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RECIPROCAL PROCESSES: THE STATIONARY GAUSSIAN CASE

By BENTON JAMISON

University of California at San Diego and University of Minnesota

0. Introduction. Let {X,,a <t < b} be a stochastic process. Suppose that, for
each t€(a, b), the o-field generated by {X;; a < s < t} is conditionally independent,
given X,, of each event in the o-field generated by {X;:¢<s<b}. Then
{X,,a<t<b} is called a Markov process. Suppose instead that for each s, ¢ in
(a. b) with s <t the following holds: each event in the o-field generated by
{X,: s < r < t} is conditionally independent, given X; and X, of each event in the
o-field generated by {X,: a < r < s}u{X,:t <r < b}. We then call {X,, a <t <b}
a reciprocal process. The use of the word “reciprocal” to describe this property is
due to S. Bernstein [1]. In 1961 Slepian [7] noticed that the stationary Gaussian
process with covariance function triangular on [—1, 1] and zero outside [—1, 1]
has the reciprocal property on [0, 1], and exploited this property to compute
explicitly the first passage time probability density for the restriction of the process
to an interval of length 1. We address ourselves to the task of finding other real-
valued stationary Gaussian processes having the reciprocal property on a finite
or infinite interval. The natural approach to take seems that of Doob (see [2],
pages 90-91 and 233-234). Exploiting the fact that in a Gaussian process con-
ditioning is projection, Doob geometrizes the problem, and shows that a stationary
Gaussian process is Markov if and only if its covariance function satisfies the
functional equation for the exponential function. We geometrize our problem in a
similar way, and succeed in showing that if a stationary Gaussian process is
reciprocal then its covariance function satisfies a functional equation of a type
satisfied by the cosine function. (I have L. A. Shepp to thank for the observation
that the functional equation (11) is of this type, and for his reference to current
literature on such functional equations.) The continuous functions which satisfy
such functional equations on the whole real line were found by Cauchy. These were
shown to be all the measurable solutions by Kacmarz [4]. We adapt the argument
of Kacmarz to show that these functions ((15), (16), and (17) of our paper) are the
only ones which satisfy such functional equations on an open interval. From these
functions we select the covariances and obtain the following result. Suppose
{X,0<t<T} is a real-valued stationary Gaussian process with continuous
covariance. It is reciprocal if and only if one of the following holds: (A)
{X,, 0 <t< T} is Markovian, (B) {X,, 0 << T} is the restriction to (0, T') of a
sine wave of random phase and amplitude but of fixed period no less than 27, or
(C) {X,,0 <t < T} is any of a multitude of processes whose covariance function
has a graph which is linear on [0, T].

1. Main results. Suppose {X,, a <t <b} is a stochastic process on the open
interval (a, b), where —o0 <a<b < . Let (Q, #, P) be the underlying prob-
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ability space. For each s and # with a < s < t < b let &(s, t) be the o-field generated
by the random variables X,, re(a, b)—(s, t), and #(s, t) that generated by the
X, s with re(s, 1).

DErINITION. The process {X,, a < t < b} is called a reciprocal process if for each
a<s<t<b,&(s, t)and S(s, t) are conditionally independent given X and X,.
The notion of conditional independence is defined on page 351 of [5].

LEMMA. 1. The process {X,, a <t < b} is reciprocal if and only if
(1) E{f(Xu) | Xsp T Xs,,: Xt’ Xv} = E{f(Xu) l )(n Xv}
foreacha <t <u<v<b,{sy, *,s,}=(a, b)—(t, v),and bounded Borel-measurable
.
Proor. First, assume that {X,, a <t < b} is reciprocal. To show that (1) holds
it suffices to show that
E{YZE{f(X,)| X, X,}} = E{YZf(X,)},
whenever Y = g(X,, ‘-, X, ), Z = h(X,, X,) with g and 4 bounded Borel-measur-
able functions. But
E{YZE{f(X,)| X,, X,}} = E{ZE{Y | X, X,}E{f(X.)| X, X,}}
= E{ZE{Yf(X,)| X, X,}}
= E{E{Yzf(Xu) | th Xv}}
= E{YZf(X,)}.
Now assume that (1) holds. It is easily seen that the reciprocal property amounts
to showing that
(2) E{g(Xun "':Xum)h(Xsl’ “"Xs,,)lXt’ Xv}
= E{g(Xul’ Y Xum) | Xt’ Xv}E{h(Xsp 0ty Xs,,) | Xta Xv}
for ¢, v, 54, "+, s, as above, t <u; <+ <u, <v, and g and A bounded Borel-
measurable functions. The argument just made (as well as Proposition A on page
351 of [5]) makes it clear that (2) holds as specified if and only if
(3) E{g(Xun ) Xum) I Xsp Y Xs,,a X, Xv} = E{g(Xup Y Xum) | X, Xv}

for all bounded Borel-measurable g. We establish (3) by induction on m. It
holds for m =1 by assumption. Assume that (3) holds (for any g, n, s;,***,s,)
if m is replaced by m—1. It suffices to prove (3) for g(X,,, ", X, )=
91Xy 5 Xe, - )92(X,), 91, g, bounded Borel-measurable. Let W = (X;,, -+, X,,),
andlet Y = g,(X,,, ", X,._), Z = g,(X,,)- Then

E{g(Xun Tt Xum)l W: Xv Xv} = E{YZ| W9 Xta Xv}
= E{ZE{Y|W, X,,, X, X,}| W, X,, X,}
= E{ZE{Y | X, X, }| W, X, X,}.
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Since E{f(X,,,) | W,X, X,} = E{f(X,, | X, X,} forany f, E{h(X,,,, X, | W, X, X,}
E{hX,,, X,) | X,, X,} for any 4 (to see this, first consider the case where A(x, y)
hy(x)h,(»)). But ZE{Y | X,, X,,.} = h(X,, X,,) for some h, s0

E{ZE{Y |X, X, }| W, X,, X,} = E{ZE{Y | X,, X,,.} | X,, X}
= E{ZE{Y | X,, X,,, X.} | X, X.}
=E{E{YZ|X, X,,, X,}| X, X,}
=E{YZ|X, X,}.

Thus (3) holds as it stands, completing the induction.
LemMA 2. If {X,, a <t < b} is a Markov process, then it is reciprocal.

ProOF. We use the criterion established in Lemma 1. Let
a<s; < ' <§,<t<u<v<w; <--<w,<b.
We must show that if {X,, @ < t < b} is Markov, then
E{/(X)9(X, s X DX, -5 Xy,) | X X}
= E{f(X.)| X0 X}E{9( Xy, * s Xo DW( XKoo 5 X ) | X Xo},

where f, g, and h are bounded Borel functions. But, letting ¥ = g(X;,, ***, X;,)
Z=nX,, ", X,,), wehave

E{f(X,)YZ|X, X,} = E{f(X,)E{YZ|X,, X,, X,} | X,, X,}.
The Markov property of {X,, a < t < b} implies that
E{YZ|X, X,, X,} = E{YE{Z| Y, X, X,, X,}| X;:, X, X,}
= E{YE{Z|X,}| X, X., X.}
= E{Z| X, }E{Y | X,, X., X,}
= E{Z|X }E{Y | X/}
= E{Y|X, X }E{Z| X,}
= E{YE{Z| X,}| X,, X.}
= E{YE{Z| X, X,, Y}| X,, X,}
=E{YZ|X, X,},
so that
E{f(X)YZ| X, X,} = E{f(X,)E{YZ| X,, X,}| X,, X}

= E{f(Xu) | Xt’ XU}E{YZ | Xt, Xv}’
as was to be proved.
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Suppose {X,, —oo <t < oo} is a real, stationary Gaussian process. We assume
that E{X,} = 0 and E{X,*} = 1. Then {X,} = L,(Q, #, P), which is a Hilbert space
with respect to the inner product (Y, Z) = E{YZ} (we are considering real L,).
Because it is stationary, (X;, X;) = R(s—t), where R is the covariance function. We
assume that R is continuous. Then R is an even positive-definite function, with
R(0) =1 and |R(#)| £ 1 for all ¢. The condition that {X,, a <z < b} be reciprocal
for some interval (a, b) of length T'is a conditionon R(¢),0 < ¢t = T.

THEOREM. Suppose {X,, — o0 < t < o0} is a real stationary Gaussian process with
E{X,} =0, E{X.*} = 1, and continuous covariance function R. Then {X,,0 <t < T}
is a reciprocal process if and only if one of the following holds:

() R®)=e *,0=5t < T, wherea > 0.
(i) R(t) = cosat,0 <t < T,wherea > 0,and T < 7/a.
(iii) R(t) =1—at,0 £t < T,where0 < a < 2/T.
We require the following lemma.

LeMMA 3. Suppose {X,, —o0 <t < oo} is a real stationary Gaussian process with
E{X,} =0, E{X;*}=1. Suppose that —1<R(t)<1 for 0<t<T. Then
{X,, 0 < t < T} is areciprocal process if and only if the following holds:

foreacho,t,ywithe 20,720,y=20,0+7+7= T,
)] aR(c)+ PR(c+1+7) = R(c+71), where
) L _RO-RGRG+y) | RG)-RORG+)

1-R¥(t+y) ’ 1—R¥(t+7)

PROOF. Suppose first that {X,,0<¢<T} is a reciprocal process. Let
0<s<t<u<v<T. Weinfer from Lemma 1 that

6) E{X,| X, X, X,} = E{X,| X, X,}.

Because {X,} is Gaussian, conditioning is projection; that is, the left-hand side is
the projection of X, onto the linear manifold spanned by Xj, X,, and X,, while the
right-hand side is the projection of X, onto the linear span of X, and X,. Thus (6)
is equivalent to

(7 X,~E{X,| X, X,} L X,
An easy computation shows that

E{X,| X, X,} = aX,+BX,
where o and f are given by (5). Thus (7) holds if and only if
®) X,—aX,—pX,, X)) =0.

But (8) is equivalent to (4), where 6 = t—s,7 =u—t,andy = v—u.
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Now suppose that (4) holds as specified in the statement of the lemma. Let
O<t<v<T. Then (6) holds if se(0,?). Suppose that t<v<s<T. Let
y=u—t,7=0v—u,and o = s—v. It is easily checked that (7) is again equivalent to
(4). Thus (7) holds whether s€ (0, ¢) or s (v, T). Suppose {s, ***,s,} =(0, T)— (¢, v).
Then

)] X,,—E{X,,|X,, X} 1 X, i=1,-",n,

whence
(10) E{X,| X, ", X, X0 X,} = E{X,| X, X,}.

Even without (9) holding, X,—E{X,|X,,, ‘", X, X,, X,} is orthogonal hence by
normality independent of X, --, X; , X,, X, so the conditional variance of X,
given X, -+, X, X,, X, isequal to

E(EZ{X“ | Xsl’ T Xsn’ Xt’ Xv}) = E(EZ{XuIXv Xv})

Thus the conditional densities of X, given X,, X, on the one hand, and X, ‘-,
X,,, X;» X, on the other, have the same mean, E{X, | X,, X,}, and the same variance,
E(EZ{X |X » X,}. Since both conditional densities are normal, they are almost
surely identical, so (1) holds almost surely. (For the prototype of this argument see
pages 90-91 of [2].) Since {sy, **, s,} is an arbitrary finite subset of (0, T)—(z, v),
and since ¢ and v are arbitrary points with 0 <t<v<T, {X,0<t<T} is
reciprocal by virtue of Lemma 1. This completes the proof of Lemma 3.

We proceed with the proof of the theorem. {X,,0<?< T} is a stationary
Gaussian reciprocal process with E{X,} =0, E{X,*} =1, and continuous co-
variance function R. Assume first that —1 < R(r) <1 for all 0 <t < T. Set
s=o0+tandt =y = tin(4) and (5), obtaining

R
for0 <t < 5,5+t < T. If we set p(2t) = (14 R(2t))R™'(¢), we have
(12) R(s+t)+R(s—t) = ¢(2t)R(s)

for0<t<s,s+t<T Let 0<s<T. Let & >0 be chosen so that R is positive
in the interval (0, §") and also so that 0 < s—¢’ < s+’ < T. Then (12) holds for
0<t<¢'. We now follow the argument of Kacmarz [4]. Let 0 < < 4’, and
integrate (12) with respect to ¢ over the integral (0, J), getting

(SO R(1)dt+ [_ s R(D) dt = R(s) [§ @(21) dt.
Differentiating with respect to s, we obtain
R(s+8)—R(s—8) = R'(s) [ p(2t) d1.

This shows that R'(s) exists for 0 < s < T; we see in fact that R has derivatives of
all orders in (0, T). Substituting ¢ = 0 in (12), and subtracting the result from (12),
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we obtain

13) R(s+1)—R(s— )= 2R(s) = (¢(21) — ¢(0))R(s).

Dividing (13) by 2 and letting 6’ > ¢|0, we obtain

(14) R"(s)=kR(s), O<s<T,

where k = 2¢"'(0). Solutions to (13) are well known:

(15) R(t) = Acosat+ Bsinat k>0,
(16) R(t) = Ae™ "+ Be™ k<0,
17) R(f) =A +Bt, k=0,

where a = |k|*, the equations holding for 0 < ¢ < T. In cases (15), (16), however,
equation (11) is not satisfied if both 4 # 0 and B # 0 (unless 4 = B in (16)). This
together with the assumption that R is a covariance with R(0) = 1 leads to the
alternatives (i), (ii) and (iii) of the theorem (but with the assertion in (ii)
that T < n/a still unproved).

So far we have supposed that —1 < R(#) < 1 for 0 < ¢ < T. Assume, however,
that |R(s)| = 1forsome0 < s < T. Then, ift—u=s

' (Xta Xt)(Xta Xu) = l_RZ(S) — 0,
(X X (X, X,)

so {X,, X,} is a linearly dependent set, whence

(18) E{X,| X, X,} = E{X,| X,} = RG—D)X,

for any r and ¢, with u = t+s. Now suppose 0 < r < ¢t < T'—s, and that R does not
vanish in [0, ¢]. Then, by the reciprocal property,

(19) X,—R(t-rX,1 X,
for all ¥’ withr < r’ < ¢. That s,
R —r) = R(t—r)R(t—71").

Now let r'|r. We obtain R*(t—r) = 1. Thus R(v) = 1 for all 0 £ v £ ¢, which is
impossible unless R is constantly equal to 1. This falls under case (iii), with a = 0.

Suppose now that (i) holds, that is, R(¢) = e *for0 < t < T.Then {X,,0 <t < T}
is a Markov process ([2], 233-234), hence reciprocal by virtue of Lemma 2. Any
even continuous function which is equal to e~?!*! on [— T, T] and which is convex
and non-decreasing on [0, o) is a covariance function, so (i) does not define a
unique Gaussian process. The situation is different in case (ii). Here R(t) = cosat,
0 <t < T. Since cosat is an analytic function of ¢, R(t) = cosat for all ¢. It follows
from [2], page 524, that

X(t) = Ycosat+Zsinat,
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where Y and Z are independent, each with mean zero and variance 1. It is easy to
verify that unless ¢ and v differ by an integral multiple of n/a, X(t) and X(v) together
determine X(s) for all s, but that if r—¢#=mn/a and if s<t<u<wv, then
E{X,| X,, X,, X,} # E{X,| X,, X,}. Thus {X,,0 <t < T} is reciprocal if T < n/a,
but notif T > n/a.

Suppose now that (iii) holds, so R(¢#)=1—atif 0 <¢ < T. The reciprocality of
{X,, 0 <t< T} is most easily established by a direct verification of (4); we leave
this to the reader. This completes the proof of the theorem. It should be observed
at this point, however, that a multitude of very different processes fall under case
(iii). Perhaps the most interesting one is the one with the triangular covariance

function
R =1-|t/T ‘ [T

=0 |t| > T;

this is the process studied by Slepian [7] (see also page 349 of [6]). One of the saw-
tooth covariances in figure 2 on page 480 of [3] defines a process which is reciprocal
in any interval of length 1; the other defines one reciprocal in any interval of length
2. Suppose that f'is any real characteristic function, and let R be the piecewise linear
function with vertices (nT, f(nT)), n=0, £1, £2,---. Then R is a covariance
function ([3], page 610) and the corresponding stationary Gaussian process is
reciprocal on [0, T].

A corresponding classification for n-dimensional stationary Gaussian processes
which are reciprocal on an interval would be of interest even from a purely

functional-equation-theoretic viewpoint.
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