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ON THE ASYMPTOTIC OPTIMALITY OF SPECTRAL ANALYSIS
FOR TESTING HYPOTHESES ABOUT TIME SERIES
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Portsmouth, Rhode Island

0. Summary. Classification of a sample from a zero mean, stationary, Gaussian
time series into populations distinguished by characteristics of the spectrum can
be done with a decision theoretic procedure or spectral analysis. Decision theory
requires that each population be characterized by a probability distribution on the
space of spectral density functions. In this paper, we relate the two methods by
showing that under many conditions, as the sample length increases, the expected
cost of the Bayes test formed from spectral estimates by approximating their
sampling distribution by a product of chi-squared distributions approaches the
expected cost of the Bayes test formed from the original data. The amount of
smoothing that can be used in the spectral estimates depends on the prior know-
ledge of the order of differentiability of the spectrum. This result is related to but
weaker than the notion that spectral estimates are asymptotically sufficient statistics
for the second order properties of a stationary Gaussian time series.

1. Introduction. First, we define measurable sets of spectral density functions.
Let /= {f(w), |®| £ n} denote a spectral density function, and R(z)
(= [~.e“"f(w)dw), the corresponding covariance function. Let H, n, K,, and a,
be finite positive constants that satisfy H > g, a; < 1, and let p be a positive
integer. The space F, is the set of f such that sup,, | f(w)| £ H,inf, |f(w)| Z #,and

(1.1) Lizn|t’[RE)| < K N7

To F,, we assign the norm ||f|| = sup,, |f(®)|, and so F, is a subspace of the
Banach space C[— 7, n]. The o-field of F, is the smallest o-algebra of subsets of F,
that contains all the open sets of F,[7]. Since the vector {R(7),0 < 1 = T < o0}
is a continuous function of f; it is measurable [7].

We consider multiple alternative classification problems for real, zero mean,
stationary, Gaussian time series {X(¢), t = ---, — 1,0, 1, ---}. The data is a finite
sample of the time series, X' = (X(1), X(2), ---, X(T)). The probability densities
that distinguish the L+1 alternative hypotheses are mixtures of zere mean
Gaussian densities. The L+ 1 mixing distributions u,(/ = 0, 1, ---, L) are defined
on the space of spectral density functions F,. The cost of choosing hypothesis k
when / is true C(k | [) and the prior probabilities of the various hypotheses g, are
given. If the covariance matrix (R(j—k)) is denoted by X and the probability density
for a real, zero mean, Gaussian random vector is denoted by n,(XI 0, X), the post-
erior probabilities of the hypotheses are given by

(1.2) P(k|X) = qfn,
from which the Bayes test follows [1].
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For the problems described above, the spectral analysis approach would form
estimates of the spectrum at several frequencies, { flwy), m=0,1,2, -, M—1},
and then use these to form test statistics [3], [10]. If these spectral estimates are
suitably formed, then the sampling distribution of (1of(@,), ny f(@;), *++, Mpg— 1 -
flwy_y)) is given approximately by the density [[¥Zg w.(n,f(w,) |f(®n),
1, n,), where w, is the complex Wishart density, f is the true spectrum, and n,,
depends on the way the spectral estimates are computed. Since

(1.3) w(§ |y, 1,n) = 9"~ 1y~"e I [L(n),

the distribution of 2n,, f(®,.)/f(®,,) is approximately x? with 2n,, degrees of free-
dom. This conclusion was stated by Goodman [3] who studied the complex
Gaussian and complex Wishart distributions. Wahba [10] showed that a wide
class of test statistics approach in mean square test statistics that are formed from
spectral estimates that actually have a complex Wishart distribution (apart from
the constant factor n,,).

If we take the data to be spectral estimates formed from X, then using the
approximate sampling distribution we could take the posterior probabilities of the
hypotheses to be

7y = o T 1] ) (@) 1, ) it
ZIL=O qu]_—[x;ol wc(nmf(wm) lf(wm)’ 1’ nm) dﬂl
and from these form a Bayes test. Our objective is to show that for large T this

test is nearly the same as the one based on P(k | X) given in (1.2).
Consider estimates of the algebraic type [8]. Let

(1.4) P(k

(1.5) f(@) =) 'Y <mp e h(t/M7)R(z),
where h(u) is bounded, even, defined for all real u, zero for |u| 2 1, and satisfies
(1.6) [1=h(u)|/|u]” < Ky,

where M is the greatest integer less than or equal to 7% 12 6 > p~'(1 —4a,/(p+
1 +a,)), and where

(1.7) Re(r) = T~ YIS X ()X (+ 7)) for 1| < T
=0 for|t| = T.

We take n,, = 1T/M; and w,, = n(m+%)/Myr. Let X be Gaussian with spectrum
fo that belongs to F,. Applying mild restrictions to yx,, we show that as T'— o,
P(k|f)—P(k| X) - 0 as. for f, € F,. This implies that the expected cost of the
test based on P(k | f) approaches the expected cost of the test based on P(k | X).
The smaller ¢ is, the larger the amount of smoothing used in the spectral estimates
f. The lower bound on & decreases as p increases which in turn increases as the
order of differentiability of the members of the space of spectra increases.

2. Asymptotic equivalence of the posterior probabilities for the periodogram case.
In this section we prove the theorem that forms the basis of our results.
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THEOREM 1. As defined above, let F, be the measure space of spectral density
functions, and let p,, 1 =20,1,2,---,L be probability distributions on F;. Let
{X(#)} be a real, zero mean, stationary, Gaussian time series with spectral density
Sfunction f,, covariance function Ry(t), and covariance matric X, where f, € F;.
Let X' = (X(1), X(2), --+, X(T)) be a sample from it. We assume that
(2.1) limy., ., exp {yT*} ZIL=0 qm(Er’) = oo,
where

E = {f|Ilf~foll £ K,AT%,feF}},
K,>0,0<vy<3K,H % and} < B < 1. Let &(w) be the periodogram,
(2.2) &) = (nT) [T X() e ™2,
and let S(f, T) = Y720 log f(2nj| T) + ¢(2nj| T)| f(2mj| T) (for 3n > > 7, f(w) =
f(w—2mn)). Then,
P(k| X)“ij exp {—1S(/, T)} d/v‘k/ZtL=o ‘1!.[ exp{—4S(f, T)}dy, - Oa.s.

The event E;' is the occurrence of f, or a spectrum near f,. Condition (2.1)
prevents the prior probability of E;’ from approaching zero too rapidly.

The proof of this theorem is closely related to proofs of the large sample equiva-
lence of Bayes and maximum likelihood approaches [5S], [6]. The numerator of the
expression for P(k | X) given in (1.2) can be written as

(2.3) (2n)" T fexp{—3[logdetZ+X'E !X —Tlog2n—S(f,T)]}

exp {—3S(f, T)}dp.
In Lemmas 1 and 2, we prove that as T — oo the first exponential in (2.3) remains
smooth and bounded. In Lemma 3, we prove that the second exponential
becomes peaked at f = f,. Thus, the integral is dominated by the contribution
from the neighborhood of f;, and so we can evaluate the first exponential at f,
and take it outside the integral sign. Theorem 1 follows from this.

LEMMA 1. Let 3 < B’ < B, and let

Er={f|IIf—foll £ K T **"P feF,}.
Then,

(2.4) T~ "{logdet=—Tlog2n—Y I=¢ log f(2nj/T)} - O
uniformly for f€ F, and
(2.5) supy.g,|logdetz—YT-4 log/f(2mj/T)—logdet Z,
+ ¥ 1= og fo(2mjIT)| - 0.

Proor. By (1.1), we see thatif f'€ F,, then f*), the p th derivative of f, exists and
F@(=n) = f@(n) for q¢ < p. For a, < «;, we have from (1.1)

Loz Yo zaltlR@)| = Kieiz i (J2] "ML ™) |RE)|
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and 50 ) ;=1 |7["**2|R(z)| converges. This implies that for all f€ F,, /' satisfies
the Lipschitz condition

(2.6) | /P (w,)—fPw,)| £ K |0; —w,|*

for some fixed constant K,.
Lemma 1 follows almost immediately from a theorem due to Szegd [4] that
concludes that

(2.7) limg.,, {logdetE—Tlog2n—(2n)"'T [~ logf(w)dw}

= (2m)"2 Y nfr(n)|?,

where
(2.8) Hn) = [ logf(w) e  dw.

The fact that the limit in (2.7) is uniform for f€ F, is not stated explicitly in [4].
However, it follows easily from the uniformity of the order relations used in the
proof [2].

We will use repeatedly the fact that if {g(w), |w| £ =} has a derivative of order
p, 9@(n) = gP(—m) for 0 < ¢q < p, and g satisfies the Lipschitz condition
(2.6), then [2]

(2.9) |z e " g(w)do| £ Kpn' "0 =P,
Using (2.9), we see that
(210) Y124 log/(2mj/T) = 2n) ' T Y5 — o H(kT) = 2n) ' T %, log /() do>

uniformly for fe F;, from which (2.4) follows.

From (1.1), we see that Y |t| |R()| is uniformly convergent in F, so that
|lf;i—=fIl = 0 and f; € F, implies that f'€ F,. Thus, F is closed, and by t!le Ascoli
lemma it is compact [7]. The supremum in (2.5) is attained for f = fr, where
fr € Ep. Since (2.7) and (2.10) hold uniformly in F,, the proof of (2.5) is complete
when we show that

@.11) Yoz nff(n)|? = Yoy nfro(n)|,

where #(n) and ro(n) are defined as in (2.8) for f = f; and f = f,, respectively.
(2.11) holds because by (2.9), Y=y n|r(n)|? is uniformly convergent.

LEMMA 2.

(2.12) T~ sup;cp {X'T7'X = Y124 &2/ T)/f(27j/ T)} > Oa.s.
and

(2.13) SUP/ e g | X271 X = Y123 €2/ T) f 2| T) - X 2o ™' X

+ Y154 &Quj|T) fo2m]I T)| > Oas.
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PRrOOF. Consider (2.12) first. From (2.2), it follows that
(2.14) X'TX -YI24 eQnujIT) fCmjiT) = X' (2 ~L“E7N)X,
where the (¢, t') element of £ is

R(t—t)=32 _  R(t—1t'+kT).
Letting " and 6" be the elements of £~ ! and £~ !, respectively, we have
(2.15) TPXE ' =E X S[T ¥ sup, | X)) 1% 2w 6" — 5"
< [T" sup, |X()|*][supm ;|0 [1[sups 30 |5"(]
(X 2 | R(m—n)—R(m—n)]],

where the domain of m, n, ¢, t' is [1, T].
Since

(2.16) Prob[T~# sup, | X(t)|* > €]
= Prob (J,[|X(t)|* > eT*]
< Prob[|X(1)]* > eT*']
=2T(2nR(0))"* [& 93 exp { —1x%/Ry(0)} dx,

we have by the Borel-Cantelli lemma T~# sup, | X(t)|> —» Oa.s.

In order to show that sup,, Y, |a‘”‘| is bounded, we consider £~' as a linear
operator from the space /°(T) into itself. We note that

17" |lr = supm ||

and that |[Z7'||; is bounded if [|Z|| is bounded away from zero [9]. The set of
real numbers 4 = {a|a = ||Z||r, T €1, o], f€ F, } does not contain zero because
X is positive definite. If 4 is closed, then it is bounded away from zero and

(2.17) SUP ¢ g, SUP; <72 00 SUP 0 ¢ |0™] < 00.

Consider a convergent sequence {a,, a, € A}, the nth member of which is ||Z||r

evaluated at f = f, and T = T,. In the sequence {(f,, T,), n = 1,2, ---}, there is a

subsequence {(f,,T,), j = 1,2, -} that converges to (f, T,), where f,, € F;

and T,, € [1, ]. By (2.9), we see that a,, —||Z||7| ;= /...r=1.,— and so A is closed.
Consider the last two factors in (2.15). We have

(2.18) sup, Y [6™| = (27) "2 sup, o |20 — o p(n—1t'+kT))|

S YR o),

where

(2.19) p(r) =[* e f " Hw)do.

From (2.9), it follows that Y & _, |p(7)| is bounded for fe F;. Since [10]
(220) 3 S| R = 1)~ R(m—n)] < 2K,

we have proved (2.12).
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The proof of (2.13) is similar to the proof of (2.12). From the same considerations
that led to (2.14) and (2.15), we have
| X' X = YT eI T) f 2nj| T) - X'Zo ™' X
220 +X75 QT fo2m)IT))|
< {T"*sup|X(1)|* }
AT supy, Y [0 — 0™ 1sup, Yo |3 [ m X | R(m — ) — R(m—n)|]
+[supn Y, |oo™[J[ T  sup, Y, |" —&6™|]
" [2n 2 |[ROm—n)—R(m—m)|]
+[supn i oo™ lsup, Yo [66™ [ILT° Y X | R(m — 1) — R(m —n)
— Ro(m—n)+Ro(m—n)|]},
where 0,/ and G, are the values at f, of ¢" and ", respectively, and { is

chosen so that 0 < { < 4o¢;(1-B)/(2+,). From (2.16), we see that
T *sup, |X (t)|2 — 0 a.s. We must show that the supremum over E; of the second

factor on the right-hand side of (2.21) is bounded.

We consider the factors in (2.21) that do not appear in (2.17), (2.18), or (2.20).
We have

5D £ 047 | < supy X, 3, Tulo| IR~ )= Ro = )| [
< [sup, ¥, [0"[1[supn Sk oo I[sups ¥ [R(i— )= Ro(i—K)[]
and by (2.9)
(2.22) sup; g, sup; Y |R(j— k)—Ro(j— k)l SSUPsepn ) HES s
+SUPyepr Xjay s 7 |[R(T) = Ro(7)|
S 2K AT P2y oplteag (7o 1)~ =

R(1)=Ro(1)]

where ¢ = $(1—f)/(2+,). Thus, since «, can be chosen arbitrarily close to «,,
T SUPs ¢ g SUP, ¢ [0 — 0™ is bounded. Since
(2.23) e 6" =™ | < (21) 2 X o [p(0)— po(r)),

where p(7) is defined in (2.19) and p(7) is p(t) evaluated at f, and since the reason-
ing applied to (2.22) also applies to (2.23), we see thatT*sup; . g sup, Y., [6" — o™ |
is bounded. Finally, we have

T supycp, 3oy |R(—1)—R(t—1t")— Ro(t—1')+Ro(t—1')|
S 2T%supy g, [ 1o < 1o |7]|RG) = Ro(2)| + X)) 5 1e 1] |R()=Ro(7)[]
S 2T2nK T2~ =PI2 oK, T o],

This completes the proof of Lemma 2.
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LeEmMA 3.

(224)  supyp, [T I8 [EQ@mIT) /o2 T)) f (2rji T)| > Oas.
Proor. Using the Minkowski inequality, we obtain
E*{supycp, T™H Y120 [€Qn)I T)—fo(2mj/ T)] £ (2m)i T) )
=E*sup, .r,2n) 2T Y720 [R(t)+ Re(t— T)—Ro(7)
(2.25) —Ro(t=T)] X% -  p(r+kT)+ T*(2n) 2
' ZtT=_O1 ZI?O= —o00,k#0,—1 RO(T + kT) Zl?’)= - ,O(T + kIT)}Z
< (2n)72 Y20 {T*E*[Ry(r) — Ro(7)]?
+T*EMR(t—T)=Ro(v—T)1*} L2 - o SUP; e, [p(z+KT))|
+0(T~*~%).
Since
(2.26)  TE[Ry(t)—Ro(7)]* = |[7]*T~'Ry*()
+T7 Y cower—1o [Ro*(I—1)+ Ro(t' —t+ |t DRo(t’ —t—2|)]
é T ! +2'Z:)O= — ROZ(U)
and ) 120 Y% _ . sup; . r, |p(t+kT)| < oo, theright-hand side of (2.25) is bounded.
Since {X(#)} is Gaussian, the higher moments of T~ *sup, ., Y 1_d [¢Q2nj/T)—f,
(27j/T)]/f(2nj/T) are also bounded. Since ' > 4, Lemma 3 follows from the
Markov inequality and the Borel-Cantelli lemma.
In order to complete the proof of Theorem 1, we consider
(2.27) I, =(2mn)"fn, X |0, %) dp,
(2.28) I/ =(@2n)" frn(X |0,Z)dy,.
In the preceding lemmas, we showed that
sup; r, |T #(logdetZ+ X'S~1X — T log 27)
—T77 Y720 {log/(2nj|T)+fo(2mj/ T)|f (2mj| T)}| - Oa.s.
The supremum of log f+f,/f for f € E;’ and the infimum of log f+f,/f for fe F, —
Ep are attained at a point where |f—fo| = (K,/T)* and |f—fo| = (K,/T' %)%,
respectively. Thus, the supremum of log f+f,/f for fe Ey' is log fo+1+
1K, fo 2T~ ' +0(T %) and the infimum of log f+f,/f for f€ F, — Ey is log fo+ 1+
1K, fo 2T~ "8+ 0(T 31 ~#12), For each {X(¢)} outside a null set, there is a value
of T such that for all larger T, we have
(2:29) 1/ > exp {—4 Y129 [logfo(2mj| T)+ 1] = AT* iy (Er')
and
(230) I,—1, < exp{—3 1= [log/fo(2mjiT)+11—4K,f, TP+ 2T},

where A is an arbitrary positive constant.
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We can now finish the proof. Using (2.1), (2.29), and (2.30), we see that

qli’ | ali— 1)
Zt‘]zlz'| = 21‘1111
qly’ {2141(11—11,)} < 2 50
Zlqllll qull = exp {3K,fo~ TP 24T} thwt(ET/)
for {X(#)} outside a null set and so
(2.31) _ P(k | X)—qd{[Yql/ - Oas.
In Lemmas 1 and 2, we showed that

sup, . g, |logdetZ+X'E7'X — T log2n—S(f, T)| > Oa.s.

|P(k | X)—

+

and so
qidi ijET exp {—3S(£, T)} dp
Zl ql/ B Zz q IET exp{—3S(/; T)} dp, -
Using the same argument that led to (2.31), we see that
qx jET exp {—4S(f, T)} du ijeXP {—3S(£,T)} dw, 0
Zz q jET exp{—3S(/, T)} d#:_Zt QtjeXP {—=4S(£, T)} d/"l—) a8

This concludes the proof of Theorem 1.

Oa.s.

3. Extension to general spectral estimates. In this section, we extend Theorem 1
to a broad class of spectral estimates and then demonstrate that the expected cost
of the test based on P(k [ f) approaches the expected cost of the test based on
P(k | X).

THEOREM 2. Let p be a fixed positive integer. Let {f(w,), w, = n(m+%)/My,
m=0,1, -, My—1} be spectral estimates of the type defined in (1.5)-(1.7) and
let F, and p, be defined as in Section 1. Let {X(t)} be a real, zero mean, stationary,
Gaussian time series with spectral density function f,, where fo € F,. For some
B in the open interval (%, min {1 —2a, " *(1=6p)(p+1+a,), 1}), let limy_, , exp {yT*}
Ziqu(Er’ N F,) = 0. Then

_ P(k|X)-P(k|f)— Oas.,

where P(k | f) is defined in (1.3) and (1.4) with n,, = $T/M.
The proof is similar to the proof of Theorem 1.

LEMMA 4. ‘
j=0 logf(2nj|T)—(T/Mz) }.mZo ' logf(w,) = O
uniformly for fe F,.
PrOOF. We have
(T/Mp) Y mZo ogf(wn) = (20) ' T30 o (— 1)*r(2kM )
=2n) 7T [ logf(w)dw+0(T! ~®*=)),
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where r(n) is defined in (2.8). Since a, can be chosen close enough to o, so that
d(p+0a,) > 1 and since (2.10) holds, the proof is complete.
LEMMA 5. For 4 < B’ < B, we have
(3~1) T_ﬂ'SUPfer |Z,T=_o1 §(2nj/T)/f(27rj/T)

—(TIM7) Y25 " J(0n) f(@,)] = Oa.s.
and
(3-2) SUPscErnFp |ZjT=_01 é(an/T)[f_1(2nj/T)—f0_ 1(27Tj/T)]

—(TIM 1) Y 2o  H(@n)lf ~ (@n) 1o~ (@m)]| > Oas.
Proor. Applying the procedure used in Lemma 3, we prove that
T SUPseFp |(T/MT) ZnA{:(; ! [f(wm)—fo(wm)]/f(wm)| —0as.
For this it is sufficient to note that from (1.1), (1.6), (2.9), and (2.26), we obtain
E%{(T%/MT) SUPseFp |Zn¥:6 ! [f(wm) _fO(wm)]/f(wm)l}z
< (20) 2 TM S, {THh(e M) EXR 1 (2) — Ro(0)]?
+TH1=h(t/M7)| |Ro(t)|+ T* Y4 o | Ro(z+2kM )|}
Y= - SUDs e pp |P(T+2kM7)|
< (20) [T L4255 - Ro2(0)]¢ sup, |A(w)|
+ KK, T579 4 2ptteg, T+-6p+a) Yo i(2k—1)7rme)
’ Z:O: -0 SUPseF, |P(T)l,

where by assumption dp > 1.
Since

Z;’T;olfo(znj/T)/fQ’Tj/T) - (T/MT) Z%lc; lfO(wm)/f(wm) -0

uniformly for f'€ F, by the reasoning that led to Lemma 4 and since Lemma 3
holds, we have proved (3.1).

In order to prove (3.2), we observe that
SUP; ¢ £rnrp | -0 EQUIT)Lf ™ (2| T)—fo ™ (2nj/ T)]
—(TIMD)E0Ze " flon)l ™ (@) —fo™ ()]
(3:3) < {@m) T sup (T~ <) [Re(1)]}
AT’ SUPs e ErnFp ZZ:—(T— n(T— |T|)| 1- h(T/MT)| |P(T)_P0(T)|
+(T— ,T|)ZI:0=—00,I(¢O |P(T+kT)_Po(T+kT)|
H(T =t (/M) -~ w0 (v +2k' M) — po(t+2k' M)

}

where
(34) 0<0<min {op—1+4a,(1=B)/(p+1+a,),3(1 —B)Yp—1+a)/[(p+1+a,)},
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We will show that the second factor on the right-hand side of (3.3) is bounded.
Since sup, T(T —|z|)™!|R¢(7)| £ sup;<,<r |X(1)|?, we can then apply (2.16) to
prove (3.2).

By (1.6), we have

(3.5) TOSuP; e gy Y02 oo 1y (T =) | 1= h(z/M )| |o() — pof®)|
< TUHOTDK, sup o prnrp i L -1 7] P(T) = Po (7).

Since [d?(f~')/dw? —f®f ~2] has a derivative which satisfies a Lipschitz condition,
we have

[["lp(@)| = |2 e  [d"(f ™) der*] doo]
= (m)* B Ja)] ool RG =) +0(1e] 77,
where 0 < a, < o, and
q(v) = |2 e f ") do.

Letting ¢ = (1 —-pB)/(p+1+0ay) and { < ¢, we obtain
(3.6) YelelPle(R) = po(7)] £ Ype<re | 7]Plo(x) = po(7)]

H(m) 1Y <12 |40)| X o> 7| T — 0P| R(z = )]

(1) Yot 15 [4@)| pey > 1 [ = 0|7 | R(z = 0) [ +0(T ~ ).

The supremum over E; N F, of the first term on the right-hand side of (3.6) is
O(Ter* D= 1=h/2) By (1.1), the second term is O(T ~**). By (2.6), the third term is
0(T~**2), By choosing a, and { close enough to «, and &, respectively, we see that
the right side of (3.5) is bounded. Using the reasoning applied to (3.6), we obtain

(37) 1° ——(T (T~ |T|)ZIC(D=—00,I¢¢O |P(‘C+kT)—p0(r+kT)|
S TN 2 o] [p(2)— po(r)| = O(T? 50~ 1 +22))

and
(38 T1° :——(T 1)(T—|T|)Zl?9=—ook';eo|P(T+2k'MT)—Po(T+2k'MT)I
<2T1+GZ Mrlp(r) p0(1)| ___O(T1+0 6(p+az))

Applying (3.4), we see that (3.7) and (3.8) are bounded. This completes the proof of
Lemma 5.

Using Lemmas 4 and 5 and the argument that led from Lemmas 1-3 to the proof
of Theorem 1, we obtain

(3:9) P(k|/)—qefexp{—3S(/, T)} dm/Y =0 q:fexp {—=3S(f, T)} du — Oa.s.
Theorem 2 then follows from Theorem 1 and (3.9).

COROLLARY. Let Theorem 2 apply to all f, € F, except for a set that is null in the
measure L,q,u;. The expected cost of using the approximate posterior probabilities
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considered in Theorem 2 in the Bayes test approaches the expected cost of using the
exact posterior probabilities.

PRrROOF. Let R, k = 0, 1, ---, L be disjoint regions in the space of {X(#)} chosen
so that for {X(¢)} € R,

ming ;< Yizo C(F| DP(|]) = Lo C(k | DP(L]).
The cost of our approximate test is ).j=o [g,Y.i=0 C(Jj| )P(!| x)p(x)dx, where

p(x) = Yi—oqfn(x |0, Z)du.
We have

(310)  Th-ofr, X0 CU | DP(| X)p(x) dx
= jminogngZtI;o C(j | P! | x)p(x) dx
+Zf=0jRthL=o C(jl l)[P(lIx)—P(l If)]p(x)dx
+[mingg ;<1 30 C(F|DP(L]])
—ming <<y =0 C(J I NP1 l x)]p(x) dx.

The first term on the right-hand side of (3.10) is the Bayes cost and the second and

third terms approach zero by Theorem 2 and the Dominated Convergence
Theorem.
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