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1. Introduction and summary. LetZ = {z,, z,, -+, z,,} be a p x m random matrix
where z; are independently distributed according to p-variate normal distributions
with means y; and common covariance matrix A = (4;;) (>0, positive definite) and
let nS, = n(s;;) be a pxp matrix which is independent of Z and is subject to a
central Wishart distribution W, (A, n) with n degrees of freedom and covariance
matrix A. Hotelling’s generalized T,,2-statistic is then defined by

(1.1) T2 =trS,7'ZZ = Ym, 2/S," 'z,

which is the statistic proposed by Hotelling [4], [S] for testing the hypothesis
H: M= {u, -, n,} = 0against K: M # 0.

The distribution of T,*> when H is true has been treated by several authors: for
example, Hotelling [5], Itd [6], Siotani [13], [14], Pillai and Samson [12], and
Davis [3]. Even in the null case, the exact distribution of T,? is not available except
for certain special values of p and m.

When m = 1, T,* reduces to Hotelling’s generalization of “Student’s” ¢ and if
p =1, (1/m)T,* is simply F-statistic. Hence the non-null distributions in these
cases are known exactly. For the general non-null case, Constantine [2] has obtained
the exact distribution as well as moments of T,?/n using the generalized Laguerre
polynomials of matrix argument. Unfortunately this distribution is valid only over
the range 0 < T,%/n < 1 and hence not so useful since we are usually interested
in the upper tail of the distribution. Siotani [15] has treated an asymptotic expansion
for the non-null distribution of T,? according to the basic idea due to Welch [17]
and James [9]. The same problem has been attacked by Itd [7], using the integral
representation of the characteristic function of T,?. However formulas of these
authors are inadequate for a good approximation to the distribution since they
have only the terms up to order n~ ' (for some numerical information, see [8])
and also somewhat inconvenient terms for numerical work.

Khatri and Pillai have evaluated the moments of their statistic U® (a constant
times T,2) and given approximate distributions of U® (and hence of T,?) in the
light of the first four general noncentral moments, the summary of which can be
obtained in their recent paper [10]. '

In this paper an asymptotic expansion for the non-null distribution of T,? is
given up to the terms of order n~2, in which the effect of the noncentrality is
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contained in the form s; = tr Q,j=1,2,--- where Q = A~'MM’. This is carried
out by expanding the characteristic function of T,* along the Welch-James idea
and by inverting the resultant into the corresponding expansion of the distribution
function or the density function.

2. Expression of the characteristic function of T,? by the differential operator.
Let ¢(¢) be the characteristic function (ch.f) of Ty> = tr S,”'ZZ’ and ¢(z: S,) be
the conditional ch.f. of Ty? when S, is fixed. According to the method due to
Welch [17] and James [9], ¢(¢) can then be expressed by using the differential
operator as follows:

P(t) = Eg [9(1: S,)] = Es [exp{tr(S,—A)d}¢(1: A)]
(2.1) = Eg [exp{tr §,0}]exp{—trAd}¢(s: A)
= 0-¢(1: A)

where 0 = (9;;) = (3)(146,;)0/04;;), (6;; is Kronecker’s symbol), a pxp sym-
metric matrix of differential operators and

© = exp{—trAd—(n/2)log|I—(2/n)Ad|}

Il

1
(22) 1 +;'1 Z /1,‘,/1“0,.&6 tu

1
+ —7 {%z iwr)‘s l)'uuarsa luauw + %z )"urls r’:'yvlwxarsa !uavwaxy}
n

+0(n~3).

Symbol ) stands for the summation with respect to subscripts in the summand,
each of which runs independently over {1, 2, .-, p} and this simplification is
continued throughout the paper unless otherwise specified.

It is seen from (2.1) and (2.2) that in order to obtain an asymptoticeexpansion of
¢(1), we need to evaluate the various derivatives, 0,,(1: A), 0,,0,¢(t: A), etc.
This can be done by using the idea of perturbation in physics in the following way:
Let us consider

2.3) d(t: A+&) = E[exp{ittr(A+&)"'ZZ'}], (wherei = —1%)

where & = (g;;) is a p xp real symmetric matrix composed of small increments
&;; to A; such that A+& is still positive definite. Then we have by Taylor’s
expansion

Pt A+8) = [1+) &,0,+3) €800
(2'4) + %z £I‘S£ lueuwarsa tuauw + -21—42 87’58 rusvngyarsa mauwaxy
+ ] A).
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On the other hand, we evaluate the expectation in the right-hand side of (2.3)
in the expanded form with respect to powers of ¢;;’s. After that, if we correctly
compare both the expansions, we could obtain the desired derivatives.

3. Preliminary formulas. Let us use the following notations: e(z) = (1 —2it)"?,
Q=A""MM', & =tQ=ys, AQF)=-et)—1=2it(1-2ir)"",
X =(A+8)"'A—=1, ¢t: 0*) = e(t)? exp {($)»*A(t)}, the ch.f. of the non-
central chi-square distribution with f degrees of freedom and noncentrality para-
meter w?.

LemMa 3.1.
3.1 o(t: A+8)

I

[[—A(t)X| ™2 em @/
-exp [(3)e(?) tr {I—A(1) X}~ 'QJ@,,(: 0).
PROOF. Since z,(o
Ny(ty> A),
(32)  P(1: A+8) = 2n)~"PF|A|Tm?
frmp -+ Jexp{ittr (A+8)T'ZZ' —3r A" Z-MYZ-M)'} []r, dz,

I

1, ---,m) is distributed independently according to

where R™ stands for the whole mp-space. We make the nonsingular linear trans-
formation Z = PY with P such that

(3.3) PA+&)'P =1, PA'P=1-¢

where ¢ is a diagonal matrix, i.e., diag{¢,, ¢,, -+, £} with |€a| < 1 for all
o = 1,2, ---, p. Then we have after integrating out Y,

|[1—e(t)¢]
[1-¢|

-exp [e(t) tr (1= ){I—e(t)E} ™ (=) HH "1p,,(1: 0),

where H = P~ 'M. On account of the relations in (3.3),

-m/2
3.4 P(t:A+6) = { } exp{—3tr (/—EHH'}

(I-8HH = PAT'MM'P'~' = PQP'~!
U= —e(t)E} ™" = PU-ADX} TP

(3.1)is obtained by substituting these results into (3.4).
In particular when M = 0, (3.1) reduces to the simple form

(3.5) Pt A+6) = [I-A0)X| @, (t:0).

The following are used to expand ¢(z: A+ &) in a power series of ¢;;’s starting
with the expression of (3.1).
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LEMMA 3.2. Let A be a matrix whose characteristic roots are all less than unity in
absolute value. Then

(3.6) (I—A)"' =37, A,

e II——Al_m/Z =1 +;—1 51 +% (2S2+m512)+£ (853 +6ms,s, +m?s,?)
m
+ﬁ (48s,+32ms s, + 12ms, +12m?s,5, 2 + m>s,; *)
+...

wheres; = tr A7, j = 1,2, .
In the course of the expansion, we use the following two kinds of symbols:

(D) [rs] = tr AT A (= 2%), [rs | tu] = tr ATTALATIA (= SOA9A + 4% 3m),
etc.

(D) (rs) = tr AT'AQ,  (rs|tu) = tr AT'ALATIALQ, etc.

where A,; = J,,A, and A™’s are elements of A~'. The actual displays of symbols
of the first kind can be obtained by considering all pairs of letters one taken from
each of two different groups.

4. Derivatives of ¢ (t: A). Itisseen from (2.2) that in order to obtain the expansion
of ¢(1) up to order n™ %, we need to evaluate the derivatives of ¢(t: A) up to the
fourth degree. It turns out that ¢(¢: A+ &) must be expanded explicitly up to the
fourth power of ¢,’s. First of all we expand (3.1) with respect to X up to the fourth
degree with the aid of the formulas (3.6) and (3.7). In order to express the resultant
in X'in terms of'¢,’s, it is convenient to expand X in the form

@1) X =(A+8)"A—T=(I+A76) =1 = U+ e, A 'A,) " —1
= —Z8rsA_1Ars+Z8rs£tuA_1ArsA_1Am_"'

since & = ) g,A,.
The result of this computation is

(4.2) Pt A+8) = [1-3 &AL+ ereudiSh(0)

- Z &ps€ tungAr(-S,Zu,vw(t)

+ Z €,5€ tunggxyAr(-?,)tu,vw,xy(t) - ](pmp(t: wZ)’
where

(4.3) AD() = §A<t)[rs1+%e(r)zs<t)<rs>,
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(4.4) AP () = ?{ZA(I)+A2(t)}[rs | tu]+,%2 A*()[rs][tu]

+3e(){A) + A2 (1) }(rs | 1) +3e*(£)AX(¢)(rs)(tu)

+_r£z_ e()A*(t)[rs)(tu)
and the similar but much longer expressions for AJ), (1) and A, ., .(¢) are
omitted here to save the space but they are available in [16].
As stated in the end of Section 2, we now need the comparison of (4.2) with
(2.4). In doing so, however, we have to take account of the symmetry in subscripts
rs, tu, etc. Let us define

. 1 .
4.5) BY) (1) = = Yo )AR). (1), J=12
J:

where Z(%) stands for the summation over all the permutations of subscripts
rs, tu, --- of AP (#). Then we have

rs,2tu, ...

(4.6) 0ps®(1:A) = =B ()p,,(1: 0?),
4.7) 0r50 wp(t: A) = 2B (D), (1: @),
(4.8) 0rs0000s®(t: A) = — 6B}, () Pyny(2: @),
(4.9) 07501000yt A) = 24B12), sy (D) Pu(2: 07).

Hence, from (2.1), the ch.f. of T,,* can be written in the following expanded form:

2
(4.10)  ¢(1) = [1 += 3 s BEL()
n
1
+ I’l_2 { -8 Z '{wr'{s r'{uuBiss,zu,vw(t) + 122 j'urj's r'{yulwar(:)tu,vw,xy(t)}

+0(n~ 3)] Pmp(1: 07).

5. The evaluation of the summations in (4.10). We explain, in this section, the
outline of the computation of the summations in (4.10). First of all we simplify the
terms in BY),,  (#)’s using the properties of the trace. For example,

—31—! Z(%) [rs [ tu]l(ow) = 1{[rs [ tu](ow) + [rs | ow(tu) + [tu | ow](rs)}.

Next we evaluate the values of various summations of types like

@) Y Auhsilrs [ tul, (0) X Audsdlrs | t)ow), and  (€) ¥ Ay Asidalrs | tul(ow).

The summation of type (a) can be easily calculated using the concrete displays of
symbols of the (I)-type. The summations of the mixed type (c) is obtained by
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firstly summing up with respect to subscripts contained in the brackets and then
by using the results for type (b). As an example for the type (b), let us consider

K =3 Anhsdrs)tu | vw). LetA™! = (2D 2@ ... 201 and

Q' ={w,,w,, w,}.
Then

(rs)(tu ] ow)

(tr ATIALQ)(tr ATIA LA A, Q)

= §{0, AW+ 200 @, + @, AN 4 2005y
+ @ AP 4 1O )Y o+ AO(AW A 4 A8y gy Y

= glki(r, s, t,u, 0, W) +ko(r, s, 1, u, 0, W)+ ks(r, s, 8, u, v, w)

+k4(r5 S, ta u,v, W)},
and

Kl = Z j'nzr’lst’{uukl(r’ 5y ’9 u, v, W) = er wrlérév/wv +er j'vr(‘url/\_ lw

where 6, = (6,,, 6,,, --+, 6,,) and d;’s are Kronecker’s symbols. The first term is
simply equal to (tr Q)> = w* = s,? and the second term is equal to

tr A” I(er /10,(1)”60,/)

v

tr ATIQAQ = tr ATH AT MMYAA T MM
=trQ? = s,.

Hence K, = s,%+s,. Similar computation gives us Y Arsiduoko(Fy 8, 1, 1, v, W) =

(PH+1)s; =Y AyAshuka(r, s, t, u, v, w), Y stk 3(ry s, t, 1, 0, w) = K, and we
have

K= %{512+(P+2)S2}'
If we putQ = 7, K'should be equal to p(p+ 1)/2, which is the value of
Y Arhsihunlrs]ltu | ow].

Complete list of values of individual summations of types (a), (b), and (¢) is
available in [16]. With the aid of these results, we can evaluate each of the sum-
mations in (4.10).

1
E a0 = Tt o A200)

2

PP+ 1)24() +A%(0)} + 5 pa()

oo| 3

+ P+ 1)s,e(t) {A() + AX(1)} + bspe2(1) A% (1) +; 5,e()AX?).

Since e(r) = A(t)+1 = (1-2ir)~" and €*(¢) is the characteristic function of the
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chi-square distribution with 2k degrees of freedom, it is convenient to arrange the
above expression with respect to powers of e(¢). Then

(51) Z j'urj'szr{sz,;u(t) = %Zt=0 ak(m7 P; Q)ek(t)
which gives us the term of order n™' in the expansion of ¢(¢). Coefficients of
€“(¢) will be given later in Theorem 6.1. Two summations in (4.10) which give the

term of order n~? can be calculated in the same way as the above, although a great
deal of labor is necessary. The result can be written in the form
(52) - 82 '{wrls t’luvBr(ss,:u,vw(t) + 122 '{ur'{s r’lyviwa(A) (t)

rs,tu,ow,xy

. = ' 2 k=0 bu(m, p; Q)eM(1),
where coeflicients b,(m, p; Q) of e(¢) will be given in Theorem 6.1.

6. The final result. The desired expanded form of ¢(¢) is now obtained by sub-
stituting (5.1) and (5.2) into (4.10). Since

(61) ek(t)(pmp(t: wl) = q)mp+2k(t: wz),
we can immediately write ¢(¢) in the form

1
B(t) = @pylt: w?) +4_n Y=o alm, p; Q)P+ 24t w?)

1
(6.2) + %I_Zi Zi=0 bi(m, p; Q)¢mp+ wlt: w?)

+0(n~3).

Let f'(x) be the density function of 7% and let g,(x: w?) be the density function
of the noncentral chi-square distribution with r degrees of freedom and non-
centrality parameter w®. Let F(x) = [§ /(1) du, G.(x: 0?) = [§ g,(u: w?) du. We
know that

1 [~ .
(6.3) g(x: @?) = —j e " o (t: w?) dt
2n ) _
and hence from (6.2) we have immediately the following final result:

THEOREM 6.1. An asymptotic expansion of the non-null distribution of Hotelling’s
generalized To* defined by (1.1) is given by

1
f(x) = gmp(x: wZ) +Z/-’l Zt=0 ak(m’ P Q)gmp+ 2k(xz w2)

1 .
(64) +_9—6—/? Z?c=0 bk(m’ P Q)gmp+2k(x: wZ)

+0(n™?),
where with the notations
Q=A""MM, s;=tuQ,  j=1,25 = 0
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ag(m,p; Q) = mp(m—p—1), ay(m,p; Q) = —2m(mp—s,),

ay(m, p; Q) = mp(m+p+1)—=22m+p+1)s, +s,,

az(m,p;Q) = 2{(m+p+1)s;—s,},  aump;Q) =s,,

bo(m, p; Q) = mp{m3mp —8)(m—2p—2)+m(p+1)(3p*+3p—4)—4(2p* +3p—1)},

by(m,p;Q) = —12m*p(m—p—1)(mp—s,),

by(m, p; Q) = 6m[mp (3m*p+8m—(p+1)(p*+p—4)}
=2{(mp+2)dm—p—1)—(p—=2)(p+1)(p+3)}s,
+2ms 2+ (mp—p* —p+4)s,],

by(m,p; Q) = —4[mp{mBmp+16)(m+p+1)+8m(p+1)+4(p*+3p+4)}
—338m(mp+4)2m+p+1)—m(p+1)(p* +p—16)+4(p* 4+ 3p+4)}s,
+6{2m*+m(p+1)+2}s,>+3{(mp+8)2m—p—1)+4(3p+4)}s,
—3ms,s, —4s,],

by(m,p; Q) = 3[mp{m(mp+8)(m+2p+2)+m(p+1)(p2+p+4)+4(2p2+5p+5)}
—4{m(mp +6)(dm+5p+5)+m(p+1)(p* +p+14)
+43p* +8p+9) s, +4{6m(m+p+1)+(p? +2p+15)}s,2
+4{3m*p+36m+18p+32}s, —4(dm+p+1)s,5, — 325, +5,%],

bs(m,p;Q) = 12[{m(mp+8)(m+2p+2)+m(p+1)(p>+p+4)+42p*+5p+5)}s,
—2{Cm+p+1)m+p+1)+8}s,>— {(mp+16)2m+p+1)
+8(p+3)}s, +32m+p+1)s,s, + 1655 —5,2],

be(m,p;Q) = 2[6{(m+p+1)*+6}s,2+3{(mp+20)(m+p+1)+12}s,
—6(4m~+3p+3)s,5, — 8055 +9s,2],

by(m,p; Q) = 12{(m+p+1)s;5; +4s5—5,},
bg(m, p; Q) = 3s,”.

Let y,, y,, --+, y, be the characteristic roots of Q, where g is the rank of MM’
and ¢ £ min (m, p). Since

(65) Sj = ter = Z€=1 yrj’ .] = 1’2) oo

(6.4) depends on only the symmetric power-sums of y’s as it should be so.

The systematic numerical comparison between powers of T,%-test and the A-test
based on the likelihood ratio criterion for testing the hypothesis H: M = 0
against K: M # 0 is under investigation.

The following are special cases of (6.4) in terms of cumulative distribution
functions.



568 MINORU SIOTANI

Case 1. When M = 0, i.e., when the null hypothesis H is true:
(6.6) F(x) = G,,p(x:0)

+ 22 {1 == 1)Gpy(x:0) 211Gy 2(x:0)
+(M+p+1)Gppy 4(x:0)]
+%)3 [{mQBmp—8)(m—2p—2)+m(p+1)3p*+3p—4)

—4(2p*+3p—1)}G,,,(x:0)
—12m*p(m—p—1)G,,,+ ,(x:0)
+6m{3m*p+8m—(p+1)(p* +p—4)}Gpps 4(x:0)
—4{m(Bmp+16)(m+p+1)+8m(p+1)
+4(p* +3p+4)}G,p46(x:0)
+3{m(mp+8)(m+2p+2)+m(p+1)(p*+p+4)
+ 420 +5p+5)} Gy 5(x:0)]
+0(n™?),
which may be compared with formula (4.3) in [6] due to It0.
Case 2. When m = 1: In this case, T, becomes an ordinary 72 whose exact
distribution is known (see e.g. [1]), and tr Q' = 0¥ = (WA 'p),j=1,2, -
6.7) F(x) = Gy(x:0?)

1
I [P?G(x:0?) +2(p— 0PG4 2(x: 0?)

—{(p—0®)(P+2 -0 —40?}G, . 4(x: 0?)
—20%(p+2—0?)G i 6(x:0%) = 0*G 4 g(x: 0?)]
1
96n?

—6{p(p+2)(p* —6)—2(p*+3p* — 6p— 12)*
+(P2—6)w4}Gp+4(X:w2)
—4{Tp(p+2)(p+4)+3(p* = Tp =340’ (p+2—w?)
—Tw8}G 4 6(x:0?)
+3{p(p+2)(p+4H)(p+6)—4(p+2)(p+4)(p + 13)w?
+4(p* +29p+95)w* —4(p+ 13)w® + w?}G 4 g(x: w?)
+120*{(p+2(p+4)(p+6) —3p+25)0*(p+4— ©?)
_wG}Gp-i-lO(x:wZ)
+20*{9(p+4)(p+6)—2(9p +61)* +90*} G, 4 1 5 (x: 0?)
+120%(p+6— 0G4y 4(x: 0 + 308G, 4 16(x: 0?)]
+0(n"3).

+

[p(3p> —8p* +8)G(x: w?) + 12p*(p— 0?)G 4 ,(x: 0?)
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Case 3. When p = 1: In this case, T,?/m becomes a noncentral F-statistic with
m and n degrees of freedom and noncentrality parameter ? = Y| p*/o* and
wehavetrQ/ = 0?/,j =1,2, -

(6.8) F(x) = G, (x:0%
—ZII—I [m(m—2)G,(x:w?) —2m(m—w?)G,,, ,(x:w?)

+(m—?)(m+2—w?)—2(m+1)w?G,,, 4(x:0?)
+2(U2(”l + 2_(’02)Gm+ G(X:wz) +w4Gm+ 8(x: wZ)]

+ -9—6—1’? [m(m —2)(m—4)(3m —2)G,(x:0?)

—12m2%(m =2)(m —?)G,,, ,(x: 0?)

+6m {m(m +2)(3m +2) — 4(2m? + 3m + 2)w?
+ (3m + 2)w4}Gm + 4(x : w2)

—4{m(m+2)(m+4)(Bm+4)—6(3m* +9Im+8)w*(m+2—w?)
—(Bm+Hw®}G,, 4 6(x:0?)

+3{mm+2)(m+4)(m+6)— 8(m + 2)(m + 4)2m + 5)w?
+4(9m? +48m + 68)w* — 8(2m + 5)w® + w8} G, 4 g (x: 0?)

+ 1202 {(m+2)(m +4)(m+6) —2(3m + 1) w*(m + 4 — w?)
- } G s 10t ?)

+20*{9(m+4)(m+6) — 46m+29)w? +90* )G, 4 1,(x: 0?)
+120%(M+6—02) G,y 4 1 a(X: 0P+ 303G, 4 1 6(x: 0]
+0(n"3).

This can be used to check our result by comparing with the expanded form derived
from the exact distribution of mF.

7. Some numerical comparison between the exact and approximate powers for
p = 2. To see how the accuracy has improved by introducing the terms of order
n~ 2, some numerical comparison may be made from the table below between the
exact and approximate powers when p = 2.-Values of the exact powers are taken
from Pillai and Jayachandran’s [11] Table 10 where our T,? (for p = 2), n, m, and
yi = 1,2) correspond to U®, 2n+3, 2m+3, and w,(i = 1, 2) in their table,
respectively.

From Table 1 it is obvious that the accuracy given by the terms up to order
n~! is insufficient and the contribution due to the terms of order n~? is con-
siderable.
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TABLE 1

The comparison between the exact and approximate powers of Ty>-test or
p = 2 and the significance level, « = 0.05

Up to the
n Y1 Y2 order m=3 m=35 m=1 m=13
o) 0.0351 0.0244 0.0180 0.0086
025 025 o(n=1) 0.0626 0.0535 0.0472 0.0342
: ’ Oo(n=2) 0.0676 0.0626 0.0602 0.0572
Exact 0.0676 0.0624 0.0598 0.0562
o) 0.0493 0.0326 0.0235 0.0107
1 0 | o(n=") 0.0827 0.0676 0.0581 0.0405
o(n=2) 0.0871 0.0765 0.0713 0.0650
Exact 0.0871 0.0761 0.0705 0.0629
o(1) 0.1266 0.0792 0.0544 0.0226
0 3 o(n=*) 0.1793 0.1369 0.1124 0.0726
Oo(n=2) 0.1801 0.1422 0.1231 0.0998
Exact 0.1807 0.1420 0.1218 0.0940
o(1) 0.0549 0.0460 0.0404 0.0300
025 025 omn") 0.0686 0.0627 0.0593 0.0534
: ’ Oo(n=2?) 0.0693 0.0640 0.0613 0.0575
Exact 0.0693 0.0640 0.0612 0.0575
o(1) 0.0743 0.0592 0.0504 0.0357
83 0 | o(n=") 0.0903 0.0784 0.0719 0.0617
o(n=2?) 0.0909 0.0795 0.0737 0.0657
Exact 0.0909 0.0795 0.0737 0.0657
o(l) 0.1730 0.1279 0.1028 0.0650
0 3 Oon1) 0.1953 0.1552 0.1334 0.1015

o(n=2) 0.1952 0.1554 0.1341 0.1044
Exact 0.1952 0.1555 0.1342 0.1044
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