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0. Introduction. Price [9] proved by using Dirac é-functions the following two
theorems in a different form.

Tueorem 0.1. If Xy, -, X, have an n-variate normal distribution with unit
variances and if g,*", g, are functions respectively of X,,---, X, admitting
Laplace transforms, then

0 i n 62 n i
0.1) 3 E[ml;[l ym(Xm)]= E[a X, 0%, I1 gm(Am)]

Jk m=1

where o, is the correlation coefficient of X; and X;.

TueoreM 0.2. If (0.1) holds for arbitrary functions g, -, g,, then Xy, -, X,
have an n-variate normal distribution.
For n = 2, McMahon [8] showed that
2

0
E[g(X19X2)] = E[mg(Xl’XZ)]

0.2) dor,
where g is a function of both X, and X,, admitting 2-dimensional Laplace trans-
form. Papoulis [9] generalized (0.2) to the case where | g(xy, x2)| < aexp(x*+x,9,
a >0, o < 2,is required instead of requiring the existence of the Laplace transform.
Brown [1] pointed out that the result and method of Papoulis generalize directly
to higher dimensions, providing certain generalizations of Price’s theorems.

A major motivation in the above-mentioned work lies in obtaining
E[g(X,, ", X,)] for a multivariate normal distribution by solving a partial
differential equation of the kind in (0.2). This method has appeared in books and
papers and has sometimes been used where the theoretical justification is lacking.
Pawula in [7] gives an alternate approach where the covariance matrix is modified
so that each non-diagonal element is multiplied by o, and differentiation is with
respect to a.

Section 1 presents a property of the multivariate normal density function. This
fundamental theorem generalizes the work of Plackett [8]. Section 2 provides a
generalization of Price’s theorem with a rigorous proof and presents some of its
applications as corollaries. Corollary 2.2 uses Price’s theorem as a theoretical tool
to solve a problem that arose in an estimation problem [2]. Characterizations of the
multivariate normal are studied in Section 3, and in Section 4. The relation of
moments to independence, analogous to ‘“‘decorrelations” discussed in Linnik [3],
is studied.
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1. Fundamental theorem.

LemMaA 1.1. Let f= f(x,, X5; u, £) be the bivariate normal density functions with
mean vector p = (i) and covariance matrix £ = (0 ). Then
) 9? ) 0>
S o 0 Loy j=12

d6,, 0x,0x, do;;  “oxi’

ProOF. If one writes fin terms of the standardized normal density function, the
proof is straightforward.

THEOREM 1.1 (Fundamental theorem). Let f'= f(x,, ***, x,; uX) be the n-variate
normal density function with mean vector p = (i;) and covariance matrix T = (0 ).

Then
of o*f O
2= [1-"E), jk=1,2,--,
0oj,  0x;0x 2 J "
where 6, = 1 if j = k and = 0 otherwise.
Proor. Without loss of generality assume that (j, k) = (1, 2).

5f(x19""xn) =f(X3, '_.’xn).af(x19x2lx3’ "',xn)
004, 004,

because f(xs, ", X,) is functionally independent of o,,. Let 0,5..., be the
conditional covariance of X, and X, given X3, ' -, X,. It can be verified from
result (8a-2-11) in Rao [14] that among the conditional means and conditional
variance-covariances of X, and X, given X3, -, X,, 0,5.3..., is the only con-
ditional parameter of the conditional bivariate normal density function which is a
function of ¢,,, and that its partial derivative with respect to ¢, is one. The
conclusion follows from Lemma 1.1.

2. A generalization of Price’s theorem and related results.

THEOREM 2.1. Let the random variables X, -, X, have an n-variate normal
distribution with density function f, and let g be an n-dimensional function of bounded
variation on finite intervals satisfying: Eg(X,, -, X,) exists,

Q.10 % Gers ey X)gCx, 0y X)dx; >0 as x| = 0 and
xkj.f(xl’“"xn)g(xh'“’xn)dxj—’o as lxkl_)w'
Then

X+ dx,

aE[g(XD“.,Xn)]_ Ve . e d
aa_jk - I jf (x19 ’ xn) dG (xj’ xk) dxj dxk ’

where G(x,, x;) = g(xy, ***, X,) with all coordinates except the jth and the kth held
fixed.
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Proor. The conclusion follows from Leibniz’s rule, Fubini’s theorem, two-
dimensional integration by parts (for the formula see Young [11], page 287), and
conditions (2.1).

NotE 2.1. Conditions (2.1) can be replaced by using the Lebesgue dominated
convergence theorem with

2.2) x;f(egs e, X)g(%g, 00, X,) >0 as |x;] = o0
and there exists a function‘h(xl, -++, x,) satisfying
[hGey, =+  x)dx; < 0, i=j, k and |x;g(xy, ", x)f(Xq, """, X,)|
S h(xy, 00, X)

COROLLARY 2.1 (An extension of Price’s theorem). In addition to the assumptions
of Theorem 2.1 let g possess second order partial derivatives. Then

aE[g(Xl’ T Xn)] =E azg(Xl’ Y Xn)

] “(1+6,)/2,

where 8;, = 1ifj=kand 5, =0 ifj # k.

ProOOF. The result for j # k is obvious. When j = k the proof is similar to the
proof of Theorem 2.1.

COROLLARY 2.2. In addition to the assumptions of Corollary 2.1 suppose
(2.3) 9(E[X,], -+, E[X,] = E[9(X,, ", X,)]
for all values of the parameter space. Then g is a linear function.

Proor. By alternately using Corollary 2.1 and property (2.3) one finds
E[0*9(X,y, ", X,)|0X;0X,] = 0. Since the normal family of density functions isa
complete family, 0*g(X,, -+, X,)/0X;0X, = 0 for all j, k. The conclusion follows
by partial integration.

COROLLARY 2.3. Let X,, -+, X, have an n-variate normal distribution then for
nonnegative integers ry, ***, I,

0
%’E(Xln X =rnEX XX X)) i j#k,
jk

J
= rj(rj—l)E(Xlrl"'Xn'"/Zij) l:f j = k.
Proor. The conclusion follows by Corollary 2.1.

ExAmPLE 2.1. Let X, X,, X3, X, have a 4-variate normal distribution with zero
means. Then E(X, X, X;X,) = 6,,03,+0,30,,+0,,0,3 (cf. Parzen [6] page 93
for an alternate proof).

Proor. This is a direct application of Corollary 2.3 followed by partial inte-
gration using the boundary condition defined by o = 0 for all j, k.
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COROLLARY 2.4. Let Xy, *** X,,, have a 2m-variate normal distribution with zero
means. Then E(X, X, *X,,) =).,0,, "0, with the sum taken over all distinct
products of m covariances with each index (from 1 to 2m) occurring exactly once.

Proor. The proof is an induction argument, where the case m = 1 is obvious
(m =2 is just Example 2.1) and where the case for general m is reduced to the
previous case by applying Corollary 2.3. Then partial integration is used to finish
the proof.

NoTEe 2.2. When the mean values p;’s of X;’s are not all zeros, E[[1;7, x;]can
be obtained by expanding E[[[X;]= E[[[(Y;+n;)] with Y; = X;—pu; and using
Corollary 2.4 on Y;’s.

COROLLARY 2.5. Let X, and X, have a bivariate normal distribution with zero
means. Then P[X, =0, X, = 0] = (arcsin p)2n+} where p =0,,/0,0, is the
correlation coefficient of X, and X,.

Proor. Since P[X, 20, X, = 0] = E[I(X,)-I(X,)] where I(x) is 1 if x = 0 and
0 otherwise, the conclusion follows from Theorem 2.1 and partial integration with
the boundary condition defined by o,, = 0.

COROLLARY 2.6. Let X,, '+, X, have an n-variate normal distribution with
characteristic function ¢. Then
Jo(t)
=

Oajk

=_tjtk(/)(t) jsk=1,,n

Proor. This theorem is an easy consequence of Corollary 2.1.

3. Characterizing the multivariate normal distribution. The characterization
theorems presented in this section are essentially converses of results from Section
2. Consider a family of random variables X, -, X, (n fixed), with variance-
covariance matrix £ = (g;,). This family has all possible values for o, and thus
contains the singular cases. This section gives some conditions which imply that
this family is the n-variate normal family. The referee of this paper suggested it
would be interesting to have similar characterizations for families with a restricted
parameter space (e.g. X is strictly positive definite). It remains an open problem if
such theorems exist. In this section we assume that derivatives exist for o, >0
and that the functions differentiated are continuous in o, at g = 0.

THEOREM 3.1. Let ¢(ty, -+, t,) be the joint characteristic function of the random
variables X1, -+ -, X,, and let o i be the covariance of X;, X, forallj, k. If

op(ty, -, 1
Lp,g.}:.‘,;_"_)z_t.t ty, oty t
P\l n

Jorall j <k, then Xy, -+, X, have an n-variate normal distribution.
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Proor. Using partial integration on the hypotheses we find that
Y=lno=-),,tto,+c,
where c is the appropriate function, constant with respect to the o;;’s. We write
@3.1) Y=Y =Y 02 =Y it ot by

where h is the appropriate function and where u; = Y'[X;], ¢, = Var(X,). To
obtain the conclusion we need only show that A =0, in which case ¥ is the
cumulant generating function for the multivariate normal distribution.

Let A(f) = In E[exp {itX, }], and consider the case where o}, = g;0, for all j, k.
Then (X;—u;)/o; = (X, —p)/o,as.,j=1,---,n Thus

¥ =InE[exp{i)j-10;t; X /o +i) -1 t(1;— 1 0;/0,)}].
Equating this to (3.1) we find that

32 MY G=105t5f00)+iY i o t(u;—py 0/0,)
=iy =B Y1017 =Y <kt t 00+ h.
Now consider the case where 6;; = —0; 0, (and therefore 6, = g0, if 1 <j < k).

Then (X;—uy/o; = —(X,—p,)/o,as. for j=2,:--,n The same argument as
above leads to

(33) Mty —=Y=z0;tjl0)+id -2t +u,0j/0,)
=iy =Y 10 Y 00— acj<ksnl OO+ .
Eliminating A from (3.2) and (3.3) we find that
(B4 Mt +s)—A(t,—s)+2(t;0,2—ip,)s =0, where s= Yioa0;t/0,.
Now (3.4) holds for arbitrary ¢,. So letting ¢, = s,
A(25)— A0)+2(s%0, 2 —ipys) = 0.

However A(0) = In E[exp {i-0- X,}] = 0. Therefore A(z) = iu, z—a,2z%/2. Substi-
tuting into (3.2) yields 4 = 0, which finishes the proof.

COROLLARY 3.1. Let (X4, - - -, X,) be a random vector whose moments of all orders
exist. If g is an arbitrary function selected from the following three functions
(arbitrary but fixed) and if for j # k,

0E[g(X1, Tty Xn)] — E azg(Xl’ Tt Xn)

then (X,, - - -, X,) have an n-variate normal distribution.

@) g(xy, -+, x,) =[[}=1x," for arbitrary nonnegative integers ry, -, r,
(b) g(xy, * -+, x,) =exp{d 1=, u;x;} for arbitrary imaginary constants u,, * -, u,
© g(xy, -, x,) =sin(uo+Y }= u; x;), for arbitrary constants ug, uy, *** ,
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Proor. The conclusion follows by writing the characteristic function, ¢, of
X1, -+, X, in terms of these three functions and applying Theorem 3.1.

THEOREM 3.2 (The converse of the fundamental theorem). Let X, -, X, be
absolutely continuous random variables with joint density function f and covariance
matrix (0 ;). If

af(xl"“’xn)=azf(xls'“’xn)

0o jy 0x; 0%y,

(3.5)

are continuous for all j < k, and integrable in coordinates other than x; and x,, then
f is an n-variate normal density function.

ProoF. Applying Leibniz’s rule to the derivative of the characteristic function
o(ty, -+, t,) with respect to o, followed by the use of (3.5) and Fubini’s theorem,
gives

a(p(tl’ Tty tn)

= =ttty s ).
00 ’ . "

The conclusion follows from Theorem 3.1.
4. Moments and independence.

THEOREM 4.1. Let X,, -+, X, have an n-variate normal distribution with zero
means. Then

E[X,  Xom] =Y n0p,
where the sum is taken over all distinct products where each value of j, k, (1 £j <

k =< 2m), occurs exactly once.

Proor. Wang and Uhlenbeck in [10] page 322 proved this result, and Parzen
quotes in [6] page 93.

THEOREM 4.2. Let X,, -, X, have an n-variate normal distribution with zero
means, and let ry, -, r, be a nonnegative integer whose sum r,+---+r, is even.
Then

E(X'lrl tee an") = z (I’l !) e (i’n !)2_s ]_[j<k [(o'jk)mj"/(nljk !)]
where the sum is taken over all nonnegative integers my = my; such that m;;+s; =

;] — — n — n
rpi=1,"",nand where s =Y "t_ m;;, s; =Y n_1my.

PrOOF. Some or all of the {x;}’s in Theorem 4.1 could be equal. Substituting
Y;=X; for i such that ro+---+r;_y <i<ry+---+r;, j=1,2,-++,n, where
ro = 0 gives the conclusion.

COROLLARY 4.1. Let X have a normal distribution with zero mean and variance 2.
Then E[X?] = [2r)!/(rD]lo44/2], r=0,1,"--.
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THEOREM 4.3. If r, and r, are fixed positive integers for which r,+r, is even, and
if E[(X)"(X,)?] = E(X )™ - E(X,)"* where X,, X, have a bivariate normal distri-
bution with zero means, then X, and X, are independent.

PROOF. Let p = 6,,/(6,; 62,)}. From Theorem 4.2 we see that E[(X,)"(X,)"]
equals

4.1) (rs")(o; 1)'1/2("2 !)(0'22)'2/2 Z pm[2m ™3(m gy )(myp N m22!)

with the sum taken over all nonnegative integers m,,, m;,, m,, for which
2m,,+my, =r; and 2m,,+m,, =r,. If both r, and r, are odd positive
integers, then m,, is an odd nonnegative integer. Then since E[(X,)"(X,)*] =
E(X,)" - E(X,)?=0, (all odd moments are 0), we see p =0. If, on the other
hand, both r, = 2m, and r, = 2m, are even positive integers, then m,, is an even
nonnegative integer and we write m,;, =2m. From Theorem 4.2 we have
E[(X))] = (r:i)(a,)""*[2™(m,"), i = 1, 2. Combining this with (4.1) we get

(m Y(m,t)2mtm:
(my Y(my)(m,, !)2"!11 +maa

with the sum taken over all nonnegative integers m, ,, m,,, m,, for which m;;+m =
m;, i =1, 2. Substituting m,; = m, —m, m,, = my—m, and m,, = 2m one finds
2 [(X)(X,)"] equals

E(){l)"1 : E(Xv2)"2 :0=0 C(ml’ ms, '")(Zﬂ)hl,

where m, = min {m,, m,} and C(m;, my, m)=()()/Cm. Since C(m,
m,, 0)(2p)° = 1, we have Y ™, C(my, m,, m)(2p)*™ = 0. Now C(m,, m,, m) > 0.
Therefore p = 0. The conclusion follows.

NoOTE 4.1. It is clear that if two of the exponents in E[(X,)"(X,)"%(X;)"*] are odd
integers, then the factorization into the product E(X,)™ - E(X,)™ - E(X3)", which
is zero, does not imply the independence of X, X,, and X;. One might hope that
if the factorization holds for fixed even positive integers r,, r,, and r;, then X;, X,,
and X, are independent. For a counterexample take X, X,, X; to have a trivariate
normal distribution with zero means and correlation coefficients p,, = 3/4,
P13 = —3/4, and p,; = 3/4. The following theorem gives a partial result.

E[(X,)"(X2)"] = E(X,)" - E(X,)* )

THEOREM 4.4. Let X, - -+, X, have a non-degenerate n-variate normal distribution
with zero means and nonnegative covariances. If

E[(X )% (Xp)*"] = E(X )" -+ E(X,)*"
for arbitrary but fixed positive integers ry,** -, 1,, then Xy, *+, X, are independent.

Proor. Expanding E[(X )"+ (X,)™]—E(X,)" -+ E(X,)™ by using Theorem 4.2
one obtains a sum of nonnegative terms. This sum must be zero, and therefore
each term must be zero. One of these terms is a multiple of

(612)%(011)* " %(022)* " X(033)*"* *+* (O ) ™™

Therefore o,, = 0, and similarly o = 0 for j # k. The conclusion follows.
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LemMaA 4.1. Let Xy, - -+, X, have an n-variate normal distribution with zero means.
Let S;=1if X; =20 and S; =0 otherwise, j=1,2,+-, n. Let pjx and R be the
correlation coefficients of X;, X, and of S;, S, respectively. Then R = (2/m)arcsin
Pjx (N.B. R, and pj, have the same sign and assume the values 0 and + 1 together).

Proor. Now Var(S;) =%, and by Corollary 2.5, Cov(S »S)=P[X; 20,
X, 2 0]—% = (2n)" arcsinp &= The conclusion follows.

THEOREM 4.5. Using the notation of Lemma 4.1 the following are equivalent :

(@) X,, -, X, are independent,
(b) Xy, -+, X, are pairwise uncorrelated,
(© S, ", S, are independent,
(d) Sy, -, S, are pairwise uncorrelated.

PROOF. Obvious.
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