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0. Summary. This paper demonstrates the direct relationship which exists
between O(p™, p™— 1) sets and a balanced set of {-restrictional lattice designs for p™
treatments. For instance, we will show that

o[ ]

which, as has been shown by Raktoe [5] completely specifies a balanced set of 2-
restrictional lattice designs for 72 = 49 treatments, will also completely charac-
terize a set of 48 mutually orthogonal latin squares of order 49, i.e. an 0(49, 48)
set. In other words, if our interest is to exhibit an 0(49, 48) set, the above 2 x 2
matrix will do the job. Strangely enough, as will be shown, 4 also completely
characterizes an O(4, 3) set.

Note that, since a balanced set of 1-restrictional lattice designs is simply a BIB
design, this paper shows in particular a different proof for the known equivalence
of the O(p™, p"—1) sets with a class of resolvable BIB designs. Consequently, the
content of this paper will be useful for those who are concerned with tabulating
the designs or writing an efficient program for generating designs on a computer.

1. Definitions.

DEerINITION 1.1. Let L; be a latin square of ordernon ann-setX;,i=1,2,---, ¢
Then the set S = {L,, L,, -+, L,} is said to be a mutually orthogonal set of # latin
squares if the projection of the superimposed form of the ¢ latin squares on any two
n-sets X; and X;, i # j, forms a permutation of the Cartesian product set of Z; and
Z;, viz.,, Z; x X;. Such a set is denoted as an O(n, ) set. For example the following

setis an O(3, 2) set.
1 2 3 1 2 3
S={L1=2 31, L,=3 1 2}.
31 2 2 31

DEerFINITION 1.2. A collection of r {-way tables each of dimension v, v,, -+ -, vt
filled out with v, v, - - - vy = V distinct objects is said to be an {-restrictional balanced
lattice design if the collection is a BIB with respect to each dimension and r is
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minimal. For example the following collection of seven 2-way tables each of
dimensions 4 and 2 filled out with 1, 2, ---, 8 is a 2-restrictional balanced lattice

design.

1 2 3 4 5 6 7
113 1]4 1 8 1|5 17 1]2 16
4|2 815 _2——7— 713 315 314 2|5
517 213 6|3 6|2 8|2 5016 48
86 716 514 4|8 6|4 7|8 317

Note that the above arrangement is a BIB with respect to both rows (v =8,
b=28,k=2,r=7,A=1)and columns (v=8,b=14,k =4,r =17, A = 3). Note
also that a 1-restrictional balanced lattice design is simply a classical BIB design.

2. The results. Mann [3] proved the following theorem:

THEOREM 2.1. Let G = {a; = e the identity, a,, -, a,} be a group of order n and
let o be an automorphism of order t on G. Then

(1) S={L,,L,, -, L,} isan O(n, t) set, where

e az Y a"
“i(az) d(a)a, - oi(ay)a,
L;=di(a;) oi(az)a, -+ aaz)a, i=1,2 -,
ai(an) ai(an)aZ T ai(an)an

(2) Ifinparticular t = n—1, then one can simplify the construction of an O(n,n—1)
set from the following latin square by a cyclic permutation of its last n—1 rows.

e w(as) o*a;) «(ay)
w(ay) way)x(ay) 0‘(02)“2(“2) e aay)o(ay)
L, = a*(a,) 0‘2(“2)“(02) “2(‘12)‘12(“2) T “2(‘12)05'(02)
a'(ay) a'(az)uay) oz'(az)ozz(az) e df(az)a(az)

Note that a, can be any member of G except e.
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We see, therefore, that by means of Theorem 2.1 we can construct an O(n, t) set
if we can find a group G and an automorphism « of order ¢. In particularif t = n—1
the whole task of construction reduces to the construction of L, since the other
n—2 latin squares can easily be derived from L, as described above.

Mann [3] stated thatif G is an elementary abelian p-group then it can be shown that
every such G admits an automorphism a of order n— 1 and hence we can construct an
O(n, n—1) set based on such G and «. Mann [3] did not give a specific procedure
for the construction of these automorphisms. He only exhibited such an auto-
morphism for n = 8, 9, 16, 25, and 27. Here we will present a general method of
constructing such an automorphism for any n = p™. In particular we will exhibit
such automorphisms for the following ».

n=2" m=2,3,-,9

n=3" m=2,3,--,6

n=>5" m=23,4

n="7", m=2,3
n=112,132,17%,192,232,29% and 31%.

This will then perhaps be the largest table that has ever been produced so far for
O(n, n—1) sets.

Note that there is no loss of generality if we limit ourselves to the following
elementary abelian p-group of order n = p™.

G* = {(bby -+ b,),b;=0,1,2,---,p—1,j=1,2,-, m}.

The binary operation on’ G* is addition mod p componentwise, viz.(bb, *** b,,)+
(by'b,’ -+ b,) =(cicy -+ ¢,) Where ¢; = b;+b; (mod p). Note that the elements
of G* are simply the treatment combinations of m factors each at p levels. This
is why we have chosen this particular elementary abelian p-group; it has a well-
known structure to those who are concerned with design construction. Note also
that G* is the direct product of m Galois fields, each of order p.

The generator set for every elementary abelian p-group of order p™ consists of
m elements, and for uniformity, we may choose the following ordered generator set
for G*.

g = {(100---0), (0100---0), -+, (00---010), (00 - -O1)}.

Note that the structure of every automorphism « on G* is completely defined if
we know the image of each element of g under a. G* is a vector space of dimension
mover GF[p].

Before proceeding further we need the following known theorem:

THEOREM 2.2. Let G be an elementary abelian p-group of order n = p™. Then
Auto G is isomorphic to the (multiplicative) group of all non-singular m x m matrices
with entries in the field of integers mod p.
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Therefore, the construction of an automorphism of order n— 1 for G* isequivalent
to the construction of an m x m matrix 4 such that A"~ = I but A* # I'if ¢ is not
a multiple of n— 1, over the field of integers mod p.

We know from linear algebra that if ¢ is a linear map on a vector space ¥ and
if xe V such that x # 0 but ¢(x) = x, then 1 is an eigenvalue of ¢. Moreover, if
{41 425+, 4.} is the set of eigenvalues of ¢, then {1,°, 4,% -+, A,°} is the set of
eigenvalues of ¢°. Therefore, for our problem we must find a linear map on G*
with a set of eigenvalues A; having the property that for each i, 1,° # 1 (mod p) for
all s=1,2,---,n—2 and 1" ! = 1. To do so let F be a GF[p™] and let B be a
generator of the multiplicative cyclic group of GF[p™],ie. B # 1,i=1,2,-++,n—2
while "' = 1. Let f(x) be a monic irreducible polynomial over GF[p] for . Note
that f(x) has degree m. f is sometimes called a primitive root or mark of F. Now
if we let A be the companion matrix for 8, then A has the desired property.

ExAMPLE. Letusfind anautomorphism of order 3 for G* = {(00), (01), (10), (11)}.
It is sufficient by previous arguments to find a 2 x 2 matrix A of order 3 over the
field of integer mod 2. Let GF(2%) = {0, 1, B, B+ 1} with following multiplication
(+) and addition (+) tables:

01 p B+l + [0 1 B B+l

0 |00 0 © 0 |01 B B+1
1 1 B B+1 1 0B+1 B
B B+1 1 B 0 1
B+1 B B+1 0

Note that f is a primitive root for GF[2?] and f(x) = x>+ x+ 1 isa monic irreducible
polynomial for B, since f(B) = >+ B+1=p+1+p+1=0 (mod2). The com-
panion matrix associated with f(x) is

01
A= .
0 1770 1 11 11
A2=|: :H: :|=|: ]E[ :I over GF(2),
1 1][1 1 1 2 10
1 1170 1 1 2 10
A3 =A%4 = [ :H: :l = |: } = l: :} over GF(2).
1 0|1 1 0 1 (VI

Let us now determine the image of the ordered generator set g = {(10), (01)} under

A.
l:() 1] [(10)} l:(Ol) ] |:(01)]
Ag = = = .
1 1j|(0D) (10)+(01) (11)

As a check:
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Therefore, A(10) = (01), A4(01) =(11), and since (11)=(10)+(01), (00) =
2(10)+2(01) then we have A(11) = (01)+(11) =(10), A(00) =2(01)+2(11) =
(02) +(22) = (00).

Now we have a group G* of order 4 and an automorphism of order 3 on G*.
Therefore, we can now construct an O(4, 3) set. Since e = (00) for our G* then letting
a, = (10) in Theorem 2.1 we obtain

(00) A(10) A*(10) A3(10)

A(10)  A(10)4(10)  A(10)4%(10)  A(10)43(10)
=/12(10) A*(10)A(10)  A%(10)A42(10) A%(10)43(10)

A3(10) A43(10)4(10) A4%(10)4%(10) "4%(10)43(10)

(00) (01) (11) (10)
_(01) (00) (10) (11)
(1) (10) (00) (O1)
(10) (11) (01) (00).
The other two latin squares are obtained by a cyclic permutation of the last three
rows of L,. Thus
(00) (01) (11) (10 (00) (01) (11) (10)
(10) (11) (01) (00) (11) (10) (00) (01)
L = and L, =
(01) (00) (10) (11) (10) (11) (01) (00)

(11) (10) (00) (O1) (01) (00) (10) (11).
To simplify the notation we set (00) = 1, (01) = 2, (11) = 3, (10) = 4 to obtain
1234 1234 1234
2143 4321 3412
Lo = s Ll = s L2 = .
3412 2143 4321
4321 3412 2143

Raktoe [5], in addition to other results, showed that:

THEOREM 2.3. For any [-restrictional lattice design s = nf= 1 8" the construction
of a balanced set of arrangements is equivalent to the construction of a cyclic collinea-
tion of order o = (s™ —1)/(s—1).

By considering Mazumdar’s results [4] and the method of construction of an
automorphism of order n—1 which was presented above, we have in effect shown
the equivalence of Mann’s [3] group automorphism method of constructing an
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O(n, n—1) set and Raktoe’s [5] collineation method of constructing a balanced set
of {-restrictional prime-powered lattice designs. We can now summarize the above
results in the following theorem.

THEOREM 2.4. The existence of a collineation of order (p™—1)[(p—1) is equivalent
to the existence of an O(p™, p™—1) set.

We exhibit in Table 1 a generating matrix of order n—1 = p™—1 with entries
from GF[p] for those n promised before. These generating matrices are the same as
those exhibited by Raktoe [5] for the construction of a balanced set of {-restrictional
lattice designs.

TABLE 1

Generating Matrix

n Generator Order n Generator Order
010
2 ? i 3 23 [0 0 1] 7
: 101
M 00
joroo 010
0010 00100
2 15 2° 00010 31
0001
1100 00001
- 10100
010000 0100000
0010000
001000
0001000
2 PO 63 27 0000100 127
000 0000010
000001
110000 0000001
1100000
01000000 01000000 0T
001000000
00100000
000100000
00010000
00001000 000010000
2 255 2° 000001000 511
00000100
000000100
00000010
000000010
00000001
10111000 000000001
) N 11111000 1]

010
32 [? } 8 33 [0 0 1] 26
10
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TABLE 1—continued

n Generator Order n Generator Order
0100 01000
0010 00100
34 80 3 00010 242
0001
1100 00001
L 11000
010000
001000
010
36 000100 728 5 001 124
000010 220
000001 :
110000
01 01
2 2
5 s 24 7 [1 | 48
fo100]
0010 01
54 2 2
0001 624 11 33 120
13303
010
73 001 342 132 0 ; 168
220 3
2 01 2 01 360
17 s 288 19 44
01 01
2 2
23 [1 1 528 27 3 3 728
01 01
2 2
29 55 840 31 25 960

REeMARK. Note that our usage of the word “order” differs from that of Raktoe
[5]. For instance, [J 1] associated with 32, which is of order 8 to us, is of order
(32=1)/(3—1) = 4 to Raktoe. In fact, if a generating matrix is of order (p™—1)/
(p—1) to Raktoe it is of order (p™—1) to us. This is so because if « is a collineation
on a finite projective geometry which is based on a GF[p™], then the image of every
point and line is invariant under multiplication of « by non-zero elements of
GF[p"].

Before closing this section we exhibit L, and hence a complete set for n = 2* and
n = 32 using the related generating matrices given in the above list. We accept this
task mainly for two reasons. First, to further clarify the idea of this section, and
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secondly, to compare the derived O(8, 7) and O(9, 8) sets with those exhibited by
Fisher and Yates [1].

n=23=8

G* = {(000), (001), (010), (011), (100), (101), (110), (111)},

010
g = {(100), (010), (001)} and A = [0 0 1} .

101
01 07 [(100) (010)
Ag = {0 0 l} [(010)} = [(OOI)J .
10 1] [(001) L(101)
Let a, in Theorem 2.1 be (100). Then since
A(100) = (010), A%(100) = (001), 43(100) = (101),
A*(100) = A(101) = A[(100)+(001)] = A(100)+ A(001)
= (010)+(101) = (111),
A*(100) = A(111) = A[(100)+(010)+(001)] = A4(100)+ A(010)+ A4(001)
= (010)+(001) +(101) = (110),
A%(100) = A(110) = A[(100)+(010)] = A(100)+ A(010)
= (010)+(001) = (011),
A7(100) = A4(011) = A[(010)+(001)] = A(010)+ A(001)
= (001)+(101) = (100)

as expected since A is of order 7. Therefore, we obtain L, as follows:

(000) (010) (001) (101) (111) (110) (011) (100)
(010) (000) (011) (I111) (101) (100) (001) (110)
(001) (011) (000) (100) (110) (I111) (010) (101)
(101) (111) (100) (000) (010) (011) (110) (0O1)
T (111) (101) (110) (010) (000) (001) (100) (O11)
(110) (100) (111) (O11) (001) (000) (101) (010)
(011) (001) (010) (110) (100) (101) (000) (111)
(100) (110) (101) (001) (011) (010) (111) (00O)
Setting (000) = 1, (010) = 2, (001) = 3, (101) = 4, (111) = 5, (110) = 6, (011) =7,

0
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(100) = 8, then L, in a compact form will be:
12345678
21754836
37186524
45812763

T 54621387
68573142
73268415
86437251

Lo

Now we can derive L,, L,, **+, L from L, by a cyclic permutation of the last 7
rows of L,.

L,

12345678 12345678
86437251 73268415
21754836 86437251

37186524
45812763
54621387
68573142
73268415

21754836

L2= ’
37186524

45812763
54621387
68573142

and so on. Note the way L, is derived from L,: Except for the first rows of L, and
L,, which are identical, the ith row of L, becomes the (i + 1)th rows of L, and the
last row of L, becomes the second row of L,. In general L; is derived from L;_,
in the same fashion as L, is derived from L,,.

n=3%=9

G* = {(00), (01), (02), (10), (11), (12), (20), (21), (22)}

g = {(10), (01)} mdA:ﬁi]

o o 1[0 _[on
9= IJ(MJ_(HJ'

Let a, in Theorem 2.1 be (10). Then following similar steps to those given in the
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case of m = 23 we obtain L, as follows:
00 01 11 12 20 02 22 21 10
01 02 12 10 21 00 20 22 11
11 12 22 20 01 10 00 02 21
12 10 20 21 02 11 01 00 22
L,=20 21 01 02 10 22 12 11 00.
02 00 10 11 22 01 21 20 12
22 20 00 01 12 21 11 10 02
21 22 02 00 11 20 10 12 ol
10 11 21 22 00 12 02 01 20
By setting (00) =1, (01)=2, (11)=3, (12)=4, (20)=5, (02)=6, (22)=7,
(22) = 8, and (10) = 9 we obtain L, in a compact form as follows:
123456789
264981573
3475291638
495863217
L,=582697431.
619372854
751248296
876135942
938714625

Now we can derive L,, L,, -+, L, by a cyclic permutation of the last 8 rows of
L, (see the description given for 8).
123456789 123456789
938714625 876135942
264981573 938714625
3475291638 264981573
L,=495863217, L,=3475291638,
582697431 495863217
619372854 582697431
751248396 619372854
876135942 751248396

and so on.
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The O(8,7) and O(9, 8) sets exhibited by Fisher and Yates [1] also have the
property that each latin square in the given set can be obtained from any other
member of the set by a reshuffling of the rows. However, Fisher and Yates have
given no procedural rules to accomplish this. Hence their sets do not possess the
simple property that it suffices to have but one latin square of the set.
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