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About three-fourths of this book deals with multivariate weakly stationary!
stochastic processes (WSSP) with discrete or continuous time and their harmonic
analysis, linear prediction, filtering and interpolation, and about a fourth with
multivariate strictly stationary stochastic processes (SSSP) and their ergodic and
asymptotic properties. In content it covers the usual ground as well as many topics
available so far only in the periodical literature, especially in the author’s own
research papers. In organization and attitude the book bears the wholesome
impress of the author’s teacher, A. N. Kolmogorov, and of his thirty-year-old
masterpiece on ““Stationary sequences in Hilbert space.”” In style and treatment
it is well written and exhaustive. The book is perhaps the most up-to-date one on
the subject, but since its origins go back to the author’s 1959-1960 lectures at
Moscow University, it naturally needs up-dating in certain respects.

We would strongly recommend the book to all concerned. The following
detailed description and commentary are designed to guide prospective readers.

In a way the present translation was wasted effort, for an equally good English
translation of the same (1963) Russian edition had been made two years earlier by
M. Ravindranathan, and issued in bound mimeographed form by the Indian
Statistical Institute, Calcutta, in 1965. This could have easily been improved and
published in print. Some of the inaccuracies and lacunae commented upon by
Dr. Ravindranathan remain without comment in the present translation. Thus on
page 66, to complete the argument in the penultimate paragraph, one needs the
lemma on page 173 of the Helson-Lowdenslager paper ([2] Part I). On page 76 in
the opening equation I'"! should be replaced by I'" !(e~**). On page 80, to justify
the first inequality in the proof of Lemma 7.1, one needs that given in Lemma 1.4
of the Wiener—-Masani paper ([1] Part II). On p. 81 the reasoning which just
precedes Lemma 7.3 is not clear: G(-) is in L{_, L}, however, and this suffices to
show its constancy. On page 89 in Theorem 8.3 for “linearly stationary” read
“linearly singular.” On page 97, line 6, insert “&,(¢)” after the word “projections.”

Let us turn to the opening chapter. In the spirit of [K] this deals exclusively with
parts of the theory depending only on the group properties of the time-domain

1 “Stationary in the wide sense” in the terminology of Doob’s book ‘Stochastic Processes,”
Wiley, New York (1953). This book will be referred to as [D] in this review.

2 Bull. Moscow State Univ. 2 (1941) 1-40. This paper will be referred to as [K] in this review.
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1464 P. MASANI

N or R® and which consequently generalize to stationary random fields on
arbitrary locally compact abelian groups. After defining WSSP in Section 1, the
author points out that the probabilistic setting is dispensable and the concept can
be broached conveniently as a stationary sequence or curve in Hilbert space, which
of course is the attitude adopted in [K]. A nice feature of the treatment is the very
early discussion of random measures and stochastic integration, Section 2. The
former is a set-function ® on the Borel field of R whose values ®(A) are random
variables in o = L,(Q, %, P), which for the greater part are assumed to be
orthogonally scattered. The latter is integration with respect to such a measure.
The author also defines the Bochner integral of a WSSP, and proves a useful
Fubini Theorem for integration with respect to the product measure ® x Lebesgue
(Theorem 2.4). In Section 4 he proves the g-variate extension of the Kolmogorov—
Karhunen result that a g-ple WSSP is governed by a unitary shift group U, 1 €N
or R. By Stone’s Theorem there is an associated spectral measure E(-) over the
dual group, N = C or R = RR. Following [K] the author uses this E(-) to define
the s#-valued measure ® and the ¢xg nonnegative hermitian matrix-valued
measure F, which provide the spectral representations of ¢ and of its matricial
covariance function B(-), Sections 4, 5. In Lemma 5.1 he establishes the g-variate
extension of Kolmogorov’s Lemma 2 ([K] Section 1) on the covariance function
of any (non-stationary) process, with some unhappy hand-waving in treating the
parameter set IR.

With this firm footing the author is able to handle the harmonic analysis of
WSSP in a thorough way. In Section 5 he proves the g-variate extension of
Khinchin’s Theorem that a ¢ x ¢ matrix-valued function B on N or R is the
covariance function of a g-ple WSSP, iff B is (matricially) positive-definite
(Theorem 5.1), as well as the dual extension due to Cramér on the spectral distri-
bution matrix of a g-ple WSSP (Theorem 5.2). Then follow the Ergodic Theorem
for unitary groups and the “Lévy Inversion Formulae” for the recovery of ® and F
from & and B (Section 6), as also an interesting representation for band-limited &
(Theorem 6.4). Next the author defines the space L,(F), introduces an inner product
in it and shows that it becomes a Hilbert space (Lemma 7.1). He then reveals
explicitly by stochastic integration the isomorphism between L,(F) and the sub-
space #; of # spanned by ¢ (Section 7). (In their full generality these results are
due to the author himself and independently to M. Rosenberg.) In Section 8
Kolmogorov’s subordination theory ([K] Section 4) is extended to the g-variate
case. In Section 9 the author speaks of ¢ as having rank m, iff its spectral distri-
bution F is absolutely continuous and rank F’ = m, a.e. on C or IR. This “‘spectral
rank” concept is narrower than Zasukhin’s concept of rank p, which is defined for
all ¢. It would have been clearer had the author used some qualification such as
“spectral” for his own concept. Of course, m = p in many important cases. In

3N and R denote the sets of integers and real numbers, respectively. C will denote the set of
complex numbers.
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Theorem 9.1 the author proves that a £ of rank m is always a (two-sided) moving-
average and that F' = WYW*, where ¥ is a g xm matrix-valued function. The
chapter concludes with a discussion of & for which F’ is a rational matrix-valued
function (Section 10).

What we have described so far holds for stationary sequences and curves in any
Hilbert space . But in Chapter I the author also brings in some ideas which
make sense only when 5# = L,(Q, 9, P). For instance, he calls ¢ ergodic, iff its
time-average is equal to the expectation of £(0), and he characterizes this property
in terms of the spectral distribution of & (Section 6).

In Chapter II the author turns to aspects of the theory of g-ple WSSP £ over N
which involve the ordering of N, i.e. to prediction theory proper, confining himself
only to linear prediction. Sections 1-6 cover the usual topics: Wold-Zasukhin
decomposition, spectral criteria for pure nondeterminism at rank m, and at the
full rank m = ¢, in terms of the factorizability of F’ and the integrability of
log det . F'. Interspersed are remarks on functions of the Hardy class. It would have
been easier on the reader had these remarks been consolidated and relegated to an
appendix. In Section 7 are discussed & for which F is absolutely continuous and
¢l £ F' £ ¢,1, where 0 < ¢; £ ¢, < o0, which as the author has shown else-
where is the n.&s.c. that the &,(r), e N, 1 < k = g, form an (unconditional) basis
for the subspace J#, of 5# spanned by the £,(f). Unfortunately, only the sufficiency
of this condition is proved in the book (Theorem 7.1). He then presents the iterative
algorithm for the optimal factor of F’ and for the predictor in the spectral domain
given in Part II of the Acta Mathematica paper of Wiener and the reviewer. In
Theorem 8.1 he gives Matveev’s spectral n.&s.c. for £ to be purely non-deter-
ministic and of rank m, involving the beschrianktartige functions of Nevanlinna.
Then follows a detailed study of the case m = 1. Next comes linear filtering, i.e.
the linear prediction of ¢ on the basis of another purely non-deterministic, full-rank
g-ple WSSP 7 stationarily correlated with & (Section 9). This is the first step towards
the ““filtering with noise” of Wiener, not discussed in the book. In Section 10 the
author turns to the linear interpolation of &. This very hard subject logically
precedes prediction, since it is really independent of the ordering of N. The author
gives spectral criteria for non-interpolability, minimality, as well as some expres-
sions for the linear interpolator discovered by himself. In Section 11 he shows that
the WSSP ¢ for which the &,(¢), t €N, form a conditional basis of the subspace #;
may be characterized in terms of minimality.

In Chapter III the author carries out for continuous parameter g-ple WSSP ¢
roughly what he accomplished in Chapter II for the discrete parameter case. His
treatment resembles that in [D]. He associates with & a discrete parameter & by
using the Cayley transform of the (s#-valued) spectral measure @ of &. After
showing that &, & are alike in being deterministic, purely non-deterministic, etc.,
he deduces theorems concerning ¢ from those established in Chapter II for & In
Section 4 he makes a detailed study of the predictor of a univariate ¢ having a
rational spectral density F'. In Section 5 he discusses linear filtering, primarily for
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such &. In Section 6 he takes up the difficult subject of continuous-time interpolation.

As he putsit (p. 131):

... the method of solution of the problem of the linear

interpolation of a multi-dimensional stationary process . . .

for the discrete-parameter case, leads in the continuous-

parameter case to complicated integral equations, and at

present no effective solution has been found for this

problem in its full generality.
He accordingly restricts himself to the case of a rational spectral density. Finally
comes forecasting on the basis of a bounded subinterval of the past, a topic of
interest to application-oriented workers in the subject (Section 7). Some original
results of the author in this direction are given.

In Chapter IV the author shifts from WSSP to SSSP, covering in the first half
the familiar territory available for instance in [D]. But there are technical differ-
ences. In Sections 1-3 he uses the coordinate (or function-space) version & of the
g-ple SSSP ¢ over (Q, 91, P) to infer the existence of a group S, 1€ N or R, of
P-measure preserving transformations on 9, (the g-algebra generated by ¢) onto
A, the S, being well-defined up to sets of zero P-measure and such that for N = 1,
Borel subsets Ty, ---, I, of Cand ¢, ---, tyinN or R,

Sf[‘Ql{ékg(ti)} Iyl = '21 {&,(t:i—1)}" YT)).

He calls S,, 7 € N or IR, the shift group of &. He then shows that the transformations
U, induced by the S, on the space of 9-measurable rv’s on Q themselves form a
group when rv’s differing on sets of zero P-measure are identified. In Section 4 he
considers the Hilbert space #, of these rv’s 4 for which E(|h|*) < oo, the inner
product (1, h,) being E(h, - h,). The U,, when restricted to #’, constitute of course
a unitary group. For discrete time, J#; is separable. For continuous time the
author defines stochastically continuous & for which S, turns out to be separable.
He also defines measurable ¢ for which the U,-group becomes measurable, and
such that for measurable and stochastically continuous ¢ the U,-group becomes
strongly continuous. In Section 5 the author proves the Individual Ergodic Theorem
that if & is a g-ple SSSP on (Q, 91, P) with induced shift-group U,, no € L{(Q, A, P)
and n, = U,((y,), then the time-averages of P-almost all trajectories of the SP 7 is
E(y, | %), where & is the o-algebra of invariant sets. He then deals with ergodic &
in much the same spirit as in [D]. He shows that £ is ergodic, iff all the eigenvalues
of the U,-group are simple (Theorem 6.1).

The remaining articles of Chapter IV cover less familiar terrain. In Section 7 the
author gives a n.&s.c. for the ergodicity of a SSSP ¢ having a purely atomic
spectral distribution. In Section 8 he proves a version of the 1932-theorem of von
Neumann on the splitting of a measure-preserving transformation into ergodic
components, his setting being an abstract but perfect probability space. In Section 9
a g-ple SSSP is called (strictly) regular, iff the “remote-past” o-algebra A_, =
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N, TeN or R, is trivial, 9, being the “past and present” o-algebra for the
epoch 7. He proves that £ is (strictly) regular, iff for all 4 € 9,

SUPgey,|P(4 N B)—P(A)P(B)| - 0 asT > —o0.

In Section 10 he considers completely regular £, i.e. & which satisfy Rosenblatt’s

condition
SUP4cs,,Be,,c|P(4 N B)—P(A)P(B)| - 0, asT — o,

4, being the “present and future” o-algebra for the epoch ¢. One of many interest-
ing results proved is that a g-ple Gaussian SSSP is completely regular, iff p(t) — 0
as t - oo, where p(t) is so-to-speak the cosine of the angle between the “past and
present” and “present and future” subspaces H; (f), H,* (t+1). Finally in Section
11 the author presents his own generalization of the Central Limit Theorem for
g-ple SSSP which are completely regular and have a bounded spectral density F’,
continuous at zero and with F’(0) of full rank (Theorem 11.1).

There are certain respects in which the book could bear up-dating. The Wold-
Zasukhin decomposition for discrete time is established ab initio in Chapter II,
Section 3. But we now know that the result is a corollary of the Wold Decomposition
Theorem* for isometric semigroups, and viewing it in this way gives us a clearer
perspective on how and where prediction theory fits into functional analysis. For
continuous time the author derives the decomposition in a round-about way by
strong appeal to spectral ideas and results (Chapter III, Section 3). Thus the
natural precedence of time-domain over spectral-domain analysis maintained in
Chapter II is given up in Chapter III, Section 3 and even earlier in Lemma 2.1.
The reader gets the impression that the only access to time-domain analysis for
continuous time is by a round-about route. Actually a more direct, spectral-free
approach to this analysis was suggested by Robertson and the reviewer in 1962.°
It is simpler than Hanner’s original analysis of 1950, and subsequent research has
simplified it further.

Another respect in which the work could stand updating is in the explicit
enunciation of the question of concordance between the Wold-Zasukhin De-
composition of ¢ and the Lebesgue—Cramer decomposition of its spectral distri-
bution F, and the inclusion of J. B. Robertson’s result® that concordance prevails
iff rank F’ is steady, a.e. This theorem subsumes the fragmentary results on con-
cordance of earlier origins. For instance, Theorem 8.3 of Chapter II is seen to be a
rather special case. In the same vein we might mention H. Salehi’s extension’ of
Theorem 10.2 (Chapter II) on “full-rank” minimality to cover minimality at any
rank. '

4 Brought into the open by Halmos in Crelle J. 208 (1961) 102-112.
5 PacificJ. Math. 12 (1962) 1361-1378.

6 CanadianJ. Math. 20 (1968) 368-383, Theorem 5.2.

7 Ark. Mat. 7 (1967) 305-311, Theorem 3.



