INADMISSIBILITY OF A CLASS OF ESTIMATORS OF A NORMAL QUANTILE¹

By James V. Zidek University of British Columbia

- **0. Summary.** Suppose that independent normally distributed random vectors $W^{n\times 1}$ and $T^{k\times 1}$ are observed with E(W)=0, $E(T)=\mu$, $Cov(W)=\sigma^2I$ and $Cov(T)=\sigma^2I$. In this paper it is shown that each member of a certain class of estimators of $\mu+\eta\sigma$ for a given vector η is inadmissible if loss is dimension-free quadratic loss. This class includes the best invariant estimator. The proof is carried out by exhibiting, for each member, $\hat{\theta}$, of the class, an estimator depending on $\hat{\theta}$ whose risk is uniformly smaller than that of $\hat{\theta}$.
- **1. Introduction.** Let X be a normally distributed random variable with mean μ and variance σ^2 , where both μ and σ are unknown $(-\infty < \mu < \infty, \sigma > 0)$. Let $v = \mu + \eta \sigma$ for a given constant η . Then v is a quantile of the distribution of X. Suppose X_1, \dots, X_n $(n \ge 2)$ are independent copies of X on the basis of which v is to be estimated. If an estimate, t, is selected, a loss $\sigma^{-2}(t-v)^2$ is incurred.

A minimax estimator of v is $\hat{\theta} = \overline{X} + \eta C_n S^{\frac{1}{2}}$ where $\overline{X} = n^{-1} \Sigma X_i$, $S = \Sigma (X_i - \overline{X})^2$ and

(1.1)
$$C_n = \Gamma\left(\frac{n}{2}\right) \left(2^{\frac{1}{2}}\Gamma\left(\frac{n+1}{2}\right)\right)^{-1}, \qquad n = 2, 3, \dots.$$

In this paper we prove a conjecture of Stein [1] that if $\eta \neq 0$, $\hat{\theta}$ is an inadmissible estimator of ν . We do so by exhibiting a second estimator $\hat{\theta}_1$ for which $E_{\mu,\sigma}(\hat{\theta}_1-\nu)^2 < E_{\mu,\sigma}(\hat{\theta}-\nu)^2$. To be precise, $\hat{\theta}_1 = \min{\{1, 1 + H(\overline{X}S^{-\frac{1}{2}})S\overline{X}^{-2}\}\overline{X} + \eta C_n S^{\frac{1}{2}}$ where $H(t) = (\frac{1}{4})n(\eta t)^2 - nC_n(\eta t) + 1$, $-\infty < t < \infty$. It is easy to see that $\hat{\theta}_1 = \hat{\theta}$ unless $\left|\frac{1}{2}\eta \overline{X}S^{-\frac{1}{2}} - C_n\right| < (C_n^2 - n^{-1})^{\frac{1}{2}}$.

The result described above is a corollary of Theorem 1 which concerns a more general problem than that described above. Suppose $S, T_1, \dots, T_k (k \ge 1)$ are independent random variables, that $S\sigma^{-2}$ has the chi-squared distribution with n degrees of freedom, and that T_i is normally distributed with mean μ_i and variance σ^2 , $i=1,2,\dots,k$. We assume that $\sigma^2(\sigma>0)$ and the $\mu_i(-\infty<\mu_i<\infty,i=1,2,\dots,k)$ are unknown constants.

Let R^k $(k=1,2,\cdots)$ denote k dimensional Euclidean space. If $x \in R^k$, x' will denote the transpose of x. Moreover for $x=(x_1,\cdots,x_k)' \in R^k$ and $y=(y_1,\cdots,y_k)' \in R^k$, we let $x'y=\sum x_iy_i$ and $||x||=+(x'x)^{\frac{1}{2}}$. Let $\mu=(\mu_1,\cdots,\mu_k)'$ and $\eta \in R^k$ be a given vector.

¹ The work reported here was supported by a grant from the National Research Council of Canada.

The result of Theorem 1 pertains to the estimation of $v = \mu + \eta \sigma$ when loss is measured by $\sigma^{-2}||t-v||^2$ if an estimate, t, of v is chosen. For this problem a minimax estimator is $\hat{\theta} = \hat{\theta}(T, S) = T + \eta C_{n+k} S^{-\frac{1}{2}}$, where C_{n+k} is defined as in equation (1.1) and $T = (T_1, \dots, T_k)'$. Also, $\hat{\theta}$ is "best" among all estimators having the property, $\hat{\theta}(at+b, a^2s) = a\hat{\theta}(t, s) + b$, for all a, b, t, s $(a > 0, s > 0, b \in \mathbb{R}^k$, $t \in \mathbb{R}^k$).

Observe that $\hat{\theta}$ is a member of the class of all estimators of the form $S^{\frac{1}{2}}\psi(Y)$ where $Y = S^{-\frac{1}{2}}T$ and ψ is a measurable function. Define ψ^* by $\psi^*(y) = \psi(y) +$ min $\{0, \Delta(y)\}y$, where

$$\Delta(y) = (||y||^2 + 1 + (\frac{1}{4})(\eta'y)^2(n+k)^{-1} - y'\psi(y))||y||^{-2}$$

if $\eta' y > 0$ and $\Delta(y) = 0$ if $n' y \le 0$. In Section 2 we prove the following result.

Theorem 1. If ψ^* is defined as above

(1.2)
$$E_{\mu,\sigma} ||\psi^*(Y)S^{\frac{1}{2}} - \nu||^2 \le E_{\mu,\sigma} ||\psi(Y)S^{\frac{1}{2}} - \nu||^2.$$

Moreover, if $P_{\mu,\sigma}(\psi^*(Y) \neq \psi(Y)) > 0$ then strict inequality holds in (1.2). If we set $\psi(y) = y + \eta C_{n+k}$, then $\psi^*(y) = \psi(y)$ unless $(\frac{1}{4})(\eta'y)^2(n+k)^{-1}$ $(\eta' y)C_{n+k} + 1 < 0$, that is, unless

$$\left| \frac{1}{2} \eta' y(n+k)^{-1} - C_{n+k} \right| < \left[C_{n+k}^2 - (n+k)^{-1} \right]^{\frac{1}{2}}.$$

This last assertion depends on the observation that $(n+k)C_{n+k}^2 - 1 > 0$. To see this note that

$$(n+k)C_{n+k}^2 - 1 = \Gamma^2 \left(\frac{n+k}{2}\right) \Gamma^{-2} \left(\frac{n+k+1}{2}\right) K\left(\frac{n+k}{2}\right)$$

where $K(\alpha) = \Gamma(\alpha+1)/\Gamma(\alpha) - (\Gamma(\alpha+\frac{1}{2})/\Gamma(\alpha))^2$, $\alpha > 0$. But $K(\alpha)$ is just the variance of $W^{\frac{1}{2}}$ when W has the gamma density which is $(\Gamma(\alpha))^{-1}w^{\alpha-1}e^{-w}$ or zero according as w is greater than zero or not. It follows for this choice of ψ that $P_{\mu,\sigma}(\psi(Y) \neq$ $\psi^*(Y)$ > 0 for all μ and σ and consequently, by Theorem 1, that $T + \eta C_{n+k} S^{\frac{1}{2}}$ is inadmissible.

In [2] the more general problem of estimating $A\mu + \eta\sigma$ under dimension-free quadratic loss is considered where A is a known $m \times k$ matrix and $n \in \mathbb{R}^m$. It is shown there that $\hat{t} = AT + \eta C_{n+k} S^{\frac{1}{2}}$ is inadmissible if $||\eta|| > C$, C being a sufficiently large constant. If $||\eta||^2 > C$, an estimator with uniformly smaller risk is

$$\hat{t}_1 = [AY + \eta \min\{C_{n+k}, C_{n+k+1}(1+||Y||^2)^{\frac{1}{2}}\}]S^{\frac{1}{2}}.$$

Set m = k and A equal to the identity matrix. We conclude that $\hat{\theta}$ is inadmissible if $||\eta|| > C$. The result of the present paper generalizes this last result in two directions. First, the restriction, $||\eta|| > C$, is replaced by $||\eta|| \neq 0$. Second, the result is obtained not only for $\hat{\theta}$ but for each member of a family of possible estimators of v. The generalization is achieved using a different approach. In [2], the improvement (for $||\eta|| > C$) is achieved by simply replacing $C_{n+k}S^{\frac{1}{2}}$, in $\hat{\theta}$, by an improved estimator of σ . Here we use a conditional expectation argument which is analogous, in form, to that involved in the Blackwell-Rao method for improving unbiased estimators.

2. Proof of Theorem 1. We adopt the following notation:

$$\Delta_{r}(a) = \int_{0}^{\infty} g^{r} \exp\left(-\frac{1}{2}g^{2} + ga\right) dg,$$

$$T_{r}(a) = \Delta_{r}(a) [\Delta_{r+1}(a)]^{-1}$$

$$G_{r}(a) = \frac{1}{2} r^{-1} (+(a^{2} + 4r)^{\frac{1}{2}} - a),$$

$$H_{r}(a, b) = (a+b)G_{r}(a)$$

$$-\infty < a, b < \infty, r = 1, 2, \dots$$

LEMMA 2. If b > 0, $\sup_{a} (a+b)T_{r}(a) \le 1 + (\frac{1}{4})b^{2}r^{-1}$.

PROOF. Jensen's inequality implies $T_r(a) > T_{r+1}(a)$ for all a and r. After integrating by parts we find that $\Delta_r(a) = (r+1)^{-1}(\Delta_{r+2}(a) - a\Delta_{r+1}(a))$. Thus

$$a = (T_{r+1}(a))^{-1} - (r+1)T_r(a)$$

$$< (T_{r+1}(a))^{-1} - (r+1)T_{r+1}(a),$$

$$-\infty < a < \infty, r = 0, 1, 2, \dots.$$

It follows that $rT_r^2(a) + aT_r(a) - 1 < 0$, that is, $0 < T_r(a) < G_r(a)$, for all a and r.

Now $\sup_a (a+b)T_r(a) = \sup_{a>-b} (a+b)T_r(a) \le \sup_{a>-b} H_r(a,b)$. Consider $(\partial/\partial a)H_r(a,b) = \frac{1}{2}r^{-1}[+(a^2+4r)^{\frac{1}{2}}-a+(a+b)(a(a^2+4r)^{-\frac{1}{2}}-1)]$. It is readily seen that $(\partial/\partial a)H_r(a,b) = 0$ when $a = a_0 = \frac{1}{2}(4r-b^2)b^{-1}$. Furthermore $a_0 > -b$ and $H_r(a_0,b) = 1+(\frac{1}{4})b^2r^{-1} > \lim_{a\to\infty} H_r(a,b) = 1 > H_r(-b,b) = 0$. Thus the maximum of $H_r(\cdot,b)$ is achieved at a_0 and the conclusion of the lemma is immediate.

PROOF OF THEOREM 1. Observe that if we let $\lambda = \mu \sigma^{-1}$ and take ψ to be any measurable function,

$$\begin{split} E_{\mu,\sigma} \big| \big| S^{\frac{1}{2}} \psi(Y) - \nu \big| \big|^2 \sigma^{-2} &= E_{\lambda,1} \big| \big| S^{\frac{1}{2}} \psi(Y) - \lambda - \eta \big| \big|^2 \\ &= E_{\lambda,1} c(Y,\lambda) \big| \big| \psi(Y) - \omega(Y,\lambda) \big| \big|^2 + b(\lambda) \end{split}$$

where

$$c(Y, \lambda) = E_{\lambda,1}(S \mid Y),$$

$$\omega(Y, \lambda) = (\lambda + \eta)E_{\lambda,1}(S^{\frac{1}{2}} \mid Y) \cdot E_{\lambda,1}(S \mid Y)^{-1},$$

and b is a function whose value does not depend on ψ and plays no role in the argument. It is easy to show that

$$\omega(Y,\lambda) = (\lambda + \eta)T_{n+k}(\lambda'Y(1+\big|\big|Y\big|\big|^2)^{-\frac{1}{2}})(1+\big|\big|Y\big|\big|^2)^{\frac{1}{2}}.$$

For simplicity, let $v = \omega(y, \lambda)$, $x = y'\psi(y) - 1 - ||y||^2 - (\frac{1}{4})(\eta'y)^2(n+k)^{-1}$, and $w = y'\psi(y) - y'v$. Observe that $y'(\psi(y) - w||y||^{-2}y - v) \equiv 0$ so that

$$||\psi(y) - v||^2 = |w^2||y||^{-2} + ||\psi(y) - w||y||^{-2}y - v||^2.$$

Also

$$||\psi(y) - x||y||^{-2}y - v||^2 = (w - x)^2 ||y||^{-2} + ||\psi(y) - w||y||^{-2}y - v||^2.$$

Thus

For convenience let $z = y(1+||y||^2)^{-\frac{1}{2}}$. It follows that

$$w = y'\psi(y) - (1 + ||y||^2)(\lambda'z + \eta'z)T_{n+k}(\lambda'z)$$

$$\geq y'\psi(y) - (1 + ||y||^2)(1 + (\frac{1}{4})(\eta'z)^2(n+k)^{-1})$$

$$= x$$

if $\eta'y > 0$. Furthermore, if y is such that x > 0 and $\eta'y > 0$, the quantity on the left-hand side of (2.1) is positive. Theorem 1 is an immediate consequence of this observation.

REFERENCES

- [1] STEIN, C. (1961). Summary of Wald lectures (unpublished).
- [2] ZIDEK, J. V. (1969). Inadmissibility of the best invariant estimator of extreme quantiles of the normal law under squared error loss, Ann. Math. Statist. 40 1801–1808.