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0. Summary. In this paper two convergence theorems are proved. One gives a
strong law of large numbers for a class of linear rank statistics and the other gives
weak convergence of a weighted empirical cumulative process to Gaussian process,
concentrated on continuous sample functions. Of course, both of these results are
true under some regularity condition on the quantities involved.

1. Strong law of large numbers for linear rank statisties. Let {X,, 1 <i<n}n =1
be sequences of independent random variables with distributions {F;,, 1 <i < n}
n= 1. Let {C;,1 <i < n} be arbitrary constants such that if

2 __ ,=1\"n 2
Ope =1 Zi=1cin'

then
(LY Zf:l [max; <;<, Chinel]* < .
(L.1") lim,, , max, ¢;<,Ci/naz = 0.

Let ¢ be a function on [0, 1] to the real line such that

(1.2) 0 < [§|o*(w)|du < .
Define for any —o0 <t < 4+
(1.3) H®=n"'31 11X, <)

H—n(t) =n" ! Z:’= 1 Fin(t)'

One can prove, using the fourth moment of |H,(¢)— H,(¢)| and the Borel-Cantelli
theorem, that

(4 U crctn|ZiO] = SUP_ v [HO=H,(0] 50 as.
as n— co.
Let
w=n"1Y 0 Cup[Ryf(n+1)]
(1.5) T, =n"" Yio1 Cup[H(X:)]
pn = ET, = n"1Y, Cy, [ 2, o(H (%)) dF;(%),
where
R;, = Z;=1 I(Xjn s Xin)'
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THEOREM 1.1. If ¢ satisfies (1.2) and is continuous on [0, 1], {C,,} satisfy (1.1)
and {F;,1 £ i< n}n 2 1 are all continuous, then

(1.6) 6. (S,— ) =0 as.
asn— oo.

Proor. We need continuity of {F,,} for {R,,} to be properly defined. Secondly
note that ¢ continuous on [0, 1] implies that ¢ is uniformly continuous also, and
hence, we may replace (n+ 1) in the definition of S, by n. Next, with this modifi-
cation, observe that S, can also be written as

n= n! z:l: 1 Con[H (X )] .
Further using the Cauchy-Schwarz inequality one gets
|o%e (Su=T)| = |o7c! 07! Yie s Con{0[HW(X1)]— o[ HAX 1) ]}
S max; <<, |§0[Hn(Xin)] - ‘P[Hn(Xin)]l
S SUP_ oo <i< 4o |P[HL(D] = o[ H,(1)]|

which — 0 a.s. in view of (1.7) and (1.4).

Next, (1.2) implies |2, |@*(H,(x))|dH,(x) < oo for all n, which in turn is
equivalent to the fact that [®, [p*(H,(x))|dFy(x) <o 1<i<n, nz1. So if
Ziy = Qin— Wins With @, = ¢(Hn(Xin))’ Win = E@y, one haSEIZl!CnI <,k=1,2,3,4;
1 <i<n, nz 1. Moreover, by repeated use of the Cauchy-Schwarz inequality it
can be shown that

|E[art_c‘1(7;n _Mn)]4| é K(¢)[max1 SiZn Cizn/ln a.r%c 2
where K(¢) = constant | |p|*. Consequently by (1.1) and (1.2) it follows that
ne1 E[0,. (T, — p)]* < o0,
and hence a,,'(T,—p,) = 0 a.s. This together with the fact (S,— T,)s,.' =0 a.s. =
(S,—1,)0.' =0 as.

2. Weak convergence of weighted empirical processes. This section uses Theorem
12.1 and Theorem 15.5 of [1]. For the sake of completeness we restate Theorem

15.5 here.
Let {V,(¢); 0 <t < 1} be a sequence of stochastic processes in D[0, 1] the space
of all functions on [0, 1] with discontinuities of type 1. Let for any é > 0,

(2.0 W(V,s 8) = sUpjs—yy <5 | Val8) = Val(2))-
Let V(¢), 0 <t £ 1 be another process.

THEOREM 2.1. (Equal to Theorem 15.5 taken together with Theorem 15.1 of
[1]). Suppose that for each n > 03 an a such that

2.2) Pr|V,(0)| > a] <9 nzl.
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Suppose further that for every € > 0
2.3) lim,_, o lim,_, o, Pr[W(V,, 8) = &] = 0.

Also suppose
(2.4) LVt 12jSk)->ZV(1, 1 £j=k)

for all continuity points of V. Then V,, -,V and V is in C[0, 1] with probability 1.
Our objective is to prove that the following sequence of processes L, are weakly

convergent to a continuous limit.
Let {X,,} be independent random variables in [0, 1] with cdf’s {F;,} all con-
tinuous. Let {C,,} be as in Section 1. Define, for 0 =7 < 1,

25 L) = (0, )™ * ey Cun{ (X = 0~ Fi(t)}.
Lemma 2.1.
E[L(5) = Ly(t)]? |Lu(t2) ~ Lu([*] £ 3[G,(t) — G,(t)]
forall t; £t < t,, and all n, where
(2:6) G(f) = 05> n ™ Y0y CLF(0).
PrOOF. Let
oy = 1(t; < Xy S 8)— pilts, 1)
Bjn=1(t < X < t2)—pjults 12)
where Pi(u, v) = Fy,(0)—Fy(u) 0<u,v=1.
Then
L(O—L,(t) = 0,0 n7* Y0y Cinttiy
L,(t;)— L) = 0,.' n7* Yo i ConlBin-

Using the independence of {a;,}, of {;,}, and that of a;, from B;, i # j, and the
fact that Ex;, = Ep,, = 0 for all i, one can conclude that

E ILn(t)_Ln(tl)Izan(tZ)_Ln(tl)l 2
26,43 CLELZPE +23 Y s ; CLCLEQLEP],
+ 3% %5 ChCoLE(%inBin) E(jnB in)}
which may be easily shown to be
S 726,430, Chpults, DPi(ts 1) +2Y, Y in ; CCrubinlts, DPult, 2)
+ 3 Vi s ChClubin(ts, OPjults 12)}
<30, [n7 Yoy Chpi(ty, D][n ™' Yia1 Chpult, 12)]-
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But
th St = py(ty, 1) = Fip (1) — Fu(t)
= Fi(ty)— Fy(ty),
Pinlt, 12) = Fy(t;)— Fiu(0)
S Filt))—Fu(ty)
and hence

E[|L,(6) = Ly(tD)*|Lu(t2) — Lo()|*]
<302 n Yo Chpalta, 11)]?
= 3[G,(t)— G,(t)]*.
LEMMA 2.2. For any n > 0 and t, < t, fixed, we have
@8)  Prlsup,seso L) —Lyt)| 2 1]
< K/n? [Gy(tz) = Go(t)]? +Pr [|L,(t2) — Ly(t;)| = n/2]
for all n. K is independent of t,,t, and n.

PRrOOF. In view of Lemma 2.1 above, Theorem 12.1 of [1] is applicable to rv’s

&=L, ((j/m)o+1t)—L,((j—1/m)é+t,) lsjsm
withy =2, « =1 and
u; = G,((j/m)é+1t,)—G,((j—1/m)d+1,) 1<jsm.

In the above 6 = 1, —t,.
Finally using inequality (12.4) of [1] and right continuity of L, for each n, one

gets (2.8).

LEMMA 2.3. Assume {C,,} satisfy (1.1') and {F;,} are continuous and behave in the
limit such that for any 0 =ty <t; <:--<t,=1,t;—t; 1 £6,1Zj=r

(2.9) lilna_.o limn_.w maxl <isn maXl <jsr |Fm(t1)_Fm(t_’_ I)I = 0.
Then for every ¢ > 0
(2.10) lims_ ¢ lim,_, , Pr[W(L,,0) = ¢] =0.

ProOF. For a §>0 let 0=¢t,<t, <-'*<t, =1 be a partition such that
ti—t;_y=01=i=r. Then

(211) Pr [Wn(Lns 5) g 8] é Z:= 1 Pr [Supti_ 1Ss= |Ln(s)_Ln(ti—- l)l g 8/3]
SK Y [G(t)— G (tim )T + Y51 Pr|L(t) — L,(ti- 1)i = ¢/6].

First inequality follows from Corollary 8.3 of [1], and second inequality follows
from Lemma 2.2 above.
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We shall show that the right-hand side of (2.11) tends to 0 as n — o0 and 6 — 0.
If
$.2(0) = 0,207 Yoy Chupjultic gy t){ L= pjulti= 1, 1)}

which is £ [G,(t;)—G,(t;- )], then under (1.1") it is not hard to see that, for each

1 £i < rfixed,
(sn—l(i){Ln(ti)_Ln(ti— 1)}) - N(O’ 1) as n—

and hence for n sufficiently large, using the Markov inequality on N (0, 1) rv with
fourth moment, we have

Prl|L,(t)—L,(t;- )| Z &/6] < 3.6%e™*-5,%(i) < K1,[G,(t)— G,(t:- )],

3=EZ* #(Z)= N(0, 1). Therefore for n sufficiently large
Pr[W,(L, 0) Z ] = (K, +K,) Z;=1 [G.(t)— G, (t;- )] 2

But, since ) ;- [G,(t)— G,(t;-1)] = 1, we have

Yo [Git)— G (1, )]? £ max, <<, [G(t)—G,(t;- )] 1

S max; g;c,MaxX; <<, lFin(lj)“Fin(tj—l)l -0
by (29) as n—» o and 6 0.

Hence the lemma.

Note. A sequence {t;} that could be used in the above is ¢, = id; then r = [67'].
Also it is implicitly assumed that for each i, lim,_, ., 5,%(i) exists.

THEOREM 2.2. Let {X;,, 1 £ i< n}n 21 be independent tv’s with cdf’s {F,,}, all
defined on [0, 1]. Let {C;,} be some arbitrary constants satisfying (1.1'). Assume
{F,,} to be continuous and such that (2.9) is satisfied. Also assume that

(2.12) K(s, t) = lim,_, o, Cov(L,(s), L(?)) = lim,_ ,, K,(s, t)
= 1im, o, 65220 ™" Yoy C2min [Fo(0), Fir(s)] [1 = max {F, (), Fiu(5)}]
exists. Then
L(L1,0=sts)->ZL(L1),0=t=1)

where L(t) is a Gaussian process tied down to zero at 0 and 1, with

EL)=0 0=t

Cov(L(s), L(t)) = K(s, 1),
and with continuous sample functions.

Proor. Notice that L,e D[0, 1] for all n. Under (1.1') and (2.12) it is easy to
verify that for each fixed ¢,
lim,,,, L(L(DK, *(t, 1)) = lim,_, , Z(L (DK, ©))
= N(0, 1)
or L(L(t))—> N, K(1,1)).
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Hence the finite dimensional distributions of L,(¢) converge to that of a Gaussian
process, say L, at all continuity points of L. Furthermore, since L,(0) = 0 = L,(1)
for all n, hence L(0) = 0 = L(1) and (2.3) is obviously satisfied by L,.

Finally, combining Lemmas 2.1, 2.2, 2.3 and the above remarks, we see that the
conditions of Theorem 2.1 are satisfied and hence L, — L with L in C[0, 1]. The

proof is terminated.

REMARK. (1) Note that K(, t) could be zero, for some ¢, but by a degenerate
distribution we understand a normal distribution with zero variance,

(2) Let Y;, be i.i.d. F, d;, be some constants such that n™' Y /_, d}, < oo for all n
and max, ¢;<,dz/Y d3 - 0. Take X,, = Y;,—0d,, for some 0e[—a, ala > .

Then

Fy(+) = F(-+0dy,).

Then L,(x,0)=n"*Y,C,lI(Y;, < x+06d,,)—F(x+0d,)]o,." is relatively com-
pact for each 0 provided F is continuous.
Actually using this fact, under additional assumption of bounded and continuous

density f of F one can prove
eg(supx Sup—a§0§ +a Ln(x, 0 n—*))
is relatively compact. See [2].
3)IfC,,=1and F;,, = F,1 £i<n,n=1 then one gets usual empirical process
and clearly results are true for F continuous.
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