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AN EXTENSION OF THE HEWITT-SAVAGE ZERO-ONE LAW!

By SusaN HORN AND SIEGFRIED SCHACH

The Johns Hopkins University

Let (Q%, A*) be the direct product of countably many copies of the measurable
space (Q, ) and let 4 = [] u; be a product probability measure on (Q®, A*). The
Hewitt-Savage Zero-One Law says that if all u; are equal then the sets of A which
are invariant under all permutations of finitely many coordinates have u-measure
either zero or one. We derive an extension of this theorem to a case where the y; are
not all identical.

A product probability measure u = []p; is said to be recurring if for each
i=1,2, there is some j> i such that u; =, i.e., each factor of u occurs
infinitely often.

THEOREM. If p = [|u; is recurring then u(S) is zero or one for every set SeA®
which is invariant under all permutations of finitely many coordinates.

PrOOF. Let S be such a permutation invariant set. Let &%, be the og-field of
cylinder sets generated by the first n factors of (Q*, A®). Then there exist sets
A,e F, such that u(SAA,) —» 0 as n — oo. Since p is recurring, for each n there are
n distinct indices j; > n such that u;, = u;, 1 < i < n. Hence for each n there exists
a measure preserving transformation ¢, induced by a permutation =, of a finite
number of indices such that A, is independent of ¢,(4,). Thus as n —

12(S) <1 (A,) ((P(4,) = (A0 0,(A,)) = 1(S)
which implies u(S) is either zero or one.

LEMMA. Let F o %% ,> - - be a decreasing sequence of o-fields and let A and
v be two probability measures on & whose restrictions to ().~ , &, are identical. Then

SUPsc o, |A(S)—¥(S)| = 0 as n- .

PROOF. Let o = 4(A+v) and let «,, 4,, v, be the restrictions of «, 4, v to &,. Let
fo=dA,/dx, and g, = dv,/dx, Then f, and g, are reversed martingales which
converge in L,(a) to a common limit (Doob (1953)). Hence f,—g, =1, 0, Which
implies the desired result since for Se%,,

(8)=v(S)| = ||fu—9nllLscor

COROLLARY. Let u be a recurring product probability measure on (Q°, A®). Let
&, be the o-field of sets in U™ that are invariant under all permutations of the first n
coordinates. If probability measures A and v are absolutely continuous with respect to
U, then supg o |A(S)—v(S)| >0 as n - .
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Proor. According to the theorem, p assigns measure zero or one to every set
invariant under all permutations of finitely many coordinates. The same then holds
for A and v. The lemma now applies to complete the proof.

Special cases of this Corollary have been obtained before: Hannan (1953) and
Hannan and Robbins (1955) treated the case of two different u;-measures; Horn
(1968) obtained a similar result for a finite number of different factor measures.

Our present method generalizes those results in various directions and considerably
shortens the proof.
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