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ON CHOOSING A DELTA-SEQUENCE

By MICHAEL WOODROOFE
University of Michigan
1. Introduction. We will be concerned with estimates of the density f/ from which

arandom sample X, : -+, X, has been drawn. In particular, we will consider some
modifications of the following type of estimate:

(1.1) Sixsty) = 1, [ K(t,(x =) dF,(y)
= (1/n) Yi1 t, K(t,(x = X))).

Here K is a real-valued, bounded, symmetric, absolutely integrable function on R*
for which

(1.2) JK)dy =1;

t, is an increasing sequence of positive real numbers for which 7, —» co with
t, = o(n) as n— o0; and F, denotes the sample distribution function of X3, :*-, X,
Such estimates were originally proposed by Rosenblatt [3] and were studied in some
detail by Parzen [2].

It is known ([1] and [2]) that the asymptotic behavior of (1.1) depends on the
smoothness of f near x and on the sequence ¢,. Moreover, the optimal choice of #,
in the sense of minimizing the asymptotic expression for mean square error also
depends on the smoothness of f'near x and is therefore unknown to the statistician.
Here we will consider some modifications of (1.1) which may be described as
follows: first estimate f'and its derivatives using (1.1) with a ¢, sequence as described
above; next, use these initial estimates to estimate the optimal #, sequence,
t, =1, =1/, x, K) say, by £, =1,(x, K, X3, '+, X,) say; and finally, estimate f
by (1.1) with %, replacing #,. Two such modifications are considered; and in both
cases we are able to show that under the appropriate regularity conditions

(1.3) E[fu(x; ) =f(0)]* ~ E[£u(x; 7) —f(x)]*

as n— oo where ~ means that the ratio of the two sides tends to one. As may be
expected, the proofs of (1.3) constitute rather involved exercises in large sample
theory. In order to shorten them, we have developed some special methods and
notation which we hope will be of methodological interest in its own right. Briefly,
we have developed an algebra of o and Oy for handling mean convergence of
random variables. This algebra is analogous to the algebra of o, and O,,.

The paper consists of five sections. In Section two we collect some facts about
sample densities of the form (1.1) and state precisely the effect of the smoothness
of f on their asymptotic behavior; in Section three we present the algebra of og
and Og; and in Sections four and five we present the main theorems.
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2. Preliminaries. We will call a real-valued function g defined on an open
interval 7 smooth of order «, & > 0, at xe [ iff g has m continuous derivatives on an
open interval J with xeJ<T and

Y| Tgx+y) = Yo gPx)yit] > g, (x): y > 0O*
-g, (x):y—>0"

where m is the greatest integer strictly less than « and |g,*(x)|+]g,”(x)| < co.
Thus, if g is smooth of order o > 0 at x, then g is smooth of all orders 8, 0 < 8 < «,
at x, but not conversely. For example, the function g defined by g(x) = —|x|log|x|,
x€ R, is smooth of all orders less than one at zero but is not smooth of order one
there. A function with p > 1 continuous derivatives near a point x is, of course,
smooth of all orders «, 0 < a < p, at x. Finally, if g is smooth of order o > 0 at x,
and if g, (x) = g,"(x)+g,”(x) # 0, then g cannot be smooth of any order f > «
unless « is an even integer and g possesses an ath derivative at x, in which case
9" (X) = 9.~ (x) = g9 (x)/acl.

We will call a real-valued, bounded, symmetric, (absolutely) integrable function
K defined on R! a kernel, and we will call a kernel proper if it satisfies (1.2). Also,
we will write Ke A, where r = 0 is an even- integer to mean that K is a kernel for
which

2.1) [Y'K(y)dy =0, i=1,-,r—1,
(2.2) Jy'K(y)dy #0,
(2.3) JY|KW)|dy < .

For r = 4, the class 4, contains no nonnegative kernels, and its elements will
therefore lead to possibly negative density estimates if used in (1.1). While negative
density estimates are obviously undesirable, it is sometimes possible to obtain a
higher rate of consistency with kernels in A, for r = 4 than with kernels in 4,
(cf. [1] and Corollary 2.2 below).

LeMMA 2.1. Let g be a bounded, measurable function on R* which is smooth of
order o> 0 at x and let K be a kernel which satisfies (2.1) and (2.3) with r = «;
then as t -

24 [t f K(((x~y))g(y) dy — g(x) | K(y) dy] = g(x)k(a),

where g,(x) = g,* (x)+ 9, (x) and k(e) = [§y"K(y) dy.
Proor. Because of (2.1), the left and right-hand sides of (2.4) differ by

§2 o tLg(x+yt™ )= Y10 g™ )il = g~ (x)(—yt 'Y IK(y) dy
+[§ tLg(x+yt™ 1) =310 V)t il =g, ()t ) IK () dy-

Given ¢ > 0, there exists a d, 0 < § < 1, such that the integrand in the first integral
is less in absolute value than e|y|* for —d¢ <y <0, and it follows that the absolute

2.5)
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value of the first integral in (2.5) does not exceed
(2.6) &% |V|Y|K(»)|dy +2rBS™" [Z% y'|K(»)| dy

where B is an upper bound for g on R!, its derivatives at x, and g, (x). Since (2.6)
may be made arbitrarily small by choosing ¢ sufficiently large and ¢ sufficiently
small, the first integral in (2.5) tends to zero as ¢t — c0. A similar treatment may be
given to the second to complete the proof.

COROLLARY 2.1. Let f be bounded on R! and smooth of order o at xeR' and let
KeA,, r = a, be a proper kernel; then

tH(ELf(x5 8)]—f(x)) = fu(x)k(o) as n- oo.

If, in addition, K has a bounded, continuous, integrable rth derivative on R* which
satisfies (2.3), then

t2EL£,0(x; )] > £u(x)k ()
as n— oo where k(o) = [Fy*K(y) dy.

PRrOOF. Since E[f,(x;t,)] = t,[K(t,(x—y))f(»)dy, the first assertion is clear. So
is the second if one observes that K is again symmetric and also satisfies (2.1) and
JKP(y)dy =0, so that E[f,(x;t)] is equal to f,[t,JK®(t,(x—y))f(»)dy—
SJK(y) dy.

We will also need the following lemma, the proof of which may be found in [2].

LEMMA 2.2. Let f be bounded on R* and continuous at x, and let Ke A, be a proper
kernel; then (nft,) Var (f,(x; t,)) = kf(x), where k = [K(y)*dy.

If Ke A,, r = 2, then in view of (2.1) there can be at most one value of &, 0 < o < 7,
for which f,(x) # 0 # k(«); and if there is such an «, Lemma 2.2 and Corollary
2.1 combine to give

COROLLARY 2.2. If, in addition to the hypotheses of Lemma 2.2, f is smooth of
order a at x, f,(x) # 0 # f(x), KeA,, r 2 o, and k(&) # 0, then

2.7 E[£x; )= fO)]? ~ (alm) FO)RA+ 1, 2(f(x)k(@) ).

The asymptotically optimal choice of t, (in the sense of minimizing (2.7)) is 1,
where 1,2**! = 2an(f(x)k(a))?/f(x)k. With this choice of t,, (2.7) is equal to
[0 £,()k(@) )*(f (x)k[n)**)(20y) = where y = 1/(20+1).

Finally, we will need the following lemma which follows easily from the results
of [4].

LemMA 2.3. Let K be a kernel having q = 0 bounded, integrable derivatives on R',
and let f be bounded on R*; then for p = 1, the 2pth central moment of f,“P(x;1,) is
O((t,22* [n)?) as n - 0.

3. The algebra of O;. In this section X,, Y,, and Z,, n =1, with or without
further subscripts will denote random variables having moments of all orders,
and a,, b,, and ¢, will denote positive real numbers. All limits are taken as n — co.
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We will say that X, is of small (large) expected order a, and write X,, =og(a,)(X, =
0x(a,)iff E|X,|P = o(a,”)(E|X,|P = O(a,?)) for every p = 1. Our immediate goal
is to develop an algebra of O, which we will use in the following two sections
to establish (1.3). We begin by remarking that if X, = Og(a,) and Y, = Og(b,),
then by the Holder and Minkowski inequalities XY, = Og(a,b,) and X,+ Y, =
Og(a, v b,) where v denotes' maximum; moreover, we have P[X, = ¢] = O(a,?)
for every ¢ >0 and p = 1 by Markov’s inequality. From these simple proper-
ties applied to the inequalities, |xx'—yy'| |x||x'—»'|+]y||x—y| and |x*—y¥| <
k(|x|+|y)*x—y|, k = 1, follows

LEMMA 3.1. Let Xni'— Yni =0E(an) and Xni = OE(bPI)’ i= 1, 2; then anan_
Ynl Ynz = OE(an[an Vbn])a and thl - Y:l = OE(an[an v bn]k-l), k 2 1.

LemMMA 3.2. Let X,2b,>0, Y,=220>0, and —m<Z,<1 w.p. one for
sufficiently large n. If X,—Y, = Oga,) where a* = O(b,) for some k >0, then
(i) X,*— Y, % = Og(a,); (i)) X, ' = Y, ™' = Og(a,); and(iii) log X, ~log Y, = Ox(a,).

PRrOOF. Let 4, be the event, X, > §; then by Markov’s inequality, P(4,°) = O(b,")
for all k£ > 0, and therefore

E[X,7— Y < (mv 1)? 577 DE[|X, — Y,]’I, ]
+(mv 1Pb, " D|E[|X, ~ Y,[7]P(4, )}
= O(anp)+0(anp) = O(an")

where I, denotes the indicator of A. This establishes (i) of which (ii) is a special
case. The proof of (iii) is similar to that of (i) and will be omitted.

LemMA 3.3. Let |X,| < M w.p. one for sufficiently large n and let b,+b,”* = O(n")
Jor some b > 0. If X, = Og(a,) where a, = O(n™°) for some a > 0, then b,X"—1 =
Og(a,logn).

PRroOF. Let A4, be the event, |X,| <(logn)™!; then, as above, P(4,%)=
O((b,+b,”")7") for all k > 0. Therefore, from the inequality, |e*—1| < |x] e/,
we have

E|b,*"—1|P < E|X,logb,|Pexp (| p(log n)™* log b,)
+[E|X,logb,|*?P(A,)]* exp (pM |log b,|)
= Og(a,? logPm)[1+ P(4,%)*(b,+b,~ ")*]
= O(a,?logP n).

4. The optimal constant. In this section we will suppose that f is known
to be bounded on R! and to have r = 2 continuous derivatives near x with
f(x) #0 #fP(x). We also suppose that KeA, is a proper kernel possessing r
bounded, continuous, integrable derivatives on R'; then by Corollary 2.2, the
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asymptotically optimal ¢, sequence will be 7, = cn” where y = (2r+1)"! and

= NG )2 (k(r)f(x))? k().

Thus, to estimate 7, it suffices to estimate ¢. Let 0 < #,, - co with ¢,, = o(n"") as
n—o0,i=1,2,and letf;z =f;z(x; tnl)’f;ir =f;u(r)(x; tn2)’ Un = E[.f;l]’ and Hnr = E[f;lr]
Define

,)2 o L))+ 5,1/ ] + B)F,

2, = ,)2 L)) + b+ BE..

4.1) g, =c,n, and 2,=¢,n°

where 0 < b, —» 0 with nb, bounded away from zero. The theorem to be proved
in this section is

THEOREM 4.1. Let r > 2 be an even integer; let f be bounded on R' and have r
continuous derivatives near x€ R' with f(x) # 0 # f"(x); and let Ke A, be a proper
kernel with a bounded, continuous, integrable rth derivative which satisfies (2.3).
Define %, by (4.1) and J by J(y) = yK'(»), ye R . If|J| + |K| is dominated by a kernel
K, which is non-decreasing on [0, ), then (1.3) holds.

ProoF. By Corollaries 2.1 and 2.2 we have ¢, — ¢ and

(4.2) E[fu(x; 0,)—f()]* ~ E[fi(x; ) —f(¥)]?
as n — co. Therefore, it will suffice to show that
43 E[fy(x; 2)—fu(x; 6,)]> = o(n™*"™)

as n— co. Let a,2 = (t,;, Vt3 ) /n=o(n"?"); then by Lemma 2.3 (f,— y,,) and
(for— ) are Og(a,). Moreover, pu,—f(x) >0, (| f,,] +b ) = b, where a,* = o(b,),
and p,, = O(1) so that

fn;:'_l*t:r = OE(an)’
(,f;;l + bn)— ! _(I#nl + bn)- 1= OE(an)

by Lemmas 3.1 and 3.2. Therefore, &,2""* —c?"*! = Og(a,) by Lemma 3.1. Finally,
since ¢,—»¢>0 and ¢, = 8rb,,/(r')2(Mt,,1+b )k where M is an upper bound for
|K|, we have &,—c, = Og(a,) by Lemma 3.2. Returning to (4.3), we have

E[x3 D —f(xs 0] < (E [nygif,.(x; r)a,]‘tE[en—cn]“)*

where 8, lies between £, and o, w.p. one; and since (E[¢,— c,]*)* = 0(a,?) = o(n™*")
by the choice of ¢,, and ¢,,, (4.3) would follow from the boundedness of
E[n*(0/0t)f,(x;1);,]*. Let A, be the event &, = ¢/2 and s, = (¢/2)n”; then for n large
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E[(8/60)f(x; D)s,1* = E[(1/n) Yi=1 K(84(x— X)) +J(8,(x— X ))]*
4.4) S E[(1/n)Y0=1 K (84(x—X))]*
< (2/en)*E[(sa/m)(Xi= 1 Ki(su(x— X)) 4, 1*
+M*P(4,°)
where M is an upper bound for K. Now (s,/n) Y 71 K (s,(x— X;)) is, aside from a
constant factor, a sample density of the form (1.1), and therefore is Og(1) by

Lemma 2.3. Moreover, P(4,°) = O(n™") for every k > 0 since ¢,—c, = Og(a,). It
follows that (4.3) is O(n™2""), thus completing the proof of Theorem 4.1.

5. The optimal rate. In the previous section we had to assume that the unknown
density f had at least r = 2 derivatives at the point in question. In this section we
will show that this assumption may be weakened by using a more complicated
estimation scheme. Specifically, we will assume only that for some unknown
value o of &, 0 < &ty < 2, f is smooth of order o, and f,(x) # 0 # f(x). There can,
of course, be at most one such «,. Moreover, if f really is smooth near x, say
f"(x) # 0 exists, then we have a, = 2. However, we are not requiring the existence
of even one derivative. We will also assume that Ke 4, is a proper kernel with a
bounded, continuous, integrable second derijvative K'’ and that

(5.12) ky(@) = j5 y*K"(y)dy #0, 0<as2,
(5.1b) k,'(0) # 0 # k(ax), and
(5.1¢) [& y*log(1+y)|K"(y)|dy < co.

k,(+) will then satisfy a uniform Lipschitz condition on [0, 2]. For example, the
standard normal density satisfies the assumptions placed on K.

Under the assumptions of the preceding paragraph, we have (from Corollary
2.2) that 7, = cn™ where both y, = (2054 1)"! and ¢ = [206(f,(x)k(t0) )2/ f(x)K]™
are unknown. Therefore, we will have to estimate first «, and then c. Let
O<t,=An" nz1,i=1,2,3, where 6, <d, <1/25, 6;<1/5, and 4, = 4,.
Also let f, = f,(X3 tua)s fui = ' (%3 tw), i = 1.2, p, = E[f,), and pp = E[fpi], i = 1, 2.
Define o, and &, by

_ [log (il +b) —log (i +bw)| , o
2ot = i (6,—6,)logn A @2=by)
2_&”_:Ilog(lﬁ‘zl+b")_10g(lfn1|+bn) /\(2—bn)

(02—64)logn |

where 0 < b, — 0 with nb, bounded away from zero. Also let

en = Ialka(0)ths ™ 2y = fuz[ka(@n)tay

¢ = [0ty €2 k(@) + b, (|a] + BT

&= [(28, 8,7 k()* + b,)/(| o] + bKD",
(5.2) o, =c,n™", and %, =¢,n'™
where 7, = (24,+1)"! and 9, = (24,+1)"!. The theorem to be proved in this
section is
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THEOREM 5.1. Let f be bounded on R' and smooth of order ay, 0 < 0y < 2, at x
with f,(x) # 0 # f(x), and let Ke A, be a proper kernel which has a bounded,
continuous, integrable second derivative and satisfies (5.1). Define %, by (5.2) and J
as in Theorem 4.1. If |J | + |K I is dominated by a kernel K| which is non-decreasing
on [0, o0), then (1.3) holds.

ProoF. By Corollary 2.2 we have «, = a,+o((logn)~1). It follows successively
that n% ~ n®° for any §, that 135 ~ %, that e, — f, (), that ¢, > ¢, that o, ~ 1,,
and that (4.2) holds (with the new definitions of ¢, and ,). Therefore, it will suffice
to demonstrate (4.3) with r =2 (and the new definitions of o, and %,). Let
a,> = (t5 Vv t,3)/n= o(n”*'*(logn)~%); then by Lemma 2.3 we have (f, — u,) = Og(a,)
and (ff — ) = Ox(a,), i = 1, 2. Since also a,* = o(b,,), it follows from Lemma 3.2
that (&, —a,) = Og(a,) and, thereafter, that k,(&,)— k,(«,) = Og(a,), that (§,—7y,) =
Ox(a,), and by Lemma 3.3 that t%3~ % —1 = Og(a,logn). Since k,(a,) = k,(c) # 0,
and for large n |k(8,)| Z |k,'(0),/2|, an application of Lemma 3.2 gives |¢,| —|e,| =
O(a,logn). It now follows that (2,241 —¢,2*n*!) = O(a,logn) by an argument
similar to that of the previous section. Let (d,, d,) = (c,>**, ¢,2%"*1); then
d,—»d>0and d, = b,/(Mt,,+b,)k where M is an upper bound for K. Therefore,

én —Cp = (an% - dn%) + dnyn(dn?"- n— l)oE(an lOg n) + OE(an 10g2 n) = OE(an 10g2 n)

by Lemmas 3.2 and 3.3. It now follows that n~""(%,—0,) = Ox(a,log®n) and
therefore that

(53)  Elxit)—filxi o)l S (E [nv" e t)an]‘t)%o(n_“/s)

where &, lies between £, and o,. The remainder of the proof of Theorem 5.1
consists of showing the expectation on the right side of (5.3) to be bounded and
may be accomplished by repeating the argument given in (4.4).

A

6. Concluding remark. The referee has pointed out that the %, sequences of
Sections four and five depend on a b, sequence which seems just as arbitrary as the
t, sequence of (1.1). The same may be said of the ¢,; sequences. While the point is
well taken, the determination of the b, and ¢,; sequences in Sections four and five
is not as crucial as that of the ¢, sequence in (1.1). Indeed, the former affects only
the rate of convergence in (1.3), while the latter affects the rate of mean square
consistency.

I would like to thank the referee for pointing out that certain portions of the
original version of this paper were hard to follow. I hope that the revision is
somewhat easier to read.
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