SOME CONVERGENCE THEOREMS FOR RANKS AND WEIGHTED EMPIRICAL CUMULATIVES

By Hira Lal Koul

Michigan State University

- **0.** Summary. In this paper two convergence theorems are proved. One gives a strong law of large numbers for a class of linear rank statistics and the other gives weak convergence of a weighted empirical cumulative process to Gaussian process, concentrated on continuous sample functions. Of course, both of these results are true under some regularity condition on the quantities involved.
- 1. Strong law of large numbers for linear rank statistics. Let $\{X_{in} \ 1 \le i \le n\} n \ge 1$ be sequences of independent random variables with distributions $\{F_{in}, \ 1 \le i \le n\}$ $n \ge 1$. Let $\{C_{in} \ 1 \le i \le n\}$ be arbitrary constants such that if

$$\sigma_{nc}^2 = n^{-1} \sum_{i=1}^n C_{in}^2$$

then

(1.1)
$$\sum_{n=1}^{\infty} \left[\max_{1 \le i \le n} C_{in}^2 / n \, \sigma_{nc}^2 \right]^2 < \infty.$$

(1.1')
$$\lim_{n\to\infty} \max_{1\leq i\leq n} C_{in}^2/n \, \sigma_{nc}^2 = 0.$$

Let φ be a function on [0, 1] to the real line such that

$$(1.2) 0 < \int_0^1 |\varphi^4(u)| \, du < \infty.$$

Define for any $-\infty < t < +\infty$

(1.3)
$$H_n(t) = n^{-1} \sum_{i=1}^n I(X_{in} \le t)$$
$$\overline{H}_n(t) = n^{-1} \sum_{i=1}^n F_{in}(t).$$

One can prove, using the fourth moment of $|H_n(t) - \overline{H}_n(t)|$ and the Borel-Cantelli theorem, that

(1.4)
$$\sup_{-\infty < t < +\infty} |Z_n(t)| = \sup_{-\infty < t < +\infty} |H_n(t) - \overline{H}_n(t)| \to 0 \quad \text{a.s.}$$

as $n \to \infty$.

Let

(1.5)
$$S_{n} = n^{-1} \sum_{i=1}^{n} C_{in} \varphi \left[R_{in} / (n+1) \right]$$

$$T_{n} = n^{-1} \sum_{i=1}^{n} C_{in} \varphi \left[\overline{H}_{n} (X_{in}) \right]$$

$$\mu_{n} = E T_{n} = n^{-1} \sum_{i=1}^{\infty} C_{in} \int_{-\infty}^{\infty} \varphi \left(\overline{H}_{n} (x) \right) dF_{in} (x),$$

where

$$R_{in} = \sum_{j=1}^{n} I(X_{jn} \leq X_{in}).$$

Received June 4, 1969; revised April 9, 1970.

1768

THEOREM 1.1. If φ satisfies (1.2) and is continuous on [0, 1], $\{C_{in}\}$ satisfy (1.1) and $\{F_{in} 1 \le i \le n\} n \ge 1$ are all continuous, then

$$\sigma_{nc}^{-1}(S_n - \mu_n) \to 0 \quad \text{a.s.}$$

as $n \to \infty$.

PROOF. We need continuity of $\{F_{in}\}$ for $\{R_{in}\}$ to be properly defined. Secondly note that φ continuous on [0, 1] implies that φ is uniformly continuous also, and hence, we may replace (n+1) in the definition of S_n by n. Next, with this modification, observe that S_n can also be written as

$$S_n = n^{-1} \sum_{i=1}^n C_{in} \varphi [H_n(X_{in})].$$

Further using the Cauchy-Schwarz inequality one gets

$$\begin{aligned} \left| \sigma_{nc}^{-1} \left(S_n - T_n \right) \right| &= \left| \sigma_{nc}^{-1} n^{-1} \sum_{i=1}^n C_{in} \left\{ \varphi \left[H_n(X_{in}) \right] - \varphi \left[\overline{H}_n(X_{in}) \right] \right\} \right| \\ &\leq \max_{1 \leq i \leq n} \left| \varphi \left[H_n(X_{in}) \right] - \varphi \left[\overline{H}_n(X_{in}) \right] \right| \\ &\leq \sup_{-\infty < t < +\infty} \left| \varphi \left[H_n(t) \right] - \varphi \left[\overline{H}_n(t) \right] \right| \end{aligned}$$

which $\rightarrow 0$ a.s. in view of (1.7) and (1.4).

Next, (1.2) implies $\int_{-\infty}^{\infty} \left| \varphi^4(\overline{H}_n(x)) \right| d\overline{H}_n(x) < \infty$ for all n, which in turn is equivalent to the fact that $\int_{-\infty}^{\infty} \left| \varphi^4(\overline{H}_n(x)) \right| dF_{in}(x) < \infty$ $1 \le i \le n$, $n \ge 1$. So if $Z_{in} = \varphi_{in} - \mu_{in}$, with $\varphi_{in} = \varphi(\overline{H}_n(X_{in}))$, $\mu_{in} = E\varphi_{in}$, one has $E\left|Z_{in}^k\right| < \infty$, k = 1, 2, 3, 4; $1 \le i \le n$, $n \ge 1$. Moreover, by repeated use of the Cauchy–Schwarz inequality it can be shown that

$$\left| E \left[\sigma_{nc}^{-1} (T_n - \mu_n) \right]^4 \right| \le K(\varphi) \left[\max_{1 \le i \le n} C_{in}^2 / n \, \sigma_{nc}^2 \right]^2$$

where $K(\varphi) = \text{constant } \int |\varphi|^4$. Consequently by (1.1) and (1.2) it follows that

$$\sum_{n=1}^{\infty} E[\sigma_{nc}^{-1}(T_n-\mu_n)]^4 < \infty,$$

and hence $\sigma_{nc}^{-1}(T_n-\mu_n)\to 0$ a.s. This together with the fact $(S_n-T_n)\sigma_{nc}^{-1}\to 0$ a.s. \Rightarrow $(S_n-\mu_n)\sigma_{nc}^{-1}\to 0$ a.s.

2. Weak convergence of weighted empirical processes. This section uses Theorem 12.1 and Theorem 15.5 of [1]. For the sake of completeness we restate Theorem 15.5 here.

Let $\{V_n(t); 0 \le t \le 1\}$ be a sequence of stochastic processes in D[0, 1] the space of all functions on [0, 1] with discontinuities of type 1. Let for any $\delta > 0$,

$$(2.1) W(V_n, \delta) = \sup_{|s-t| \le \delta} |V_n(s) - V_n(t)|.$$

Let V(t), $0 \le t \le 1$ be another process.

THEOREM 2.1. (Equal to Theorem 15.5 taken together with Theorem 15.1 of [1]). Suppose that for each $\eta > 0$ **3** an a such that

(2.2)
$$\Pr[|V_n(0)| > a] < \eta \qquad n \ge 1.$$

Suppose further that for every $\varepsilon > 0$

(2.3)
$$\lim_{\delta \to 0} \lim_{n \to \infty} \Pr \left[W(V_n, \delta) \ge \varepsilon \right] = 0.$$

Also suppose

(2.4)
$$\mathscr{L}(V_n(t_i), 1 \le j \le k) \to \mathscr{L}(V(t_i), 1 \le j \le k)$$

for all continuity points of V. Then $V_n \to_D V$ and V is in C[0, 1] with probability 1. Our objective is to prove that the following sequence of processes L_n are weakly

convergent to a continuous limit.

Let $\{X_{in}\}$ be independent random variables in [0, 1] with cdf's $\{F_{in}\}$ all continuous. Let $\{C_{in}\}$ be as in Section 1. Define, for $0 \le t \le 1$,

(2.5)
$$L_n(t) = (\sigma_{nc}^{-1}) n^{-\frac{1}{2}} \sum_{i=1}^n C_{in} \{ I(X_{in} \le t) - F_{in}(t) \}.$$

LEMMA 2.1.

$$E[|L_n(t) - L_n(t_1)|^2 |L_n(t_2) - L_n(t)|^2] \le 3[G_n(t_2) - G_n(t_1)]^2$$

for all $t_1 \leq t \leq t_2$, and all n, where

(2.6)
$$G_n(t) = \sigma_{nc}^{-2} n^{-1} \sum_{i=1}^n C_{in}^2 F_{in}(t).$$

Proof. Let

$$\begin{aligned} \alpha_{in} &= I(t_1 < X_{in} \le t) - p_{in}(t_1, t) \\ \beta_{jn} &= I(t < X_{jn} \le t_2) - p_{jn}(t, t_2) \\ p_{in}(u, v) &= F_{in}(v) - F_{in}(u) \end{aligned} \qquad 0 \le u, v \le 1.$$

where

Then

$$\begin{split} L_n(t) - L_n(t_1) &= \sigma_{nc}^{-1} \, n^{-\frac{1}{2}} \sum_{i=1}^n C_{in} \alpha_{in} \\ L_n(t_2) - L_n(t) &= \sigma_{nc}^{-1} \, n^{-\frac{1}{2}} \sum_{i=1}^n C_{in} \beta_{in}. \end{split}$$

Using the independence of $\{\alpha_{in}\}$, of $\{\beta_{jn}\}$, and that of α_{in} from β_{jn} $i \neq j$, and the fact that $E\alpha_{in} = E\beta_{in} = 0$ for all i, one can conclude that

$$\begin{split} E \left| L_{n}(t) - L_{n}(t_{1}) \right|^{2} \left| L_{n}(t_{2}) - L_{n}(t_{1}) \right|^{2} \\ &= n^{-2} \sigma_{nc}^{-4} \left\{ \sum_{i=1}^{n} C_{in}^{4} E \alpha_{in}^{2} \beta_{in}^{2} + 2 \sum_{i \neq j} C_{in}^{2} C_{jn}^{2} E \alpha_{in}^{2} E \beta_{jn}^{2} \right. \\ &+ \sum_{i \neq j} C_{in}^{2} C_{in}^{2} E (\alpha_{in} \beta_{in}) E(\alpha_{in} \beta_{jn}) \end{split}$$

which may be easily shown to be

$$\leq n^{-2} \sigma_{nc}^{-4} \left\{ 3 \sum_{i=1}^{n} C_{in}^{4} p_{in}(t_{1}, t) p_{in}(t, t_{2}) + 2 \sum_{i \neq j} C_{in}^{2} C_{jn}^{2} p_{in}(t_{1}, t) p_{in}(t, t_{2}) + \sum_{i \neq j} C_{in}^{2} C_{jn}^{2} p_{in}(t_{1}, t) p_{jn}(t, t_{2}) \right\}$$

$$\leq 3 \sigma_{nc}^{-4} \left[n^{-1} \sum_{i=1}^{n} C_{in}^{2} p_{in}(t_{1}, t) \right] \left[n^{-1} \sum_{i=1}^{n} C_{in}^{2} p_{in}(t, t_{2}) \right].$$

But

$$\begin{split} t_1 & \leq t \leq t_2 \Rightarrow p_{in}(t_1, \, t) = F_{in}(t) - F_{in}(t) \\ & \leq F_{in}(t_2) - F_{in}(t_1), \\ p_{in}(t, \, t_2) & = F_{in}(t_2) - F_{in}(t) \\ & \leq F_{in}(t_2) - F_{in}(t_1) \end{split}$$

and hence

$$\begin{split} E[|L_n(t) - L_n(t_1)|^2 |L_n(t_2) - L_n(t)|^2] \\ &\leq 3[\sigma_{nc}^{-2} n^{-1} \sum_{i=1}^n C_{in}^2 p_{in}(t_2, t_1)]^2 \\ &= 3[G_n(t_2) - G_n(t_1)]^2. \end{split}$$

LEMMA 2.2. For any $\eta > 0$ and $t_1 < t_2$ fixed, we have

(2.8)
$$\Pr\left[\sup_{t_1 \le s \le t_2} |L_n(s) - L_n(t_1)| \ge \eta\right]$$

$$\le K/\eta^2 \left[G_n(t_2) - G_n(t_1)\right]^2 + \Pr\left[|L_n(t_2) - L_n(t_1)| \ge \eta/2\right]$$

for all n. K is independent of t_1, t_2 and n.

PROOF. In view of Lemma 2.1 above, Theorem 12.1 of [1] is applicable to rv's

$$\xi_j = L_n((j/m)\delta + t_1) - L_n((j-1/m)\delta + t_1) \qquad 1 \le j \le m$$

with $\gamma = 2$, $\alpha = 1$ and

$$u_j = G_n((j/m)\delta + t_2) - G_n((j-1/m)\delta + t_1)$$
 $1 \le j \le m$.

In the above $\delta = t_2 - t_1$.

Finally using inequality (12.4) of [1] and right continuity of L_n for each n, one gets (2.8).

LEMMA 2.3. Assume $\{C_{in}\}$ satisfy (1.1') and $\{F_{in}\}$ are continuous and behave in the limit such that for any $0 = t_0 < t_1 < \cdots < t_r = 1$, $t_i - t_{i-1} \le \delta$, $1 \le j \le r$

(2.9)
$$\lim_{\delta \to 0} \lim_{n \to \infty} \max_{1 \le i \le n} \max_{1 \le j \le r} \left| F_{in}(t_j) - F_{in}(t_{j-1}) \right| = 0.$$

Then for every $\varepsilon > 0$

(2.10)
$$\lim_{\delta \to 0} \lim_{n \to \infty} \Pr \left[W(L_n, \delta) \ge \varepsilon \right] = 0.$$

PROOF. For a $\delta > 0$ let $0 = t_0 < t_1 < \dots < t_r = 1$ be a partition such that $t_i - t_{i-1} = \delta$ $1 \le i \le r$. Then

(2.11)
$$\Pr\left[W_{n}(L_{n}, \delta) \geq \varepsilon\right] \leq \sum_{i=1}^{r} \Pr\left[\sup_{t_{i-1} \leq s \leq t_{i}} \left| L_{n}(s) - L_{n}(t_{i-1}) \right| \geq \varepsilon/3\right]$$

$$\leq K_{\varepsilon} \sum_{i=1}^{r} \left[G_{n}(t_{i}) - G_{n}(t_{i-1}) \right]^{2} + \sum_{i=1}^{r} \Pr\left[\left| L_{n}(t_{i}) - L_{n}(t_{i-1}) \right| \geq \varepsilon/6\right].$$

First inequality follows from Corollary 8.3 of [1], and second inequality follows from Lemma 2.2 above.

We shall show that the right-hand side of (2.11) tends to 0 as $n \to \infty$ and $\delta \to 0$. If

$$s_n^2(i) = \sigma_{nc}^{-2} n^{-1} \sum_{i=1}^n C_{in} p_{in}(t_{i-1}, t_i) \{1 - p_{in}(t_{i-1}, t_i)\}$$

which is $\leq [G_n(t_i) - G_n(t_{i-1})]$, then under (1.1') it is not hard to see that, for each $1 \leq i \leq r$ fixed,

$$(s_n^{-1}(i)\{L_n(t_i)-L_n(t_{i-1})\}) \to N(0, 1)$$
 as $n \to \infty$

and hence for n sufficiently large, using the Markov inequality on N(0, 1) rv with fourth moment, we have

$$\Pr[|L_n(t_i) - L_n(t_{i-1})| \ge \varepsilon/6] \le 3.6^4/\varepsilon^{-4} \cdot s_n^4(i) \le K_{1\varepsilon}[G_n(t_i) - G_n(t_{i-1})]^2,$$

 $3 = EZ^4$, $\mathcal{L}(Z) = N(0, 1)$. Therefore for *n* sufficiently large

$$\Pr\left[W_n(L_n,\delta) \ge \varepsilon\right] \le (K_\varepsilon + K_{1\varepsilon}) \sum_{i=1}^r \left[G_n(t_i) - G_n(t_{i-1})\right]^2.$$

But, since $\sum_{i=1}^{r} [G_n(t_i) - G_n(t_{i-1})] = 1$, we have

$$\sum_{i=1}^{r} \left[G_{n}(t_{i}) - G_{n}(t_{i-1}) \right]^{2} \leq \max_{1 \leq j \leq r} \left[G_{n}(t_{j}) - G_{n}(t_{j-1}) \right] \cdot 1$$

$$\leq \max_{1 \leq i \leq n} \max_{1 \leq j \leq r} \left| F_{in}(t_{j}) - F_{in}(t_{j-1}) \right| \to 0$$
by (2.9) as $n \to \infty$ and $\delta \to 0$.

Hence the lemma.

Note. A sequence $\{t_i\}$ that could be used in the above is $t_i = i\delta$; then $r = [\delta^{-1}]$. Also it is implicitly assumed that for each i, $\lim_{n\to\infty} s_n^2(i)$ exists.

THEOREM 2.2. Let $\{X_{in}, 1 \leq i \leq n\} n \geq 1$ be independent rv's with cdf's $\{F_{in}\}$, all defined on [0, 1]. Let $\{C_{in}\}$ be some arbitrary constants satisfying (1.1'). Assume $\{F_{in}\}$ to be continuous and such that (2.9) is satisfied. Also assume that

(2.12)
$$K(s, t) = \lim_{n \to \infty} \text{Cov}(L_n(s), L_n(t)) = \lim_{n \to \infty} K_n(s, t)$$

= $\lim_{n \to \infty} \sigma_{nc}^{-2} n^{-1} \sum_{i=1}^{n} C_{in}^2 \min \left[F_{in}(t), F_{in}(s) \right] \left[1 - \max \left\{ F_{in}(t), F_{in}(s) \right\} \right]$

exists. Then

$$\mathcal{L}(L_n(t), 0 \le t \le 1) \to \mathcal{L}(L(t), 0 \le t \le 1)$$

where L(t) is a Gaussian process tied down to zero at 0 and 1, with

$$E L(t) = 0 0 \le t \le 1$$

$$Cov(L(s), L(t)) = K(s, t),$$

and with continuous sample functions.

PROOF. Notice that $L_n \in D[0, 1]$ for all n. Under (1.1') and (2.12) it is easy to verify that for each fixed t,

$$\lim_{n\to\infty} \mathcal{L}(L_n(t)K_n^{-\frac{1}{2}}(t,t)) = \lim_{n\to\infty} \mathcal{L}(L_n(t)K^{-\frac{1}{2}}(t,t))$$
$$= N(0,1)$$

or
$$\mathcal{L}(L_n(t)) \to N(0, K(t, t))$$
.

Hence the finite dimensional distributions of $L_n(t)$ converge to that of a Gaussian process, say L, at all continuity points of L. Furthermore, since $L_n(0) = 0 = L_n(1)$ for all n, hence L(0) = 0 = L(1) and (2.3) is obviously satisfied by L_n .

Finally, combining Lemmas 2.1, 2.2, 2.3 and the above remarks, we see that the conditions of Theorem 2.1 are satisfied and hence $L_n \to_D L$ with L in C[0, 1]. The proof is terminated.

REMARK. (1) Note that K(t, t) could be zero, for some t, but by a degenerate distribution we understand a normal distribution with zero variance.

(2) Let Y_{in} be i.i.d. F, d_{in} be some constants such that $n^{-1} \sum_{i=1}^{n} d_{in}^2 < \infty$ for all n and $\max_{1 \le i \le n} d_{in}^2 / \sum_{i \ge n} d_{in}^2 \to 0$. Take $X_{in} = Y_{in} - \theta d_{in}$ for some $\theta \in [-a, a] a > \infty$. Then

$$F_{in}(\,\cdot\,) = F(\,\cdot + \theta d_{in}).$$

Then $L_n(x,\theta) = n^{-\frac{1}{2}} \sum_i C_{in} [I(Y_{in} \le x + \theta d_{in}) - F(x + \theta d_{in})] \sigma_{nc}^{-1}$ is relatively compact for each θ provided F is continuous.

Actually using this fact, under additional assumption of bounded and continuous density f of F one can prove

$$\mathscr{L}(\sup_{x}\sup_{-a\leq\theta\leq+a}L_{n}(x,\theta n^{-\frac{1}{2}}))$$

is relatively compact. See [2].

(3) If $C_{in} = 1$ and $F_{in} = F$, $1 \le i \le n$, $n \ge 1$ then one gets usual empirical process and clearly results are true for F continuous.

REFERENCES

- [1] BILLINGSLEY, P. (1968). Convergence of Probability Measures. Wiley, New York.
- [2] KOUL, H. L. (1969). Asymptotic behavior of Wilcoxon type confidence regions in multiple regression. Ann. Math. Statist. 40 1950–1979.