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ASYMPTOTIC EFFICIENCY OF A CLASS OF ALIGNED RANK
ORDER TESTS FOR MULTIRESPONSE EXPERIMENTS IN
SOME INCOMPLETE BLOCK DESIGNS!

By PRANAB KUMAR SEN
University of North Carolina

1. Summary and introduction. Consider » replications of an incomplete block
design D consisting of b blocks of constant size k(= 2) to which (= k) treatments
are applied in such a way that (i) no treatment occurs more than once in any
block, (ii) the jth treatment occurs in r;(< b) blocks, and (iii) the (/, j')th treatments
occur together in r;;, (> 0) blocks, for j # j" = 1, ---, v. Let then S, stand for the
set of treatments occurring in the ith block, i = 1, ---, . For the ath replicate,
the response of the plot in the ith block and receiving the jth treatment is a
stochastic p-vector X,;; and is expressed as ’

(11) Xaij = ”a+ﬂai+7j+8aij’ jeSbi: 1, "',b,O( = 13 ey Ry

Yr;=0,
where the g, and the B,; are respectively the replicate and block effects (nuisance
parameters in “fixed effect’” model or spurious random variables in ‘“mixed
effect”” model), z,, ---, 7, are the treatment effects (parameters of interest) and the
&,;; are the error vectors. It is assumed that {&,;;, j € S;} have jointly a continuous
cumulative distribution function (cdf) G(x,, ---, X,) which is symmetric in its k
vectors. This includes the conventional assumption of independence and identity
of the cdf’s of all the N(= nbk) error vectors as a special case. We want to test the
null hypothesis

(1.2) Hyity = =1,=0vs H:1; #0, for at least one j(= 1, ---, v).

In the univariate case (i.e., p = 1), intra-block rank tests for this problem are
due to Durbin (1951), Benard and Elteren (1953), and Bhapkar (1961), among
others. For some special balanced designs, the studies made by Elteren and
Noether (1959) and Bhapkar (1963) reveal the low (Pitman-) efficiency of these
tests, particularly when & is small. In complete block designs, it is known [cf. Hodges
and Lehmann (1962) and Sen (1968)] that the use of ranking after alignment
increases the efficiency of the rank tests. The purpose of the present paper is to
show that this merit of the ranking after alignment is preserved for a broad class
of incomple block designs. In fact, certain bounds for the efficiency are derived
which do not depend on the design D, i.e., on the particular values of b, v, r;. r;,,
and k.
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2. Preliminary notions. We define the aligned observations by

(21) Yazij:X "_k_IZleS-Xail: jESiai: 1,"',b,0t= ]s"',"
and let R} be the rank of Y} among the N aligned observations on the rth

variate, for t = 1, ---, p. Also, let for each i(= 1, ---, b),

2.2 Tji = “7,'—]"1_1 ZIES; 7, and Cuij = 8au'j_k_l Zles, &ails
a=1-,nj€eS,

Then, from (1.1), (2.1) and (2.2), we have

(2.3) Y.i; = 7;i+¢e,, jeS,i=1,-,ba=1,--,n

Consider now p sequences of general rank scores

2.9 EQ = Jy, (s/(N+1)), l£s= N fort=1,--,p,

where for each ¢, the following conditions [due to Chernoff and Savage (1958)]
hold:

(2.5) (1) limy., Jy (u) = J(u) existsforall 0 <wu <1 andisnota
constant,

(i) J(u) is absolutely continuous with

(2.6) |(d"/d")J ()| < Klu(1—u)]™"~ %2, § >0, forr =0, 1, where
K < o0,

7 @iy NTUYM [y GIN A D) =TGN+ )| = o(N7H).

For notational simplicity, we let for each #(= 1, ---, p)

(28) 1]::1; E%?Rﬁ}» jesbi = 13“ ) b,d = 1:“'3 n;

k-t -1 -1
(29) =k e, a2 =bT'Y0 0 and g0 =n"'Yr g®.

The test statistic to be considered is a quadratic form in the following statistics.

(2.10) T, =— Z Dicr, M)

(where P; = {i1jeS;}),j=1,-,v,t=1,-,p.

To define the test statistic, we let V§’ = ((v{))), i = 1, 2, where

1 n b
(2.11) War = i 2 2 Xies et =1l — ],

(12) b =5 5 Dl 0L forer =1, .
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Also, let A = ((a{2)), i = 1, 2, where
(.13) @'} = [krid;;,—r;; 1)(k=1),  a'? = [brj;,—r;r]/(b—1),

d;;, is the usual Kronecker delta and r;; = r;. Further, let
(2.149) Wy = ARV, +AD @V,

where ® stands for the Kronecker product of two matrices. Finally, let Ty =
(Tl\(l,ll)’ ) TI(VTzZ’ Tty TI\(I?I)’ Y Tlsll,,z:)’ and let

(2_15) n= ("1’1“), ey ,.mf_l.) L "1’19) e "u”lff))-
Then, our proposed (aligned) rank order test statistic is
(2.16) Ly = (Ty—mWy (Ty—n)',

where Wy ™ is a generalized inverse of Wy,

The construction of #y is based on the permutational invariance structure of the
joint distribution of the bk vectors {Y,,;,je S;,i =1, -, b} (foreacha = 1, ---, n)
under the group of (k!)” intra-blcck permutations of the b sets of k vectors as well
as the 4! permutations of the » (block) pk-vectors. These (b!(k!)")" equally likely
permutations generate a completely specified permutational (conditional) prob-
ability measure 2y, for which E; (Ty) = n and Var , (Ty) = Wy, and hence,
£y is a quadratic form in Ty— E, (Ty) with the discriminant Wy, a generalized
inverse of Wy.

In the sequel, it will be assumed that D € &, where 2 is the class of all incomplete
block designs for which

.17 Rank [AP]=0v—1; A® and AV —(bB-1)A® are
nonnegative definite.

It may be noted that (cf. Kempthorne ((1952), chapters 26 and 27) 2 includes the
entire class of balanced, partially balanced and group divisible incomplete block
designs.

3. Large sample properties of .#,. For small sample sizes, the exact permutation
distribution of #y [under 2] can be used to construct a conditionally distri-
bution-free test for H, in (1.2); the task becomes prohibitively laborious for large
n. In this section, we briefly prescent the asymptotic results on .#y. Since the proofs
of these results are mostly lengthy and follow along the lines of the corresponding
proofs [for the complete block cases] treated in Sen (1967), (1968), (1969), these
are omitted.

THEOREM 3.1. Under the conditions of Section 2, the permutational (conditional)
distribution of &£y [under P\] converges, in probability, as n — o, to the y*-
distribution with p(v—1) degrees of freedom (df). The unconditional distribution
(under Hy in (1.2)) depends on the parent cdf, but also converges asymptrotically
to the same limiting distribution.
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Thus, for large n, the critical values of %y can be approximated by those of the
chi-square distribution with p(v—1) df. To study the asymptotic power properties
of the test based on £y, we conceive of the following sequence {Hy} of (Pitman-)
alternatives, specified by

3.1 Hyt=1;,=n%;0=©,",-,0,"), j=1-,0%0; =0,

where the 0, are real and finite. Also, corresponding to the pk-variate cdf
F(xq, -+, %) Of [e,;;,j€ S;], the marginal cdf of e} and the joint cdfs of (e},
e's)) and (el}), €i}?) are denoted by Fy,4(x), F{\); (x, y) and F{2);(x, ) respectively;

by the hypothesis of the symmetric structure pf the joint cdf of [e,;;, j € S;], these
do not depend on i, j and j'( # ). Let then, v\ = ((v{))), i = 1, 2, where

(32) v =020 [ JF() W [F0)] dF i, y) = *pé o 8 =1, p,

where p,* = [§J(u)du for t =1, -, p, and F{}}; (x, p) is replaced by F, (x),

(i = 1, 2). We assume that v(") is positive definite, and let

(3.3) A = [(k=D)KJAD +[(b—1)/bk]A® B = [(k—1)/k]AD
—[(b—1)(k—1)/bk]A®;

(34 Q=ARv"-B®v?.

We also assume that F|,; is absolutely continuous with

(3.5) |(d/dx)J,[Fi(x)]| is bounded as x — +o0, forts=1,, p.
Let then

(3.6) B, = [*, (d]dx)J [F;(x)] dF; (), t=1,p,

(B7) &P =B8P; 0,0 =[rik=1)/K]0,0 =Y %o xj (ris [K)OD—r 06,

where

(38) go(t) =(1/bk)2?=12jesi [Oj(t)_(l/k)ZleSi 0[(1‘)], t= 19'”3 p.
Finally, let

(3.9) K, =(("); k2 =By2B,,, t,t' =1,",p;i=12,
(3.10) '=A®K,-B®K,,

Zlnd let 6 = (é (1) o f (1) : f (p), B fv(p))’ 0= (g1(1)9 Y gv(l)’ Tty gl(p), R
4,y and §° = ((7 (1) “’ oy B, oy B,). Then, we have the following
theorem.

THEOREM 3.2. Under {H,} in (3.1) and the conditions stated above, %y has
asymptotically a noncentral chi-square distribution with p(v— 1) df and noncentrality
parameter

(3.11) Ay = EQ & = (6—0°T(-0°,

where Q™ and I'™ are generalized inverses of Q and T respectively.
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4. Asymptotic efficiency of #. In the parametric case (i.e., in normal theory
models), for p = 1, the optimal invariant test is based on the variance-ratio
(#-) criterion comparing the mean square due to treatment (eliminating block
effects) with the error mean square. For p = 2, different generalizations of this test
are (i) the normal-theory likelihood ratio (NTLR-) test based on the likelihood
ratio criterion Ay, (ii) the generalized (Hotelling-Lawley) T,? statistic based on the
trace of S,S,” !, (where S, and S, are the sum of product matrices due to the
hypothesis and error respectively), (iii) Roy’s statistic based on the largest character-
istic root of S,S, ™", and others; the reader is referred to Anderson ((1958) chapter
8) for details. Unfortunately, none of these tests is uniformly (in the set of admissible
parameters) better than the others, and hence, is uniformly best. However, it
follows from the results of Wald (1943) that the NTLR-test is (asymptotically)
the most stringent test and has the best average power over suitable ellipsoids in
the parameter space. Also, it can be shown that 7, and /y are asymptotically
equivalent, in probability, and hence, enjoy the same properties. We shall compare
the #y-test with the NTLR-test when the parent cdf is not necessarily normal.
The distribution theory of —2 log Ay when the parent cdf is not necessarily normal
has been studied in the context of the general multivariate linear hypothesis by
Sen and Puri (1970). It follows from their results (particularly Theorem 2.2), that
whenever F(x) has finite moments up to the second order, and the dispersion
matrix of e,; (defined by (2.2)), denoted by X = X(F), is finite and positive
definite (pd), —2logAy has asymptotically a central chi-square distribution
with p(v—1) df under H, in (1.2), and under {#,} in (3.1), it has asymptotically a
noncentral chi-square distribution with p(v— 1) df and the noncentrality parameter

4.1 A, = (0-0%A ®@X]7(0-0°.

Thus, in accordance with the usual definition of the asymptotic relative efficiency
(ARE) (cf.[14]), the ARE of the & \-test with respect to the Ay-test is

(42 (L5 74) = Ag/A; = (A, ALK, K,, 0),

which not only depends on the design matrices A" and A®, and the covariance
matrices X, K; and K,, but also on the shift 8. For the case of complete block
designs, A‘*) is a null matrix, and hence it can be shown that (4.2) does not depend
on A [cf. Sen (1968), (1969)]. We shall prove here some interesting inequalities
on (4.2). For this, we denote the minimum and the maximum characteristic roots
of ZK, ' (i.e., ¢,(EK, ') and cy(ZK, ™)) by ¢,(F, J) and cy(F, J) respectively,
as both X and K, depend on F| and in addition, K, depends on the score functions
J. Side by side, we consider the multivariate one-sample location problem, treated
in Sen and Puri (1967). The ARE of the rank order test proposed there [based on
the same score functions] with respect to the normal-theory optimal invariant
test based on the Hotelling T2 statistic, in the notations of the current paper, is
equal to

(4.3) e(F, J) = (0K,  '0)/(0£7'0’), where 0 = (0,, ---, 0,).
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By the Courant-theorem on the extrema of the ratio of two quadratic forms, we
have then

(44) C,,,(F, J) = Cm(EKl_l) é 6’(F, J) g cM(EKI _l) = CM(F9 J))
for all 0 € R”.

In the following theorem, we show that (4.4) provides some design-free (i.e., valid
for all D € 2) lower bounds to the ARE in the current situation.

THEOREM 4.1. Under the conditions of Sections 2 and 3,
(45) infa e(A(l)a A(Z)a E, Kl’ KZa 0) é Cm(Fa J)a
(4.6) supg (A, AP T K, K,, 0) = c,(F, J),

Sor all D e 9, where the equality sign holds iff J,[F;(x)] is a linear function of x,
with probability 1, for all t = 1, ---, p.

Proofr. We obtain from (3.11), (4.1), (4.2) and the Courant-theorem [cf. (4.3)-
(4.4)] that

(4.7) supyeq; = cy[T (A ®X)] and infyey ; = ¢, [T (A" ® L)].
Now, by (3.3) and (3.10), we have
(4.8)  cu"AD @E)] = 1/c,[(AV” @ Z7NI]

= 1Je, [(A(”‘ L HAM @ Kl—gll—c(bA“)—(b—l)Am)@
(K + (k- I)Kzl):l
- e [I” ® B K = AT[BAY - (b- DAP)®

E"‘(K1+(k—1)K2)}.

Similarly,
4.9) o, [T7(A" @ E)] = 1/ey[(A" ™ ® E7NIT]

= /ey I:I,, ® LK, —b—lk [AD~(BAD —(b—1)AD)|®

2K, +(k— 1)K2)].

Let us also prove the following lemma.
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LeMMA 4.2. K, positive semi-definite (p.s.d.) = K, +(k— 1)K, p.s.d. Further, if
K, is p.d. and the distribution of [e,;;,j€ S;] is not contained in any p(k—1)—r
(r =z 1)-dimensional flat, then K, +(k— 1)K, is also p.d., unless J[F ()] is linear
in x, with probability one, for all t = 1, ---, p; in the later case, it is a null matrix.

ProoOF. By (3.9), it suffices to prove the lemma for v* = vV (k—1)v®). The
first part of the lemma follows directly by noting that v* is the dispersion matrix
of Z =(Z,,,2,), where Z, =ZjeSiJ,[F[,](eL,'})] t=1,-,p, and that the
dispersion matrix of (J,[Fp(el)], t = 1, -+, p) is v'*). The second part follows in
the same way as in Lemma 4.5 of Sen (1968), after noting that Yiesi J[Fufed) =
0, with probability 1, forallt = 1, ---, p. []

Thus, from (2.17), (4.8), (4.9) and Lemma 4.2, it follows that for all De 2,
(1/bk)[ bA(” (b—DAPHAMD "] @ [E7'(K, 4+ (k—1)K,)] is p.s.d. Hence,

(4.10) e[l (AT @ D)] 2 1/e,[I, ® T7'K,] = cy(EK, ') = cy(F, ),

(4.11) [l (AT @ E)] = ley[l, ® Z7'K;] = ¢,(EK, ") = ¢, (F, ),

where the equality signs hold iff J,[F{,(x)] is linear in x, with probability one, for
allt =1, p.J

For special interest, we consider the case of p = 1 separately in the next section.
For p = 2, by virtue of (4.3), (4.4) and Theorem 4.1, the ARE results of Sen and
Puri (1967) provide the corresponding lower bounds in our case; without going
into the details, we refer to there for these bounds derived in various special cases.
In particular, if Fis multinormal and we use the normal scores & y-test, it follows
that K, +(k—1)K, = 0, and hence, this test and the NTLR 1,-test are asymp-
totically power equivalent for the sequence of alternatives in (3.1). On the other
hand, for multinormal F, the rank-sum % -test not only entails some loss in ARE,
butalso, for p = 3, can have ARE arbitrary close to 0, depending on the parent
L(F). We have assumed so far that k = 2. For k = 2, the design D reduces to the
so-called paired comparisons design, for which rank tests in the multivariate case
are studied in Sen and David (1968) and Shane and Puri (1969), among others.
Our ARE results agree with theirs in this case.

5. ARE in the case of p = 1. Here the Ay-test is equivalent to the variance-ratio
(#-) test, and also, upon defining v{}, i = 1, 2, and B, as in (3.2) and (3.6), we have
en(EK; 7Y = cu(EK, 1) = 04, B 2], where o, = V(el})). Hence, it follows
that

(5.1 (Z; F) z Biloy WY,

where the equality sign holds iff V(@) = —(k—1)"". Now, (5.1) agrees with
(4.14) of Sen (1968), representing the corresponding ARE in the complete block
design. Hence, we have the following.

THEOREM 5.1. The ARE results and bounds studied in Section 4 of Sen (1968)
remain valid for the entire class 9 of incomplete block designs D.
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Thus, the normal scores #y-test has the ARE (with respect to the Z-test)
bounded below by one, uniformly in the class of underlying distributions; the
lower bound is attained iff F},, is normal.

Finally, we compare the #-test with the other intra-block rank tests available
in the literature (cf. [2], [3], [4], [6], [7]). The ARE of the Brown-Mood median
procedure with respect to the #-test is studied by Bhapkar (1961), (1963) for
various special types of incomplete block designs, and appears to be quite low,
particularly for small k. The ARE of the rank-sum test by Durbin (1951) is studied
by Elteren and Noether (1959), only for the balanced incomplete block design;
extending their results to the general class of incomplete block designs considered
here, it can be shown that the ARE of the rank-sum test by Benard and Elteren
(1953) with respect to the & -test is equal to
(5-2) e(BE; F) = [120°(1—p)k/(k+ D] [[Z .. g*(x, x) dx]?,
where o® = V(&l})), p,o® = Cov(el}) e{l)) and g*(x, y) is the joint density of
(%), €3, /,j' € S;, whose marginal densities are both equal to g(x). Thus,
oy, = {[(k—1)/k]. a*(1—p,)}, and if the errors are mutually independent, then
p. = 0 and g*(x, y) = g(x)g(»).

Consider now the particular rank-sum %, based on the score function J(u) = u
0 < u < 1; this aligned rank statistic in a very simple type of incomplete block
design appears to have been considered first by Hodges and Lehmann (1962).
In this case, from (5.1), (5.2) and some standard computations [using J(u) = u],

we obtain that
(5.3) e(BE; &) £ [K[(k2 = D] [[Z., g*(x, x) dx]*/[[% . £*(x) dx]?,

where f(x) is the marginal density of ei,lj) When the errors are normally distributed,
(5.3) reduces to k/(k+1)(< 1), for all D e @. Thus, the aligned rank-sum test is
more (asymptotically) efficient than the intra-block rank-sum test when the
underlying distribution is normal. However, it may be remarked that the intra-
block rank-sum test does not require the assumption of additivity of the block and
replicate effects which is implicit in our assumption that the cdf G of [e,;;, j € S|]
does not depend on « and i. Thus, the comparatively low ARE of the Benard—

Elteren test is counter-balanced by its greater scope of applicability.

Acknowledgment. Thanks are due to the referee for his useful comments on the
paper.
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