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SOME ROBUST SELECTION PROCEDURES!

By RoNALD H. RANDLES

The University of lIowa

1. Introduction and summary. Let X;, (¢t =1, -+, n;i=1, -, k) be independent
observations from k populations with respective distribution functions F(x—8)),
where the translation parameters 6, are unknown. Consider the problem of select-
ing one population, the objective being to select the population with largest
translation parameter. Procedures based on the joint ranking of all nk observations
have been considered by Lehmann [5], Bartlett and Govindarajulu [1], and Puri
and Puri [9]. Robust procedures for related problems have been considered by
Sobel [11] and McDonald and Gupta [7], among others.

Define the ith population to be goodif §; > 6,,,,— A where 0,,,, = max {6, -+, 0,}
and where A is a specified positive constant. The asymptotic relative efficiency
(A.R.E.) of two procedures is then the limiting ratio of the sample sizes required to
achieve a preassigned minimum probability of selecting a good population. It was
hoped that procedures based on ranks would be more robust in terms of A.R.E.
than corresponding parametric procedures. However, it has recently been shown
that the slippage configuration used to find the A.R.E. in references [5] and [1]
was not least favorable for the selection of a good population (See reference [10].).
Puri and Puri [9] avoided this difficulty by restricting consideration to parameter
points 8™ = (0,™, - - -, 6,™) for which 8%, —0,™ = b,/n* +o(1/n*)fori=1, -, k,
where the b; are nonnegative constants.

In Section 2, selection procedures are defined which are based on two-sample
estimates of shift. It is shown in Section 3 that if the underlying distribution F(x)
is absolutely continuous then the procedures defined in Section 2 will select a unique
population. Conditions are given under which the slippage configuration is the
least favorable parameter point for the selection of a good population. This result
does not require restrictions on the set of translation parameters comprising the
parameter space. The A.R.E. of these procedures is defined in Section 4. If we
consider the procedure based on the Hodges-Lehmann estimates of shift corres-
ponding to the two-sample F,-scores test, it is shown that the A.R.E. of this pro-
cedure relative to the normal theory procedure of Bechhofer [2] is simply the Pitman
efficiency of the two-sample Fy-scores test relative to the #-test. Hence this approach
yields efficiency results which are similar to those in references [5], [1], and [9].
However, the use of estimates in the definition of the selection procedure has the
advantage of eliminating the difficulties concerning the least favorable parameter
point.

2. Procedures. Define the nk-vector X = (Xyq, "+, Xip X21, **» Xi) and the
n-vectors X; = (X, - -+, X,), i =1, -+, k. Let ¥(X, X;) be an estimate of 8;—0;
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with the following properties for each x; and x;:
(a) Ife = (¢, - -+, €)' is an n-vector, then
Y(x;+¢, x;) = c+¥(x;, X));
(2.1) (b) Y(x;, xj) = —\P(Xj, X));
(c) If x,>x; for t=1,-"-,n, Y(x;, x;) > 0.

Examples of estimates with these properties are:

(a) . Xi—X;,
(2.2) (b) mediana’p (x,-a - x”;),
© median, (x;,) —mediang (x;,).

For testing the equality of F(x—6;) and F(x—0;) we might consider the F,-
scores test which is based on the statistic Y- ; Ep(V"?) where V¥ <+ < @7
are the order statistics of a random sample of size 2n from a distribution with df
F, and where r, is the rank of x;, in the joint ranking of x;;, ***, Xius Xj15 " "5 Xjn
Hodges and Lehmann [4] have proposed estimates of 6;—6; based on these rank
tests.

LemMa 2.1. If W(x;, X;) is the Hodges—Lehmann estimate corresponding to the
two-sample Fy-scores test, W(X;, X;) satisfies properties (2.1).

ProoF. Parts (a) and (b) of (2.1) are proved by equations (7.1) and (8.3) of
reference [4]. Property (c) follows directly from equations (2.2), (3.3), and (7.1) of
the same paper.

We now estimate 0;,—6; by

Z;x)=Y;.x)—¥;.(x),

where ¥;.(x) = (1/k) Z’s‘=1 ¥(x;, X,). Our selection procedure will select the ith
population if Z;)(x) >0 for all j# i. That is, our rule selects the population
corresponding to

(2.3) max {¥;.(x), *-, ¥ .(x)},

where W(x;, X;) is assumed to satisfy properties (2.1). Note that if ¥(x;, x;) =
@(x;)—@(x;), procedure (2.3) selects the population corresponding to max {o(x1),
-+, @(x,)}. In particular, if ¥(x;, x;) is defined as in (a) of (2.2), the resulting pro-
cedure is one studied by Bechhofer [2].

Lehmann introduced the averaged estimates Z;;(x) in order to form compatible
estimates of contrasts (See reference [6].). If we estimate each 6;— 6; by an estimate
having the properties (2.1), we would want to select the ith population if the estimate
of 6;— 0, is positive for each j # i. This would imply that in terms of our estimates
the ith population is best. However, if 6;—0; is estimated by ¥(x;, X;) as defined in
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(b) of (2.2), configurations of x exist for which, given any i, there exists a j such that
¥(x;, X;) < 0. Hence the averaged estimates are used to insure the existence of a
best population.

3. The least favorable parameter point. Let 0 = (0,,*-,0,) be in © =R~
Assume that the underlying distribution function F(x) is absolutely continuous.
Define

P{0) = P[Zjl(x) >0, Zjj—1(X) >0, Z; 1 (X)>0,-, Zy(X) > 0|0:l
forj=1,,k.

LeMMA 3.1. Let s be a positive integer such that 1 < s < k. If 0%(0) = (04, -,
01, 05+a, 0,415, 0,) andv # s, then

3.1 P,(0) Z (Z)P,(6%(9))
asa = (X)0.
ProOOF. Let
3.2) Yy=X, for t=1,---,n;i=1,--,k; i#s,
=X,+a for t=1,,n; i=s.

Application of (a) and (b) of (2.1) shows that
WYY, Y)=¥YX,X; if i=j orif i#s and j#s,
(3.3) =YX, Xj)+a if i=s#],
=¥(X, Xj)—a if j=s#i

It follows that
Zij(Y) = ZU(X) if i =j or if i ¢ S and j ?é S,
3.4 =Z;X)+a if i=s#],
=Z,1(X)—a if j=s¢i.
Thusifa = (=£)0and v # s,

P,0) = P[Z,,(X) >0, -, Z(X) > 0]6]
2 (S)P[Z,(Y) >0, -+, Z,(Y) > 0] 0] = P,(6%(6)).

The following lemma shows that when F(z) is absolutely continuous, any decision
rule in the class (2.3) selects exactly one population.

LeMMA 3.2. For j+#i, Z;i(X) is absolutely continuous.

PROOF. Let A be any set on the real line with Lebesgue measure zero and let
Q = {X | Z,-J-(X)GA}. Deﬁne U2 = XiZ_Xil’ ttty Un = Xin_Xil‘ From (3-4) lt
follows that Z;(X) = X;; +Z{(( X115 Xim 1 0, Up, s Uy Xiv 11> Xiew)')-
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Consider the line in R*" defined by letting x;; = x3;, ***, X;_1, = X - 1pp Xi2 =
Xig 1% Xiy = Xy F1,° Xpp 11 = XPh 1150 X = Xp, Where X9y, 00, X(_q,,
uy% o u,°, x2y 14, 0+, xD, are fixed constants. The section of Q by any such line
has Lebesgue measure zero. Hence Q has Lebesgue measure zero. By the absolute
continuity of F(x) it follows that P(Q) = 0.

THEOREM 3.1. For any procedure in the class of rules (2.3),
infy g P[select a good population ] 0]
= P[select the kth population |6,—A=0,_, =+ =0,]
where the latter probability is independent of the parameter 6,.

Proor. Fix 0 in ©. A procedure in (2.3) is not altered by the renumbering of the
populations. Hence without loss of generality we assume that 6, 2 0,_, = -+ = 0;.
Let r denote the smallest positive integer such that 8, > 6, —A. Now P[select a good
population |8] = Y%_, P/(0). Define 6** such that 0,** =0, for i=r, -+, k and
0,**=6,—A fori=1,---,r—1. Application of Lemma 3.1 for s=1,:-+,r—1
shows that

j=rP10) 2 Yj-, P{0*").
Lemma 3.2 yields that
e PO = 1= X521 PAO*).
Define 6° such that 6,° = 6, and 6,°=60,—A for i =1, ---, k—1. Application of
Lemma 3.1 fors =r, - -+, k—1 shows that
1=Y21P(0**) = 1-Y%_] P,(6°) = P[select the kth population |°].

Since a procedure in the class (2.3) depends only on the Z;{(X)’s, it follows from
equation (3.4) that P[select the kth population|0k—A =0,_,=""=0,]is in-
dependent of the parameter 6,.

4. Asymptotic efficiency. In this section we compare two procedures S; and S,

in the class of rules (2.3). For each procedure S, the sample size n; = nj(A, y, F) is
determined so that

4.1) inf . o P[select a good population |6, A, F] =y,

where 1 >y > 1/k. Assume that for each procedure S;, the sample size n; and its
corresponding A have the relationship that asn; — oo,

K. 1
(ny) _ " J .
42) A (nj)%+o< (n,.)%)’

where K is a positive constant. We seek an asymptotic comparison of the pro-
cedures and hence we examine the ratio of the respective sample sizes required by
(4.1) under a sequence of A values approaching zero.
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For procedure S;, consider the sample size n,(A"?, y, F), abbreviated n,(n,),

determined by (4.1) where the goodness criterion A™ is given by (4.2) with j = 2.
Asn, - 00, A® — 0and ny(n,) - . Thus (4.2) implies that

4.3 A = Ky ( : )
’ [”1(”2)]% [n(m)1F)
The asymptotic efficiency of S relative to S, is then defined to be

= K,%/K,>.

4.4) ARE(S,, S,; F) = lim
nz-monl( 2

This Pitman-type efficiency for selection procedures was considered by Lehmann
[5].

THEOREM 4.1. For procedure Sy, let ¥(x,, X;) be the Hodges—Lehmann estimate of
0;—0; corresponding to the two- sample Fy-scores test and for procedure S,, let
‘I’(x,, x;) = X;—X;. If F(x) is the dzstrzbutzon Sfunction of an absolutely continuous
random vartable wzth finite variance, 6*, and if the regularity conditions of Lemma 7.2
of [8] are satisfied, ‘

4.5) ARE(S,, S,; F) = ¢*B?| 42,
where J = Fy~1, 4% = [3 JX(x) dx—([§ J(x) dx)* and B = [ J[F(x)]/*(x) dx.

Proor. Let (Uy,+, U,—,) be a k—1 variate normal random variable with
E(U) =0, Var(U)=1fori=1,--+, k—1 and Cov(U;, U,) =% for i #r. Let d
be determined by G(d/2%, -, d/2¥) =y where G is the distribution function of
(Uy, **+, Uy—,). By Lemma 1 of reference [5], it is seen that S, satisfies (4.2) with
K, = od. There remains to show that S satisfies (4.2) with K; = Ad/B.

Theorem 3.1 and equation (4.1) imply that for procedure S;,
y= infos@,P[select a good population |6, A, F]
—P[Z(l) * (1)1k<0|0k A 0,‘ 1= =01, A, F].

By Theorem 3.1 of reference [3] and the fact that the convergence is uniform in the
arguments of the cumulative distribution function, it follows that

lim,, ., P[U; < A" (4n, B? (A% for i=1, -, k=1]=7.
This equation is satisfied if and only if (4.2) is satisfied for j = 1 with K; = Ad/B.

Note that (4.5) is just the Pitman efficiency of the two-sample Fo-scores test
relative to the t-test. This efficiency result corresponds to those in references [5], [1],
and [9]. The advantage of the approach taken here, is that it eliminates the diffi-
culties concerning the least favorable parameter point without the use of artificial
restrictions on the parameter space.

Acknowledgments. The author would like to thank R. V. Hogg and J. D. Cryer
for their comments on this paper and also G. G. Woodworth for his helpful
suggestions.



SOME ROBUST SELECTION PROCEDURES 1645

REFERENCES

[1] BARTLETT, N. S. and GOVINDARAJULU, Z. (1968). Some distribution free statistics and their
application to the selection problem. Ann. Inst. Statist. Math. Tokyo 20 79-97.

[2] BECHHOFER, R. E. (1954). A single sample multiple decision procedure for ranking means of
normal populations with known variances. Ann. Math. Statist. 25 16-39.

[3] BHUCHONGKUL, S. and PURrI, M. L. (1965). On the estimation of contrasts in linear models.
Ann. Math. Statist. 36 198-202.

[4] Hopgss, J. L., Jr. and LEAMANN, E. L. (1963). Estimates of location based on rank tests. Ann.
Math. Statist. 34 598-611.

[5] LEHMANN, E. L. (1963). A class of selection procedures based on ranks. Math. Ann. 150 268-
275.

[6] LErmANN, E. L. (1963). Robust estimation in analysis of variance. Ann. Math. Statist. 34
957-966.

[7]1 McDoNALD, G. C. and GUPTA, S. S. (1969). On some classés of selection procedures based
on ranks. Mimeograph Series No. 190, Department of Statistics, Purdue Univ.

[8] Purl, M. L. (1964). Asymptotic efficiency of a class of c-sample tests. Ann. Math. Statist. 35
102-121.

[9] Puri, M. L. and Pugry, P. S. (1969). Multiple decision procedures based on ranks for certain
problems in analysis of variance. Ann. Math. Statist. 40 619-632.

[10] Rizvi, M. H. and WoopworTH, G. G. (1968). On selection procedures based on ranks:
counterexamples concerning least favorable configurations. Technical Report No. 114,
Department of Statistics, Stanford Univ.

[11] SoBEL, M. (1967). Nonparametric procedures for selecting the ¢ populations with the largest
a-quantiles. Ann. Math. Statist. 38 1804-1816.



