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STATISTICAL METHODS RELATED TO THE LAW OF THE
ITERATED LOGARITHM!

By HERBERT ROBBINS

Columbia University

1. Extension and applications of an inequality of Ville and Wald. Let x,, - - - be
a sequence of random variables with a specified joint probability distribution P.
We shall give a method for obtaining probability inequalities and related limit
theorems concerning the behavior of the entire sequence of x’s.

We begin with a result of J. Ville ([16] page 100); cf. also A. Wald ([17] page
146). .

Suppose that under P for each n = 1 the random variables x,, -+, x, have a
probability density function g,(x,, -, x,) with respect to a o-finite measure p, on
the Borel sets of n-space, and that P’ is any other joint probability distribution of
the sequence x,,--- such that x,,---, x, have a probability density function
gn' (x4, -+ *, x,) with respect to the same y,. Define the likelihood ratio z, = g,’/g,
when g, > 0. Then for any ¢ > 1,

) P(z, = ¢ for some n = 1) < 1/e.

To prove this, let N = first n > 1 such that g,” = eg,, with N = oo if no such n
occurs; then P(g, = 0 for some » > 1) =0 and
() P(z,2 & for some n 2 1) = P(N < ) = 3 ¥ [ N=mn Altn

é 1/82(1]o J.(N=n) gn, dl"n
=1/e-P'(N < o0) = 1/e.

As a first example, cf. ([16] page 52), suppose that the x’s are i.i.d. Bernoulli
random variables such that P(x;=1)=p, P(x;=0)=1—-p,0<p< 1. If p, is
counting measure on the space of vectors (xy,- -, x,) then g,(x;, ", x,) =
P(xy, -+, x,) = p*(1—p)"~ 5, where S, = x; + *** +x,. Take P’ to be the uniform
mixture of Bernoulli distributions with parameter 0 < 6 < 1; then

I’ (X177, %) = P'(xy, 0+, X,) = [505°(1—6)""5"df
_ S, (n=S)!
()
Using the notation b(n, p, x) = (}) p"(1—p)"~* and replacing & by 1/e, (1) gives
the inequality
P(b(n,p,S,) <¢/(n+1)forsomen=1)<e (O<e<l).
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1398 HERBERT ROBBINS

If we denote by I,(x, ¢) the set of all 0 £ 60 <1 such that b(n, 0, x) > ¢/(n+1),
then this is equivalent to the “confidence’ statement

3) P(pel(S,,¢) foreveryn=1)=1—¢ O<ep<).

As a second example, which we shall study in more detail, of the use of (1), let
P,, — o0 < 6 < o0, denote the probability under which the x’s are i.i.d. N(6, 1),
and take P=P,. If u, denotes Lebesgue measure in n-space and

o(x) = 2n)"texp(—x?[2), O(x) =[Z,0®dt,  S,=x;+ " +X,
then the joint density of x,, - -, x, under Py is
(4) go,n(xl’ Tty xn) = Hq ¢(xi_0)-

We shall take P’ to be any mixture of the form P'(*) = [*,Py(+) dF(6), where
F is an arbitrary probability measure on (— 00, o), so that

gnl(xla Ty xn) = Icfoo gﬂ,n(xl’ Tty xn)dF(e)

) 2= 0, /Gom = |2 exp (6S,—4n62) dF(0).
If we define the function
(6) 06,1 = [ 2 exp (xy—3y2) dF(y) |

and for reasons which will become apparent in the next section replace F(6) in (5)
by F(0m?), where m is an arbitrary positive constant, then (5) becomes

() z,=[2,exp(6S,—4n6%) dF(Om*) = [2, exp (yS,/m* —iny*/m) dF(y)
= f(S,/m*, njm),
and hence by (1) we have hat for i.i.d. N(0, 1) X’s,
8) P(f(S,/m* n/m) = ¢ for some n = 1) < 1/e (m>0,e>1).

In order to see the meaning of (8) more clearly, suppose now that the probability
measure F is confined to (0, c0), so that f(x, t) defined by (6) is an increasing
function of x. If we define for ¢ > 0 the function A(z, ¢) = the (positive) solution x
of the equation f(x, t) = ¢, then

) f(x,t = ¢ if and only if x = A(t, &),
and (8) can be written as
(10) P(S, = m* A(njm, &) for some n=1)<1/e (m>0,e>1).

We note that (10) remains valid if instead of being i.i.d. N(0, 1) the x’s are any
i.i.d. random variables having a moment generating function ¥ such that

(11) ¥(0) = E(™) < &2 0 <6 < ).
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To see this, let g(x) be the density of x, with respect to some measure u on (— 00, )
and let gy(x) = €®* g(x)¥ ~1(0); the argument which led to (10) now carries over
a fortiori with ¢(x—0) replaced by ge(x). An example other than the N(0, 1) case
of a “subnormal” distribution satisfying (11) is the symmetric random walk
distribution P(x, =1) = P(x, = —1) = 1, for which
P(0) = (& +e ™92 = Y& 6%(2i)! < " (=0 <6 < ).
Thus S, for the symmetric random walk also satisfies (10), and for many distribu-
tions—Bernoulli, Poisson, uniform, normal square, etc.—an appropriate linear
function with expectation 0 and variance 1 will provide an x, satisfying (11) and
hence (10) in the case where F is confined to (0, o0).
We shall now illustrate the significance of (10) by considering a few particular
choices of F. We write P for any distribution under which the x’s are i.i.d. and (11)
holds.

ExAMPLE 1. Let F be the degenerate measure which assigns mass 1 to the point
2a>0. Then f(x,t) =exp(Rax—2a*t)=¢ if and only if x = at+(loge)/2a.
Hence (10) yields the inequality (with d = (loge)/2a)

P(S, = an/m*+dm?* for some n=1) < e 2™ (a, d, m all > 0).
EXAMPLE 2. Let F be defined by
dF(y) = 2/n)te™#*dy for 0<y<oo;=0 elsewhere.
Then for t > —1

, 9H¥2/(t+1) x
f(x, 1) = 2/n)* [§ exp (xy—y (t+1)2dy = G ‘I’<(,+ 1)4;)-

To solve the equation f(x, t) = ¢ for x we introduce the function
h(x) = x*+21log ®(x) (=00 <x < ),
which increases from — oo to oo as x does, and is such that A(x) ~ x2, A~ 1(x) ~ x*
as x— 00. Then f(x,t) =& for x = A(t, &) = (t+1)*- A~ (2log Le+log(¢+1)), so
(10) yields (with & = 2¢**’®(a)) the inequality
(12) P(S, = (n+m)*- h™'(h(a)+log (n/m+1)) for some n = 1) £ 3¢ |®(a)
(a and m > 0).
ExaMmpLE 3. For any é > 0 let F be defined by
dy
dF(y)=9-
- ylog1/y(log, 1/y
=0 elsewhere,

where we write log (log y) = log, y, etc. It is impossible to evaluate f(x, t) explicitly,
but it can be shown by some analysis [14] that as ¢t — o

3 € 3
(13) At e) = {Zt(logz t+<§+5>log3 t+log 2—5?+o(1)>} .

for O<y<e™®

)1 +0
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The inequality (10) states for i.i.d. x’s satisfying (11) that P(S, = ¢, for some
n 2 1) < 1/e, where by proper choice of the probability measure F on (0, c0) we
have seen that as n— o0

¢, = m* A(njm, ) = an/m* +dm* ~ an/m?* (Example 1)
= (n+m)*h~'(h(a)+log(n/m+1)) ~ (nlogn)* (Example 2)
~ (2nlog, n)* (Example 3).

Other choices of F give sequences c,~ n* (3 < < 1), etc. By the law of the
iterated logarithmi,

. S,

(14) P<hl,?_.?p(2n g 1) =1
whenever the x’s are i.i.d. with mean O and variance 1. Thus the sequences c, of
Example 3 increase about as slowly as is possible to have for i.i.d. x’s with mean
0 and variance 1, P(S, = ¢, for some n = 1) < 1.

Useful extensions of (10) are provided by the following remarks. The reader
interested primarily in applications to statistics may proceed directly to Section 3.

(I) Returning to the general inequality (1), suppose we put

gn’(xls Tty xn) = jzge,n(xla Y X,,) dF(o),
2y = gn,/gn when In > 0,

where P'(+) = [3P,(*)dF(0) and {P,;a < 0 < b} is any family of joint probability
distributions for the sequence x;, - - - such that for each n = 1 the random variables
X1, ', X, have a probability density function g, (x4, ** -, x,) (with respect to the
same p,) which for fixed x,, -+ -, x, is a Borel measurable function of 8. Then for
any ¢ >0andj=1,2, - we shall show that

(15)  P(z,2 ¢ for some n 2 j) < P(z; 2 &)+ 1/e ;< 2;dP < F(a, b)e,

where F may now be any o-finite measure on the parameter interval (a, b). (When
j =1 and Fis a probability measure on (a, b) the extreme terms of (15) reduce to

(1.)
PROOF. Let N = first #n = j such that g,’ = &g,, with N = oo if no such »n occurs;
then

P(z, = ¢ for some n 2 j)
=P(N < ©0)=P(N = j)+ Y% 1 fn=n) In bt
< PN = )+ 1/e Y5 sfovem 9 ditn = PON = j)+1/eP'(j < N < o0)
< PN = )+ 1/eP'(N > ) = P(; 2 )+ 1/e [ g, <9 dit
=P(z; 2 &)+ 1/e[(s,<0y2; AP £ 1/€[(1,50)2; AP+ 1/ [(;,;<y2; AP < 1]e[z; dP
= F(a, b)/e.
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We remark that the first inequality of (15) holds under the assumption that
{z,, F,;n 21} is any positive supermartingale on a probability space (Q, #, P),
although the proof for that case is slightly different.

Applied to the i.i.d. N(0, 1) case where F is confined to (0, c0) we obtain from
(15) as an extension of (10) the result that for e>0,m>0,;=1,2,--- and
T =j/m
(16)  P(S, = m*A(n/m,¢) for some n = j)

S 1—D(A(t, &)/t~ +1/e[§D(A(z, e)/r ¥yt~ dF(y).
For example, if dF(y) = (2/n)*dy for 0 < y < o then (cf. Example 2 above)
f(x, £) = 2e¥* 13 0(x /) . (t>0),
and from (16) for j = m, © = 1 we obtain (cf. (12)) for i.i.d. N(0, 1) x’s
P(S, = n*h~'(h(a)+logn/m) for some n = m) < 1—(a)+¢(a)a+ ¢(a)/®(a)).

(I0) If Fis a symmetric probability measure on (— oo, c0) then insead of (9) we

see that f(x, 1) = ¢ if and only if |x| 2 A(#, €), and (10) continues to hold with S,

replaced by |S,,| when the x’s are 1.i.d. N(0, 1), or more generally when (11) holds
for all — 00 < 0 < 0. For example, if F = ® we obtain when (11) holds for all

— 00 < 0 < oo that
(17)  P(S,|z [(n+m) (@ +log(n/m+1))]* forsome n=1) < e ¥

Since (a*+logt)*> h™'(h(a)+logt) for all > 1, it follows from (12) that as a
one-sided version of (17) we have

(18) P(S, = [(n+m)(a*+log(n/m+1))]* for some n=1) < te™*j®(a)
(a > 0).

Likewise, if F is any symmetric measure on (— oo, o) and the x’s are i.i.d. N(0, 1)
then we obtain from (15) as an analogue of (16) that with t =j/m

(19)  P(|S,| =2 m*4(n/m, ¢) for some n = j)
< 2(1 —D(A(t, &)/t%)) + 1/e [ o {D(A(1, &)/c* — yt?)
—O(—A(r, &)<t — yrh)} dF(y).
From (19) with dF(y) = (2rn) " *dy for — 0 <y < 00 and j =m, 1 =1 we obtain
for i.i.d. N(0, 1) x’s that
(20) P(|S,| = [n(a*+logn/m)]* for some n 2 m) < 2(1—®(a)+ag(a))
(a >0).

(ITI) Suppose the x’s are i.i.d. with an absolutely continuous density function
g(x—0) under P, and that P = P,. Define for n=1 and — o0 <0 < o0,
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Yn= xn/lxll and

Zo,n(xn T xn) =

Then z,,(Xy, """, Xs) = Zg(¥1»***» ¥u)» and if the joint density of y;, -, y,
under P, is denoted by py(y;, -, ¥,), then it is easy to see that

Po()’n e 9_y_n_)_

Po(Y1s * "5 Ya)

Hence if F is any measure on (— o0, o) and if we put |
zn(xl’ T xn) = jo—ooo Z9,n dF(G)’

then (15) holds. For example, if g = ¢ and we put dF(0) = (m2n)*do, — 0 <
f < o0, we obtain after some computation the following result: if the x’s are i.i.d.
N(u, 62) and

zO,n(yI: ) yn) =

Z,=n"Y1x, 02=n"'Y1(x—X%,) then
1) P(|%,—p| = v[(tn)"" ' —1]* for some n 2 m)
S 2(1=F,-y(a)+afy-1(a) (az0,m=1,2,-)

where t = m~'(1+a?/(m—1))" and f,, F,, denote the Student ¢ density and distribu-
tion function with m degrees of freedom. Note that for large n, m

(tn)" ' —1x e et _1 ~ n~og(tn)
~ n~tlog(nm™ (1 +a?/(m—1))") = n~*(a* +log n/m)

and compare (21) with (20). The use of the scale-invariant measure do/g was
suggested to the author by Robert Berk; cf. ([10] page 250).

2. The Wiener process and a limit theorem. Let w(¢) denote a standard Wiener
process for ¢ = 0 with w(0)=0. If x,, - - - are independent N(0, 1), the two sequences

(22) (Sl/m%9 SZ/m%, )
(w(1/m), w(2/m), -+ )

have the same joint distribution for any m > 0. This suggests that (10), (16), and
(19) should become equalities for the Wiener process; e.g., in the case of (10) that
if Fis a probability measure on (0, o0) and if f(x, 0) < co for all x, then

(23) P(w(t) = A(t, &) for some t=0)=1/e (e>1).

To see heuristically why this should be so we remark that in (2) the only strict
inequality was the replacement of 1/z, by 1/ on the set (N = n). If m is large, the
“overshoot” will be stochastically small, and the behavior of the first sequence of
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(22) will be about the same as that of the continuous process w(¢). However, instead
of trying to prove that (23) holds by letting m — oo in (10), it is more convenient
to prove (23) directly from the fact that

24 2(t) = |5 exp (w(t)y —31y*) dF(y) (tz0)

is a positive martingale with continuous sample paths for which z(0) = 1. It is easy
to show that z(¢) - 0 in probability as ¢ — co, and from this it follows almost
immediately by stopping z(¢) the first time it is = ¢ that

P(z(t) =z ¢ for some t=0)=1/¢ (e>1),

which is equivalent to (23). The examples of F which we have already considered
thus give exact boundary crossing probabilities for the Wiener process:

P(w(t) = at+d for some t=0)=e 2% (a>0,d>0),

P(w(t) = (t+1)*- h~Y(h(a)+log(t+1)) for some t = 0) = ke ~***/d(a)
(a>0)

P(w(t) = A(t, &) for some t=0)=1/e (e>1),

for the function A(¢, €) of Example 3 for which the asymptotic expression (13) holds,
P(|w(®)| = [(t+1)(@*+log(t+1))]* for some t=0)=e ** (a >0),

etc. Only in the case of a linear boundary have such formulas been available up to

now.
The heuristic argument which suggested the truth of (23) suggests further,
because of the central limit theorem, that the limit relations

lim,,_, , P(S, = m*A(n/m, ¢) for some n = 0)
= P(w(t) = A(t, €) for some t=0)=1/e (e>1),
(25)  lim,,., P(S, = m*A(n/m, ¢) for some n = tm)
= P(w(f) 2 A(t, ¢) for some t 1)
= 1—O(A(r, 8)/th) + 1/¢[ O(A(z, &)/r* —yt*)dF(y)  (6>0,7>0)

together with analogous relations for |S,| and |w(r)| should hold whenever the x’s
are i.i.d. with mean 0 and variance 1, normal or not. This is true under some mild
assumption about the behavior of the function A(¢, €) as ¢t — o0} it is sufficient to
assume that A(t, )/t is ultimately non-decreasing. Hence the inequalities previously
obtained for every finite m > 0 when (11) holds now become limit theorems as
m — o0 with no parametric assumptions about the x’s. A full discussion of this is
given in [14]. The statistical significance of limit theorems such as (25) will be
discussed in the following sections.

3. Confidence sequences and tests with uniformly small error probability for the
mean of a normal distribution with known variance. Let x,, - - - be independent
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N(0, 1) where 0 is an unknown parameter, — o0 < 6 < c0. Define the intervals
I, =((S,—¢c)/n, (S,+c)n)(n=1), where S,=x,+-*+x, and ¢, is any
sequence of positive constants such that ¢,/n — 0 as n — o0. Then

Py(Oel, forevery n=1)= P0(|S,,| <c, forevery n=1)

=1-"P(|S,| 2 ¢, for some n = 1).

We saw for example in (17) that if
(26) ¢y = [(n+m)(a®+log(n/m+1))]* (m > 0)

then Py(|S,| = ¢, for some n = 1)<e™**. Hence Py(0cN1,) = 1 —e™**, which
can be made as near 1 as we please by choosing a sufficiently large; e.g., for

@7 a?x6, l—e ¥ =95

Thus for a?> = 6 and any m > 0, the sequence I, with ¢, defined by (26) forms a
“confidence sequence” for an unknown 6 with coverage probability = .95 (cf. [17]
pages 153-156). As m — oo the coverage probability — .95 by (25).

Choosing for example m = 1, the half-width of 7, is

1 + Tlognt
(28) -c;"=["n—+2-(6+1og(n+1))] ~[—°—5f] -0 as n - w.

Of course, for any fixed n

29) Py((S,—1.96n%)/n < 0 < (S, +1.96n*)/n) = .95,

a 95% confidence interval for 6 of half-width 1.96/n*. However, by (14)
Py((S,—1.96n*)/n < 0 < (S,+1.96n*)/n forevery n=1) =0,

and this remains true if 1.96 is replaced by any constant, no matter how large.

The advantage of the confidence sequence I, compared to a fixed sample size
confidence interval is that it allows us to “follow” the unknown 6 throughout the
whole sequence x,, -+ with an interval I, whose length shrinks to 0 as the sample
size increases, in such a way that with probability = .95 the interval J, contains 0
at every stage. (This is also true of the smaller intervals J, = (1}, < I,, although
for some n it might happen that J, = ¢¥.) The validity of therelation Py(6€l,) = .95
is therefore unaffected by the possibility that » may be a random variable dependent
on the whole sequence x,, * - * ; in other words, the confidence level .95 is unaffected
by any kind of optional stopping which could vitiate (29).

The disadvantage of using the sequence I, is evident from a comparison of the
numerical value of (28) with 1.96/n?.

If we wish to test H™:0 <0 versus H*:0 > 0 (0 = 0 being excluded) we can
define the stopping time N = first n = 1 such that |S,,| > ¢, and accept H* or H™
according as Sy = cy or Sy £ —cy. Since S,/n— 0 # 0 under H~ or H*, while
¢,/n— 0, it follows that Po(N < o) = 1 for 0 s 0, whi'e if 6 > 0,
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Py(accept H™) = Py(S, < —c, before S, = c,)
<Py(S, £ —¢, before S, = c,) =1Py(|S,| = ¢, for some n 1)
< ge7¥,

and similarly, P, (accept H*) < 1e~** for any 6 < 0. Thus the error probability
of this test is uniformly < 4e~*** for all 0 5 0. (Exactly the same argument holds
if the x’s have the distribution P(x; = 1) =p = 1—P(x; = —1), with 6 =2p—1))

Of course, Po(N < o) < e~ ¥ 50 the test will rarely terminate when 6 = 0.
The expected sample size E,(N) is, however, finite for every 8 # 0, approaching co
as 06— 0 and 1 as |0] - co.

4. Tests with power 1. Again, let x,, - - - be independent N (0, 1) but now let
H,:60 <0, H,:0 > 0 be the hypotheses which are to be tested. Put

(30) N= first n=1 suchthat S,=¢,
= oo ifnosuch »n occurs,

and agree when N < oo to stop sampling with xy and reject H, in favor of H,;
if N = oo, continue sampling indefinitely and do not reject H,.
For 0 £ 0 we have

Py(reject Hy) = Po(N < 00) £ Py(N < ©0)
= Py(S, = ¢, for some n=1).
If we are using the ¢, sequence (26) we have by (18)
31 Py(S, = ¢, for some n= 1) < ie ¥ /®(a)

(if we were to use for ¢, the smaller sequence of (12), (31) would still hold and with
approximate equality for large m). Hence the type I error probability of the test
has the upper bound Py(reject H,) < e~ #%°/®(a) for all § < 0, while the type II
error probability is

Py(not reject Hy) = Py(S, <c, forall n=21)=0 forall 6>0,

since ¢,/n - 0 and S,/n— 0 > 0 as n— co. Thus the test has power 1 against the
alternative 6 > 0.
Of course the test will rarely terminate when 6 < 0. Some people may consider
this intolerable, but that is an unreasonable attitude in many practical situations.
Concerning the expected sample size E,(N) when 6 > 0, it can be shown that for
any stopping rule N of the sequence x;, - -+ the inequality

(32) E,(N) = —2log Po(N < 0)/6?

must hold for every 6 > 0. Thus, if we are willing to tolerate an N for which
Py(N < o0) = .05, then necessarily Ey(N) = 6/62 for every § > 0; however, no such
N will minimize Eg¢(N) uniformly for all 8 > 0. For the N given by (30), if like (26)
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the function ¢, is concave for ¢ = 1 it can be shown [5] that

CEo(N) o(0)
(33) Eo(N)éT'Fm

which gives an implicit upper bound for EfN) as a function of 8 > 0. For (26)
with m = 1 and a? = 9, for example, we obtain from (32) and (33) the bounds

+1,

1040 < E {(N) < 1800
104 < E((N) < 15
26 <E,(N) < 5

More precise estimates of E4(N) could be obtained from Monte Carlo methods
which, for obvious reasons, are not directly applicable to estimating the Type I
error, for which we have the upper bound (31) of .0056 for a® = 9.

Other examples of the methods described above in testing, selection, and ranking
procedures are indicated in the references. In the next two sections we shall discuss
some non-parametric ‘“‘open-ended’” procedures.

5. Confidence sequences for the median. Let z,, --- be i.i.d. with P(z; < M) =}
and let z,™ £ z,™ < --- denote the ordered values zy, * - -, z,. The usual confidence
interval for M for a single value of # is based on the normal approximation to the
binomial distribution which gives the relation

Pz < M £ z{") = 2®(a)—1 for large n
where
a, = a,(n) = largest integer < 4(n—an?),
a, = a,(n) = smallest integer = 1(n+an?).
To construct a confidence sequence for M, let
x;= 1 if z,=M,
=—1 if zz>M, Sp=X14+  +X,
and let ¢, be some sequence of positive constants. Define
b, = b,(n) = largest integer < i(n—c,),
b, = b,(n) = smallest integer = 4(n+c,).
Then
P(z{" < M £ z{” for every n = m)

=2 1-P(|S,| 2 ¢, for some n = m).
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Using for example the sequence c, = [n(a®+logn/m)]* for which (20) gives the
approximation for large m

P(|S,| > ¢, for some n = m) = 2(1—®(a)+a¢(a)),
we have for large m

P(z{" < M < z{" for every n 2 m) = 2®(a)—1—2a¢p(a)

= H(a), say, where
a 2®(a)—1 H(a)
2 .9546 7386
2.5 9876 .900T
2.8 .9948 .9506
3 .9974 9710
3.5 .9996 .9933

and b,(m) = a;(m), by(m) = a,(m). Remember that by the law of the iterated
logarithm :
Pz <M <z forevery n2m)=0 (m=1.2,").

6. Kolmogorov-Smirnov tests with power 1. For any two distribution functions
G, H write

D+(G, H) =sup_,<;<(G()—H(?)), D(G, H)=5up_4<i<w IG(I)—H(I)I
Let xq, - be i.i.d. with df F(t) = P(x; £ ¢) and let y,, - - - be i.i.d. with df F(¢),
the x’s and »’s being independent. Denote by F.(¢), F,"(t) the sample df’s of
X1y s Xy and yy, ct, p,

Consider the hypothesis

Hy:F (1) S F () for every —oo< t <oo.

To test H, define

N = first integer n=m such that D*(F/, F,") = f(n)/n
=00 ifnosuch »n occurs,

where f(n) is some positive sequence such that f(n)/n — 0 as n — co. If H,, is false,
and D*(F,, F,)=d>0, then by the Glivenko-Cantelli theorem, as n— oo
D*(F.", F,") > d with probability 1, so that P(N < o0) = 1. Hence if we agree to
reject H, as soon as we observe that N < co, while if N = oo we do not reject H,,
then the test certainly has power 1 when H, is false. It remains to consider the
Type 1 error probability.

It can be shown that when H, is true, no matter what F, and F, may be in other
respects, the inequality

P D+(Fxn’Fn)ZI < (n!)Z Se—(rz/n+l) (r=0, 1,"',")
Y En) T (n=r)!(n+r)! T
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always holds, and hence the crude inequality

(34) P(N < Oo) < Z P<D+(Fxn, Fyn) gf(_::)> < Z e‘[fz(n)/II+1]‘
holds. Choosing f(n) to be ~ [(1+¢)nlogn]* will suffice to make the series converge
and hence will guarantee an arbitrarily small Type I error probability when H,, is
true if m is chosen sufficiently large. For example, if f(n) = [(n+ 1)(log4+2logn)]?,
m = 6 then P(N < o0) < .05 whenever H, is true.

The law of the iterated logarithm for the sequence D*(F,", F,") shows that taking
f(n) ~ [(14+¢)nlog, n]* would also suffice to ensure an arbitrarily small value of
P(N < ) under H, for large m. Upper bounds for P(N < o0) in such cases have
recently been obtained by Richard Stanley (unpublished).

Concerning the value of EN when H,, is false, it can be shown that it is always
finite and that the inequality

EN £ g(d_m/g(d))s d=D" Fx’ Fy)

holds, where g(x) is the function inverse to f(x)/x.
Similar tests are available for various other non-parametric hypotheses such as

Hl :Fx = Fy
H,:F < F; F an arbitrary specified df,
H;:F.e&F; & any class of df’s closed under the D metric (e.g., the set

N(u, 6*) with — 00 < p < 0, 0 £ 0% < ).

In each case the power is 1 and the expected sample size is finite under any
alternative, while an arbitrarily small upper bound for the type I error can be
guaranteed. The currently available bounds are crude, however, being based on

inequalities similar to (34).

7. Concluding remark. The ideas involved here seem to be a natural extension
(or contraction) of Wald’s sequential analysis; cf. also [1], [7], and [9]. My own
work has been done in collaboration with D. A. Darling in the first instance and
later with D. Siegmund, to whom I wish to express my deep appreciation.
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