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1. Introduction. Let 7, %,, -, m, denote k > 2 univariate populations differing
only in location; that is, an observation X; drawn from z; has cumulative distribu-
tion function (cdf) F(x—0;) where F is a known continuous cdf with square
integrable density f but the location parameter vector 8 = (04, - -, 6,) is unknown.
Let the ordered values of the location parameters be denoted by 6, < 0;; <
o < Oy

Selecting the t best populations. The decision problem here is to select the popula-
tions corresponding to the ¢ < k largest 6-values. The goal of the decision maker is
to find a procedure, say R, and a sample size »n such that the probability of a correct
selection using rule R, P[CS ] R, 0], has the property that

(1.1) inf P[CS|R, 6] = P*,
0eD(5%)

where

1.2) D(6*) = {010[k—z+ 1= 0k-n2 o*},

and (¥)~! < P* < 1 and 6* > 0 are preassigned constants.

Selecting a subset containing the best population. The decision problem here is to
select a subset of the k£ populations containing the population associated with
0p;- The goal of the decision maker is to find for fixed » and preassigned P* <1
a procedure, say R’, such that ~

inf P[CS|R’, 6] = P*.
0

We consider two procedures (proposed elsewhere) based on rank sums and show
by counterexamples in Section 2 and Section 3 that they do not satisfy (1.1)

(or (1.3)).

2. A procedure based on rank sums for selecting the ¢ best populations. Let
{X;ii=1,--+,k,j=1,---,n} be k samples each of size n (n is to be determined by
(1.1)), X;; being the jth observation from ;, and let R;; be the rank of X;; among
all the observations.
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‘Define the rank sums
(2.1) T;'n=n_zz;=1Rij9 i=1, -k
(2.2) ="_ZZ}=1Z:=1Z:‘=1I(X;'J'>er)+"_’,

where I( ) is the indicator of the event in parentheses.
The proposed selection rule, call it R(n), is as follows:

(i) Draw samples of size # from each population and compute T,,fori =1, -, k.
(ii) Select the ¢ populations having the largest T),-values, resolving ties by the
obvious randomization.

The problem now is to find a value n = n (6%, P*; k, t, F) such that R(n) satisfies

(1.1).
In solving this problem a crucial role is played by the slippage configuration 0,:
(2.3 Opiy="""=0Op—y = Op—¢+ 1]_5* == o[k]_é*'

Many selection rules, for example the rule based on the sample means, have the
property that the infimum in (1.1) is attained when @ is in the slippage configura-
tion; in.other words for many rules the slippage configuration is the least favorable
configuration. For such rules it is a relatively easy task to find the appropriate value
of n (see, for instance, Example 1 of [1]). The following counterexample, kindly
communicated to the authors by E. L. Lehmann,® shows that for the rank-sum

rule R(n) the slippage configuration is not least favorable. '

CouNTEREXAMPLE 1 (E. L. Lehmann). Let k = 3, t = 1 and let F be a continuous
cdf which places probability g and p = 1—gq respectively on the intervals (0, &) and
(1, 1+¢); e < % is a constant. Let 6* = ¢ and consider two parameter values:

0, =(0,0,6%), 0, =(0,5*% 25™).
For n = 2, we show that
2.4 P[CS|R(2), 6,] > P[CS|R(2), 0,].

Since 6, is in the slippage configuration and 6,,0, € D(6*), defined by (1.2), this
provides the required counterexample.

Proor. The supports of the distributions of the populations under the two para-
meter configurations can be depicted as shown in Figure 1.

Let B; be 0, 1 or 2 according as 0, 1 or 2 observations from =; are in the upper
interval of the support of its distribution, B = (B,, B,, B;) and b = (b,, b,,b;) is a
realization of B. Clearly P[B =b|0] =[], () p*q> " for 6 = 6, or 0,.

R={R;;:i=1,2,3,j= 1,2} is the vector of ranks and r = {r,;} is a realization
of R. Given R =r a correct selection (selection of 73) occurs with probability 1 if

3 Professor Lehmann informs us that P. S. Puri was the first to express doubts that the slippage
configuration (2.3) was least favorable for procedures based on ranks.
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FiG. 1. Supports of distributions.

F31+ra3p > max(ry, +ra,, F11+712), With probability + if ry+ry, =ry +r; >
Fi1+rip OF Iy +F3y =1y +F 1, > Fray+rp,, and with probability 1 if ry, +r3, =
ry1+7rz, = r1;+r12. The conditional probability that R = r given B = b is easy to
compute, for example, given that B = (0,0,0) and 0 = 0,, X, X;,, X5,, X,, are
independent and uniformly distributed (IUD) on the interval (0, 6*) and X5, X3,
are IUD (6*, 26*). Thus (R, Ry2, R31, R;,) is equally likely to be any permuta-
tion (ELAP) of (1, 2, 3, 4), (R3,, R3,) is ELAP (5, 6) and these two vectors are
independent. If @ = @,, then X, ,, X, are IUD (0, 6*), X,,, X,, are IUD (6*, 26*),
and X;,, X5, are IUD (26*, 36*). Thus (R,,, R,,) is ELAP (1, 2), (R, R;,) is
ELAP (3, 4), (R3,, R3,) is ELAP (5, 6) and these three vectors are independent. In
particular, the probability that R=(1,2;3,4;5,6) given B=(0,0,0) is
1/4!-21=1/48 for 6 = 6, and 1/2-2-2 = 1/8 for 6 = 6,. Thus, for each of the 27
values of b one can determine the conditional probability of a correct selection
given B = b under 6, and 0,. For most of the b the probability is the same under
0, and 0, but in the six cases listed in Table 1 there is a difference.

TABLE 1
P[CS|B =b, 6]

b P[B =b) 0, 0,
1,0,0) 2pq’ 5/6 1
1,1,0) 4p3q* 1/6 0
14,2, 1n 4p*q* 1/2 0
2L 4piq? 1/2 1
2,21 2p%q 1/9 0

Thus
P[CS|R(2), 6,]— P[CS|R(2), 0, ] = 4pq* + 3p*¢* +3p°q > 0,
which establishes counterexample 1.
The possibility still remains that the slippage configuration is asymptotically

(6* — 0) least favorable; an asymptotic solution based on this assumption has been
claimed by various authors ([4], [7] and [8]). This solution is as follows:
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* Let A(P*; k, t) be the solution of
2.5) J O (x+ 4)dP'(x) = P*

where @ is the standard normal cdf, and define n(6*, P*; k, ¢, F) to be the smallest
integer larger than

(2.6) AXP* K, 1)/12[5*[f?(x) dx]?,

where f is the derivative of F. The selection rule R(6*, P*; k, t, F) = R(6*, P*)is
the rule R(n) with n set equal to n(6*, P*; k, t, F). The natural inclination to call
R(6*, P*) “distribution-free”” must be resisted; obviously one needs to know F to
carry out this procedure.

If 0 is in the slippage configuration (2.3), then it can be shown ([7] or [8]) that

limg..o P[CS| R(3*, P*), 6,] = P*.

The authors of [4] and [8] have incorrectly asserted that the slippage configuration
is least favorable from which it would follow that R(6*, P*) satisfies (1.1) asymp-
totically as 6* — 0; i.e. for fixed P*, it has been claimed that
Q.7 lim inf P[CS|R(5*, P*), 0] = P*.

8* >0 0eD(5%)

The next counterexample shows that (2.7) is false; and it seems to us that this
invalidates R(6*, P*) as a reasonable procedure since the infimum of P[CS] is not
controlled even asymptotically. The expedient of the authors of [7] of considering
only that part of the parameter space where O, —0;;;= O(n™*) is difficult to

translate into practice. Does it mean that one should use R(6*, P*) only when one
is convinced that O, —60;,; = O(n~%)?

COUNTEREXAMPLE 2. Consider the logistic cdf F(x)=(1+e *)"! and let
0(6*)e D(6*) be a sequence of 0-values depending on 6* as follows:

(2.8) 0, ="""=0k -1 =—0,, Op-, =0, Or-t+1 =5*,
Op-r+2 ="""= 0, = b,,

where 0, is a fixed positive constant and 6* < 6,,.
We now prove the following assertion: For each k = 3 and each ¢ < k, there
exists a value of P*, say Po*, (¥)™! < Py* < 1, such that

2.9) limse.,o P[CS | R(3*, Py*), 0(6*)] < P,*,
which clearly contradicts (2.7).
LemMA 1.

(2.10) limye_,o PLCS | R(6*, P*), 0(5*)] < ®(2"*4*p(6,)),
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where
2.11) A* = A(P*; k, 1),
(2.12) p(6,) = 3*]’H0(2F —1)dF/ [j’HO2 dF —(_[H o dF)*]? and

(2.13) Ho(x) = k™ [(k—t— DF(x+0,) +2F(x)+(t — 1)F(x—0,)].
Proor. Notice first that if 6, £ 0, £ --- < 6,, then
P[CS|R(d*, P*), 0]
(2.14) < P[max, g4 Tin S ming_, << Tin |6]
S P[Tirs10— Ti-0n 200,

where 7 is the smallest integer greater than (2.6). From (2.2) one has, with prob-
ability one,

Tictotn— Th—tn = "_2Z;=1 Z:=1 {ZI(Xk—r+ 1,j > Xyt 9—1
+Zi¢k—rork—r+1 U(Xy—i41,;> Xi)—I1(Xy—p,; > X1}

Notice that this is a sum of several two-sample U-statistics.
In working out the details of Problem 8, page 257 of [3] one finds that

n_22'j'=1zg=1 IXy;> X)) = "_12'1'=1 F1(ij)—n_lz;=1 Fy(Xy))

+ 1 _IFI dF2 +8",
where Ee,? £ (n—1)"2. Thus

(215)  Ters10— Tiotm
=07 Y Yitkorkott1 {F(X;)—F(X;;—6%)}

—n7 Y {2F (X = 8%) +(k— 1= DF(Xy—, ;+00)
+(t=1)F(X,—,;—00)}

+n 7 Y {2F(Xmp1,) F (K=t = DF(Xj— 41,5+ 60)
+(t—1)F(X—4+1,;—00)}
+1=2[ F(x+8%) dF(x)—(k—t—1) [ F(x+80) d(F(x — ")~ F(x))
—(t=1) [ F(x—0o) d(F(x — 6*)— F(x)) +£,(6o, §*),

where Ee,*(0,, %) < C/n? and C is an absolute constant.
Let

(2.16) W, = n¥(Tyers1n— Thicen)s
routine calculation yields
EW, = n*{2 [ F(x+6*)dF(x)—1+(k—t—1) [ (F(x—08,)— F(x—0, —5*)) dF(x)
+(t=1) [(F(x+00)—F(x+0,—0*)) dF(x)}.
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" By (2.6) and (2.11) one has n*6* — 4*/12* [f? as §* - 0; thus, by Olshen’s
Lemma (page 1766 of [5])

(2.17)  Timgeo EW, = (A*[122 [ f3){2[ F2(x) dx+(k—1—1) [f(x—0o)f (x) dx
+(t=1) [f(x+00)f(x)dx}.

Ifwelet X; = X;,,i=1,---,k, define AF(x) = F(x)— F(x—6%*), and recall (2.13),
then it follows from (2.15) that

Var(W,) = (k—t— 1) Var [AF(X )]+ (1 — ) Var [AF(X,)]
+Var [Ho(Xy-) —2AF(X, )]
+Var[Ho(X—;+ )]+ 0(n™%).

Since E[AF(X)]* - 0 as 6* = 0 for any random variable X and n — oo as §* — 0 it
follows that,

(2.18) limyu.,o Var(W,) = 2k*{[ H,> dF — ([ H, dF)*}.

If we set F(x) =(1+e™ )71, then f(x) = F(x)(1—F(x)) and [f? =14, so that
(2.17) becomes, after integrating by parts,

limse,o EW, = 3*4*k {H,(2F — 1) dF.
Since (2.15) is asymptotically normal by Liapunov’s theorem, it follows that
limy.o P[LCS|R(5*, P*), 6(6*)]
S limgeno P[Tio g 10— Timr,n 2 0] 0(5%)]
= litye.q P[(W,— EW,)/(Var (W,))* Z — EW,/(Var (W,))* | 6(5*)]
= D27 *4*p(6,)),
which proves Lemma 1.

REMARK. For 8, > 0, H, is clearly not a linear function of F and, since H, and
F are both monotone increasing, we have

(2.19) 0 < p(0p) < 1.
LemMA 2. For any k and t
(2.20) limp.,, 2}®~1(P*)/A* =1,
where A* = A(P*; k, t) and A is defined by (2.5).
ProoF. Let Z,,---, Z, be independent normal (0, 1) random variables. Then,
1—-P* =1—[0""(x + A*) d®'(x)
= P[max, ;c4—, Z; > miny_, ;< Z;+ A*]
=P[U1cisk-1<jzk {Zi > Z;4+ A*}]
SHk—0P[Z, > Z,+A*]
=tk—1)[1-®27*4%)].
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Also clearly
[—P*Z[1-®(Q27%4%)].
Thus,
-3 4% -1 __p¥* _
1< 2774 S(I) (1 =PH/t(k—1)
o Y(PH <~ o~ 1(1-P*
Lemma 2 now is a consequence of the following fact:
lim, .o @~ '(u)/[ —2log ()]t = —1

which can be proved with the help of the well-known approximation to Mills’

ratio.
Counterexample 2 now follows from (2.10), (2.19) and (2.20) by selecting Py*

large enough so that

27FA(Po*; k, )/®7(Po™) < 1/p(80)-

A remark on the scale parameter case. Suppose 7; has cdf F(x/o;) where F(x) =0
for x < 0, F is known, and ¢ = (6, **,0,) is unknown (if F(x) # 0 for x < 0 then
replace x by |xl). R(n), with X replaced by — X, is proposed in [6] as a procedure
to select the ¢ smallest o-values, subject to the requirement that the probability
of a correct selection should be at least P* when o2 13/0%; = 0*, 0* being a con-
stant bigger than one. The slippage configuration,

0oty =+++=0%0(y = 0ftsy="""= 0l
is not least favorable, even asymptotically as 6* — 1. This follows from Counter-
example 2 by considering the random variable ¥ = —log(X), since if X has cdf
F(x/o) then Y has cdf 1—F(exp (u—y)), where u = —logo, and Y;; has the same
rank as —Xj;.

The authors of [6] avoid this problem by confining ¢ to that part of the parameter
space where 6%,/0f;; = 1+ 0(n™*); but one could criticize this as in the remarks
just before Counterexample 2.

3. A procedure based on rank sums for selecting a subset containing the best
population. The authors of [2] propose two kinds of rank procedures for this
problem: randomized and non-randomized. The non-randomized procedure, call it
R'(n), puts =, in the selected subset iff

T;'n 2 max; T'jn_cn s
where
3.1) ¢, = (12n)"*kA* +o(n"?)

and A* = A(P*; k, 1), defined by (2.5).
Their randomized procedure is of the same form as R'(n) with T, replaced by the
randomized rank sum

Ti::=(N+1)/"ZZ;=1Z(Ru), i=1,,k
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where Z(1),-:+,Z(N) are the order statistics of a sample of N = k-n uniform
(0, 1) random variables, independent of the X’s. The symbol R'(n) denotes either
procedure.

We shall show that the slippage configuration: 6p,; =05y = "+ = 0, is not
least favorable (the sentence containing (3.6) of [2] is false).

- COUNTEREXAMPLE 3. Let 0, denote the configuration

O,=""=0-,=-1, O-1=6,=0
and let 6, denote the slippage configuration for this problem: §, =0, =--- =6,.
If F(x) is as in (3.7) and k = 3, then
(3.2) lim,_,, P[CS|R'(n), 6,] < P* =1lim,_,, P[CS|R'(n), 6,].

Proor. The equality is established in [2] and the inequality below. Clearly, first
for non-randomized form of R'(n),

(33) P[CS|R'(n), 0,] S P[Tiy=Tie1,0 = —c, |0,].

It follows as in the proof of Lemma 1 that W, = n*(T},—T_,,) has a limiting
normal distribution with zero mean and variance

o*(H) = 2k*{{ H*dF — ([ H dF)?},
where
3.4) H(x) = k™ '[(k=2)F(x+1)+2F(x)].
Thus by (3.1) and (3.3)
lim,_,, P[CS|R'(n), 0,] = ®(k(12)"*A*/o(H)).
It follows from (2.20) that for any &€ > O there exists + < P,* < 1 such that
A* = A(P.*; k, 1) £ (1+&)2201(P,*).
Thus the counterexample will be proved if it can be shown that
(3.5) o*(H) > k?*/6.
From (3.4)
 (3.6) o*(H)/2 =4/12+4(k—2) Cov(F(X), F(X +1)) +(k—2)? Var (F(X +1)),
where X has cdf F.

Now let
F(x)=1/2+x/2b -b<x=<0
3.7 =12 0<x=1
=1/2+(x—1)/2a l<x=<1+a,

where 0 < a < 1 < b are constants to be determined below.
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"Thus,

F(x+1)=1/2+4+(x+1)/2b -b+)<x=s-1
=12 -1<x=50
=1/2+x/2a 0<x=Za
=1 a<x

or, except for a set having zero F(x)-measure,

F(x+1) = F(x)+1/2b 0 < F(x)<1/2—1/2b
(3.8) =12 1/2—1/2b < F(x) £ 1)2
=1 12 < F(x) < 1.

If X has cdf F then F(X) is a uniform random variable and it follows from (3.6)
and (3.8) that

(3.9) o?(H)J2 = k?/12+(13k —10)(k—2)/192 — B(3k> —8k +4)/8
+382(k—2)2/8 + B3(k? —4)/6 — B*(k —2)*/4

where B = (2b)~!. It is clear that for sufficiently small g (large b) the right side of
(3.9) can be made larger than k2/12 so that (3.5) is satisfied.

Let V, =n*[(Tin— Ty -1 ») —(Tin— Ti-1,»)]. We now prove that the inequality in
(3.2) holds for the randomized rank sum procedure by showing that EV, 250.

If we let a;; equal one or zero according as the jth smallest of all N observations
is or is not a member of the ith sample, then

I L]

Since 6, = 6,_, and a;; = 1 if and only if R;, = j for some /, it follows that
Eayj= Eay_, j=nP[Ry =]]
Eayj-ayy = n(n—1)P[Ryy = j, Ry, = '] and
Eay; ay_y, jp =n*P[Ryy = j, Ri-1,1 =J']
=n’P[Ry; =j, Rz =J']

Routine calculations yield

(N 1) EV,? =2% - Var[Z(j)]- P[Ry; =]
—4%Y <y CovIZ(j), Z(j")) PRy = jo Riz = J']
< max; Var [Z(j)] £ [4AN+2)]7",

so that EV,2 — 0 and the pi‘oof is complete.
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4. Concluding remarks. Procedures R(n) and R’(n) are special cases of the scores
procedures proposed in [2], [4], [6], [7] and [8]. The second counterexample
probably works for any scores procedure when F (instead of being logistic) is the
cdf against which the scores are locally most powerful, but it is not clear that a
counterexample like 3 can be constructed if non-uniform scores are used.
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