y) for all x, y in the above example.
The same argument works.

In these two examples one could see the finite optimals directly by domination
arguments. It would be interesting to know whether we could construct such iso-
metries of the theorem for some of the known kernels with finite optimals for player
II, such as the generalized concave kernels of Karlin and certain Cauchy-Bell
shaped kernels.

Thus it seems that the cone C and its topological structure could give us some
guidance in our problem of classification. :
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