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ON THE EFFECT OF A SEARCH UPON THE PROBABILITY
DISTRIBUTION OF A TARGET WHOSE MOTION IS A
DIFFUSION PROCESS
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1. Summary. We shall assume that the motion of a target in a given region is a
diffusion process and that a searcher tries to find the target. If the searcher is able
to remember the track he has travelled, then the probability density—from the
searcher’s point of view—of the target will be changing also because of the search,
since the searcher knows that the target was not in the immediate proximity of his
track. In the case of a stationary target the search already carried out would be
taken into account by a straightforward application of Bayes’ formula [4]. We
shall assume the customary form for the instantaneous probability density of
detection [3] and then modify the diffusion equation of the target to include the
above Bayesian effect. The properties of this equation are discussed. An optimal
statistical control problem of finding the best way of search is formulated.

2. Motion of the target. We shall consider the target to be a point moving in the
n-dimensional space R,. The track of the target, £(z)e R,, is assumed to satisfy a
stochastic differential equation of the form (cf. [1], Chapter 8)

M de(1) = a(t, £(1)) de+ B(t, £(2)) aw(?),

where w(t) is an n-dimensional Wiener process, where a(t, x) is an n-dimensional
vector and where B(t, x) is a linear, symmetric, and positive definite mapping of
R, into R, (in what follows B(t, x) will be called more briefly a dyad). Both a(¢, x)
and B(t, x) are assumed to be, with their derivatives up to the second order with
respect to the x;, x,, -+, x,, bounded and continuous for all te [0, c0) and for all
x€R,. The motion of the target is now, as is well known (see for instance [3],
Chapter 7) a Markov process and there exists the transition probability P(z, x, s, A)
—the probability that the target is, at time s, in the Borel set 4 < R,, given that the
target was, at moment ¢ at point x—such that

(1) P(2, x, s, A) is, for fixed ¢, s, and 4, where ? < s, a Borel measurable function

of x,
(2) P(t, x, s, A) is, for fixed ¢, x, and s a measure of the Borel set 4,

(3) [P(1, x, s, dY)P(s, y, T, A) = P(t, x, 7, A) for all x and for all s and ¢ such
that 0 St <s <1< o00.

(Here and also in the considerations which will follow the integration will be over
all R, if the region of integration in R, is not specified more closely.)
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(4) (a) [(P(t, x, s, dy) = o(s—1), where { = {y: |x—y| > &> 0}
(b) [(y—x)P(t, x, 5, dy) = a(t, x)(s—t)+0(s—1)
© [(r—5);(y=x)P(, x, 5, dy) = B(t, x)(s—1)+0o(s—1)
(d) fly—x[°*2P(t, x, 5, dy) = o(s—1) for &>0.

If the transition probability density exists, i.e., if P(t, x, s, 4) = [,p(t, x, s, dy),
then the following Kolmogorov equation holds:

(2) (@os)p(t, x, 5, y) = —V,(a(s, Y)p(t, X, 5, ¥)) +3(V,; V,): (B(s, y)p(t, x, 5, y) ).}

The purpose of our paper is to modify Equation (2) so that the effect of the search
upon p(t, x, s, y) is included. This will be done in Section 4.

Let us assume, for a moment, that vector a(s, y) and dyad B(x, y) are constants.
Now Equation (2) may be solved by using Fourier transformation in the well-
known manner: with

3) o(t, x, 5, w) = [exp (iw- y)p(t, x, 5, y) dy

we first obtain from Equation (2) that

@) (0/0s)p(t, x, 5, w) = [i(a* w)—L(w; w): Bl¢(t, x, 5, w),
which yields

(5) o(t, x, 5, w) = exp {[ia- w—}w;w: Bl(s—1t)+iw- x}.
Because B is a positive definite dyad the integral

(6) (0, y) = 3n)"fexp(—iw- y)exp [—w; w: Bf do
exists and we obtain from Equations (5) and (6) that

(N p(t, x,5,9) = q(s—t, y—a(s—1)—x).

We shall need this solution of Equation (2) in Section 5.

3. The law of detection for the searcher. We shall assume that the search is of
Markovian nature in the following sense: the probability that the searcher who is
proceeding along track z(¢)e R, detects the target during time (¢, s), given that the
target is at point xe R,, is

Mx, z, t)(s—t)+o(s—1).
We shall assume that
1 0=2Mx,z,t)EM<oo forall x,zeR, andforall re[0, )
! Here and in what follows we employ, in order to simplify the writing, the notation of vector
calculus: Let a, b, c and d be vectors in R,. Then the scalar product of, say, a and b will be written as

a- b and their dyadic product as a; b. Furthermore, for instance (a;b)-c=a(b-c), (@;b) (c;d) =
(a;d)(b-c)and (a;b):(c;d)=(a-d)(b-c).
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and that
2) Ux,z,t) =AW, z, t)+(x—w) -V, A(w, z, 1)
(®) +3(x—w); (x—w): (V,,; V,)AW, z, 1)+ o(|x—w|?)

for all x, w, ze R, and for all £ = 0.

If the target is stationary at point xe R, and if the searcher is moving, during
time (¢, s), along track z(¢), then the probability that the target will not be found
during time (¢, s) is given through the well-known expression [3]
® exp (= [} Ax, 2(7), 7) dv).

If the probability distribution of the location of the target in R, is G(x) then the
probability that the target will be found during time (¢, s) becomes

(10) P{z} = 1—[exp(— [} Mx, z(z), 7) dt) dG(x).
4. Effect of the search upon the transition probability.

DerINITION 1. We shall denote through P,(z, x, s, A) the probability that the
target is, at time s, within set 4, given that the target was, at time ¢, at point xe R,
and that the search along track z(¢)eR,, during time (7, s), was not successful.
The probability density, if this exists, will be written p,(z, x, s, ).

DEFINITION 2. Let ¢€[0, o0), A=R,, and xe R,. Then we shall denote the event
that the target is, at time ¢, in set 4 by (¢, 4). In the case where A reduces to a point
x€eR, we shall write accordingly (¢, x). Furthermore, let 0 <, <7, and let
z(t)e R,, where te(t,, t,). Then we shall denote the event that the search during
time (7,, ¢,), along track z(¢), was not successful by (¢,, #,, z). For instance

(11) P(t, x, 5, A) = P{(s, A)/(t, x)(t, 5, z)}.
We shall now introduce two lemmas which will be needed in the proof of Theorem 1.

LEMMA 1. Let dy denote a set of infinitesimal measure which contains point y.
Then

(12) P{(s+As, dy)/(t, x)(1, 5, 2)} = [P(t, x, 5, dv)P(s, v, s+ As, dy).
The proof is straightforward and it will not be given here.

LEMMA 2.
(13) P{(s, s+As, 2)/(t, x)(t, s, 2)(s+As, y)} = 1= A(p, 2(s), 5)As+ 0(As)
and
(14)  P{(s, s+As, 2)/(t, x)(t, 5, 2)} = 1 —As- [A(w, z, 5)P(t, x, 5, dw)+0(As).

Proor. Equation (13) follows immediately from the properties of the function
A(x, z, t) (cf. Section 3). In order to prove Equation (14) we first obtain, with the
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help of Lemma 1, that
P{(s, s+As, 2)/(1, x)(1, s, 2)}
(15) = [P{(s, s+As, 2)[(t, x)(t, 5, 2)(s+ As, p)}P{(s+ As, dy)/(t, x)(t, 3, 2)}
= [[1=A(p, z(s), 5)As+0(As))fP,(t, x, 5, dv)P(s, v, s+ As, dy)
= 1—=As"[P,(t, x, 5, d)JA(y, 2(s), )P(s, v, s+ As, dy)+0(As).
Now (cf. Equation (8))
fA(y, 2(s), 5)P(s, v, s+As, dy)
= [[A(v. 2(5), $)+(y—0)* VA2, 2(5), 5))
(16) +4(=0);(7=0):V,3 Vo, 2(5), 5)
+o(|y—v|)1P(s, v, s+As, dy)
= A, 2(s), )+ As - {a(s, v) - V,A(v, z(s), 5)
+1B(s, w): V,; VA0, 2(s), 5)} +0(As).
Equation (14) follows now from Equations (15) and (16).
THEOREM 1. Let P(t, x, 5, A) = [4p,(t, x, s, y)dy. Then
(0/0s)p,(t, x, s, W)
17) = =V, [a(s, wlp.(1, x, s, W]+3(V,,; V,): (B(s, wp.(2, x, 5, W)
+p.(t, x, 5, WA, z(s), $)p (2, x, 5, v) dv— AW, z(5), 5)],

where vector a(s, w) and dyad B(s, w), defined in Section 2, belong to the diffusion
process and where the scalar A(w, z, t) is the instantaneous probability density of

detection, defined in Section 3.
PRrOOF. By using the notation of Definition 2 it is seen that
P,(t, x, s+ As, dy)

(18) = P{(s+As, dy)/(t, x)(1, s+ As, 2)} = P{(s+As, dy)/(t, x)(t, 5, 2)(s, s+ As, 2) }

_ P{(s+As, dy)/(t, x)(t, 5, 2)}P{(s, s+ As, 2)/(t, x)(t, 5, 2)(s+As, ¥)}

P{(s, s+As, 2)/(t, x)(t, 5, 2)}
which with the help of Lemmas 1 and 2 yields
(19)  Pt, x, s+As, dy) = {1+As[[A(w, z(s), $)P(1, x, 5, dw)— Ay, 2(5), 5)]
+0(As)}[P,(1, x, 5, dv)P(s, v, s+ As, dy).

Now let f(») be a function defined on R, such that f(y), Vf(»), and V;Vf(y) are
bounded and continuous for all ye R,, and such that f(y) = f(v) +(y—0v)-Vf(»)+
3(y—v);(y—0):V; VI (@) +o(|y—v|?) for all y,veR,. Then, as is clear from the
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properties of the functions A(y, z, s) and f(»),
[P(1, x, s+As, du) f(u)
(20) = [P.(1, x, s, do)[ f(y) {1+ As[[A(w, 2(s), $)P.(2, x, 5, dw)— Xy, 2(5), 5)]

+0(As)}P(s, v, s+ As, dy).
Therefore

[PLt, x, s+ As, du)f(u)—[P(1, x, s, dv)f(v)
(21 = [P(t, x, 5, W) {[f(V)P(s, v, s+ As, dy)—f(v) }
+[Pt, x, 5, )| F () {As[[A(w, z(5), S)P(2, x, 5, dW)
—A(p, 2(5), $)]+0(As)} P(s, v, s+ As, dy).

Now, because of the properties of the function () and of the transition probability
P(t, x, s, A) (cf. Section 2)

JfW)P(s, v, s+ As, dy)— f(v)
(22)  =[P(s, v, 5+As, dY)[(y—v) VL) + 3y —0); 0 —0): V; V() + o[y - v]*)]
= As- [a(s, v)- Vf(v)+1B(s, v): V; Vf(v)]+0(As).

In the same way as Equation (22) was obtained it may be easily shown that

(23) [aO)P(s, v, s+As, dy) = g(v) +o(1),

where we wrote more briefly

(24) a(y) = LAw, 2(s), $P(t, x, 5, dw)— Ay, 2(s), 5)].
With

(25) P,(1, x, s, dv) = p,(t, x, s, v) dv+ o(dv).

Equation (17) now follows from Equations (18)~(24).

REMARK. Let P,(t, G, s, A) denote the probability that the target is, at time s,
within set A4, given that the target was, at time ¢, distributed according to the
probability distribution G(x) and that the search during time (z, s) was not
successful, i.e., let

(26) P.(1, G, s, A) = [P,(t, x, 5, A) dG (x).

Then Lemmas 1 and 2 and Theorem 1 are valid with P,(¢, G, s, A) substituted for
P, x, s, A). This is an immediate consequence from the Markovian nature of the
motion of the target, as is easily seen from the proofs of the lemmas and of the
theorem.

The probability that the target will be found, during the short interval of time
(s, s+As), by the searcher moving along the track z(z), given that the target was,
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at time ¢, at point x € R,, is now
27 AsfA(v, z(s), S)P,(t, x, s, dv)+ o(As).

The probability that the target will be found by the searcher during time (2, s),
given that the target was at point xe R, at time ¢, becomes then

(28) P{z} = 1—exp {— [ dt [A(v, 2(x), T)P(t, x, 7, dv)}.
In the case of a stationary target expression (28) reduces to expression (10) (cf. [2]).

5. On the solution of equation (17). Equation (17) for the probability density
p(t, x, s, w) is a nonlinear integro-differential equation. It turns out, however, that
the problem of solving Equation (17) for p.((t, x, s, w) may be reduced to the
solution of a linear partial differential equation. We shall consider the more general
case where the location of the target, at time ¢, is given through the probability
distribut’on G(x) (see the Remark after Theorem 1).

THEOREM 2. Let p,(t, G, s, y) be the probability density of the location of the target
at time s, given that the probability distribution of the location of the target was, at
time t, given through the probability distribution G(x) and that the search during
time (1, §) was not successful. Furthermore, let P{z} be the probability that the target
will be found during time (t, s). Then

(29) pt, G, s, 9) = X,(1, G, 5, p){|X.(¢, G, 5, v) dv} ™"
and
30) P{z} =1-[X.(t,G,s,v)dv,

where function X/(t, G, s, v) satisfies initial condition X,(t, G, t, x) =G(x), appro-
priate boundary conditions and the following partial differential equation

(31) (9/0s)X.(t, G, 5, ) = 1V,;V,:(B(s, »)X,(1, G, 5,9))

=V, [a(s, »)X.(, G, 5, = A, 2(5), X1, G, 3, y).
If a(s, w) and B(s, w) are constants and if q(t, x) defined by (7) is such that
(32) SUDsert, o0y SUPyer, Ji 4T [q(s— 7, y—E—al(s—1))A¢, 2(x), D dE < 1,

then Equation (31) has a unique solution which is, for all probability distributions
G(x) and for all t and <, such that 0 < t < 7 and for all y € R, a bounded and continuous
Sfunction of s and y.

Proor. Equation (31) is immediately obtained from Equations (17) through
substitution

33) Pt x, 5, w) = X,(1, x, 5, w)exp {[; dt [A(v, z(x), T)p.(1, X, T, v) dv}.
Since [p,(t, x, s, w)dw = 1, it follows from (33) that
34 [X.(1, x, 5, w)dw = exp { — [{ dt [Av, 2(s), )P, (¢, x, 5, v) dv},
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which together with (28) implies (29) and (30). Now let

(35) ¢.(t, G, 5, w) = [exp (i )X, (1, G, 5, y) dy
so that
(36) X,(t, G, 5, ) = (3n)"[exp(—iw" y)¢,(t, G, 5, w) do,

and let a(s, y) and B(s, y) be constants. We then obtain from Equation (31) that
(37) (0]0s)p(t, G, s, w) = (ia- w—tw;w: B)p,(t, G, 5, ®)
—[exp(iw - YAy, z(s), $)X,(t, G, 5, y) dy.
It now follows from Equation (37), since X, (¢, G, t, y)= p,(¢, G, ¢, y) = G(»), that
¢,(t, G, s, w) = exp [(ia* w—}w;w: B)(s—1)]
(38) {Cle)~ftexp [~ (ia- 0—}o;0: BYT—1)]

{J exp (iw - Y)A(y, (1), VX1, G, 7, p)dy} dt},
where

(39) C(w) = [exp i y)dG ().
Equation (38) implies the following integral equation for X,(z, G, s, »):

(40) Xz(t’ G, s, y)=fq(s_ts y—f——a(s—t))dG(f)
—fide fdng(s—1, y—n—a(s—))An, 2(1), DX.(t, G, T, ) dy.

Now let C, be the space of real functions f(t, x) which are, for all te (¢, ) and for
all xe R,, bounded and continuous functions of T and x. With the norm defined as
| £]| = SUPeerr,0) SUPxer, |/ (2, X)| space C, becomes a Banach space. Obviously

fa(s—1, y—E—a(s—1))dG (¢)eC,.

Furthermore, by writing

41 Af= [l fq(s—1, y—&—a(s—1))AE, z(x), 1) f (1, &) d¢
it is immediately seen that

(42) 41l = 14l 1lA1]

where

(43) “ A “ = SUPq¢(t,c0) SUPyer,, jtsdf Iq(s_ Ly— é ——a(s—-‘r)/l(é, Z(T), 1:) dé

and that A4 fis a continuous function of s and y for all se[¢, o) and for all yeR,.
Therefore, fe C, implies 4 fe C,. Now, because C, is a Banach space and because
||4]| <1, the equation x = f— Ax has for every fe C,, as is well known, a unique
solution x e C,. This solution may be obtained as the limit of a sequence {x,} such
that x, , , = f— Ax,, where x, e C, is arbitrary.
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REMARK 1. Equation (31) may be solved in a closed form in the important special
case where

(44) Ay, z, 1) = Ay =const. for yeR,
=0 for y¢R
where R is a region of finite measure in R,. Now
(45) X (t, G, 5, y) = exp(—Ao(s—1)fq(s—1, y—E—a(s—1))dG(&) for yeR,
= fq(s—t, y—E—a(s—1))dG (&) for y¢R.
The probability density p,(z, G, s, y) would then be obtained from Equation (29).

REMARK 2. When the search for the target is to be optitmized we have the follow-
ing optimal control problem to solve: let us assume that the motion of the searcher
is described by the system of ordinary differential equations

(46) (ddr), = fi(z', 22, -+, 2";01, -, V),

(i=1, 2,---, n), where the v',---, v" are the control parameters. To be found is
the control vector (v, - -, v") at each time t€ ¢, s] such that

(47) P{z} =1-[X (¢, G, 5, {) d¢ = max,

where the function X (¢, G, 1, y) satisfies the differential equation
(48) (0/05)X (1, G, 5,¥) = 3V,; V,:(B(s, )X (1, G, 5, »))
_Vy : [a(S, y)Xz(t’ Ga S, y)]_}'(ya Z(S)a S)Xz(t’ G, s, y)

and appropriate initial and boundary conditions.
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