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A WEAK CONVERGENCE THEOREM FOR RANDOM SUMS IN A
NORMED SPACE!

By PEDRO J. FERNANDEZ
University of California, Berkeley®

0. Introduction. The present paper deals with the weak convergence of random
sums of independent random variables which take values in a normed space.
A similar problem but for independent random variables taking values in D[0, 1],
the set of all real-valued functions defined on [0, 1] which are right continuous with
left limits was studied by the same author in [3]. The main result of the paper is
Theorem 2.1.

1. Basic notation and terminology. Throughout this work the pair (Q, %) and
the triple (22, &, P) will denote a measurable space and a probability space respec-
tively. Let R denote the set of all real numbers.

For f:Q — R we define

| fdP = sup {[ gdP: g o/-measurable, g < f, [ gdP is defined}.

Similarly we define [* fdp. If 4 = Q we will write instead of [ 1,dP and |, I,dP,
1'(A) and p (A) respectively.

If (Q, &, P)and (Q', &', P’) are two probability spaces Px P’ will denote the
product probability on (Q xQ', o« x &’) ([4] page 145). Given (Q, o, P), (Q', ')
and X:Q — Q' o — o/’ measurable, we denote by PX ~! a probability on (Q’, &)
defined by PX~1(4’) = P(X~*(4")). We will also use the symbol Z(X) for PX 1.
Let now (S, d) be a metric space, with distance function d. Let C(S) denote the set
of all bounded real valued continuous functions on S. We write B, , (resp. Ex—,) for
the open (resp. closed) ball centered at x € S of radius r > 0:

B,,={yeS:d(x,y) < r}B,, = {y:d(x,y) < r}.

For A = S, we let A°, 4, 34 and A° denote respectively the complement of A4,
the closure of A, the boundary of 4 and the open é-ball {y:y € S, d(y, 4) < 6}
about 4. We let # denote the Borel g-algebra of S; this is the g-algebra generated
by the topology induced by d. It coincides with the minimal o-algebra that makes
measurable the bounded continuous real-valued functions on S. Let S, denote the
o-algebra generated by the balls of S. If the metric space is separable then clearly
B =S,
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It is easily seen that if K is compact d(-, K) is S,-measurable, from which it
follows that any compact set K€ S, and for any § = 0 also K°e S,. If € is a
g-algebra, S, = ¥ = % and p is a probability measure on € we say that p is tight
iff V ¢ > 0, there exists K a compact such that u(K) > 1—e¢. A subset 4 of S'is said
to be a P-continuity set (P defined on %) iff P(0(4)) = 0. The class of all P-
continuity sets is easily seen to be an algebra.

2. A weak convergence theorem for random sums in a normal space. Before
proving the main result several propositions and lemmas will be stated. Some of
these results are well known; in those cases no proofs will be given and only the
appropriate references will be listed. (S, d) will be a fixed metric space, and unless
explicit mention to the contrary is made, for any net of probability measures
{Us}oer We will always assume the existence of g-algebras {,},cr, So S &, € 4B,
with u, defined on «7,,.

DerINITION 2.1. Let {p,},er be a net of probabilities defined on o-algebras
A, 2 Sy We say that y, converges weakly to u and write p, —,u, or p = lim y, iff
for all bounded continuous functions f

lim, [*f dp, = lim, [ fdp, = [ fdp
where y is a probability defined on 8.

DEFINITION 2.2. A net {y,},.r of probabilities defined on c-algebras s/, 2 S,
is said to be o-tight iff

supg {inf; < lim inf, 1,(K®): K compact} = 1.

For properties regarding the mode of convergence given by Definition 2.1, the
concept of d-tightness, and related notions the reader is referred to [1], [2], [5], [8]
and [9].

PROPOSITION 2.1 If u is a tight probability measure defined on a o-algebra €, S, <
€ < B, then p can be extended to a probability on 4.

Proor. Notice that if p is tight [* fdu = {_fdu for all fe C(S). Define M(f) =
j' fdu for fe C(S). M is positive, linear, M(1) = 1 and o-smooth. The result now
follows from Daniell’s representation theorem ([7] Section I1.7).

Let (S, d) and (S’, d’) be two metric spaces. If we endow the product S x .S’ with
the max. metric:

@'((xx'), (y, ")) = max {d(x, y), d'(x', ")}

then (§XS")o = So%xSy’. If u and v are two tight probabilities on o-algebras
o 2 8, and &' 2 S, then by Proposition 2.1 ux v which is defined on & x o/’
can be extended to the Borel o-algebra of Sx.S’, we denote that extension by
u® v

In the following propositions we will always consider the following situation.
(E,||-|]) a normed space, 2 a c-algebra containing So, {#t}aer and {V,}qer are
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nets of probabilities on 2, and if ¢:EX E — E, ¢(x, y) = x+y, is the addition
operation in E, we will assume that ¢ is 2 X 2 — 2 measurable. If 4 and v are tight
probabilities on the Borel o-algebra of E then we define u*v = (1 ® v)¢ 1. An
&/ — % measurable random variable will be called a random element of E.

PROPOSITION 2.2. If 4, =, U, V, =, V, and p and v are tight then

(U X V)P ™! = V.

Proor. If p, —», p and v, -, v with u and v tight then y,xv, >, u ® v by
Theorem 1.6. of [9]. Then (i, X v,)¢ ~* =, p * v by a corollary to Theorem 1.2 (b)
of [9]. See also Dudley [2] or Lemma 5 of LeCam [5].

PROPOSITION 2.3. If {(4yX V)¢ '}uer is O-tight and *{ug}eer is O-tight then
{Va}zer is also 5-tight.

ProoF. The proof follows from the relation K°—K? = (K—K)?® which is valid
for any 8 > 0and any set K, and the inequality

(1o % va)d ™ (K?) < vo(K — K)*) + p(K?))

where Kis now a compact setand 6 > 0.

PROPOSITION 2.4. If u and v are two tight probability measures on the Borel
o-algebraof Eand i = pu * vthenv = 8, where 6,({0}) = 1.

PrOOF. If fi(y) = [ €™ u(dx) where y € E', the topological dual of E, is the
characteristic function of y, then it is not difficult to show that # = 1 = §,. From
this equality it follows that v = §, on the minimum c-algebra which makes
measurable all the elements of E’. Since v and d, are tight this implies that v = §,
on the Borel g-algebra.

PROPOSITION 2.5. (1, X V)~ =, and p, —,, uwhere i is tight. Then v, —, 8.

PrROOF. Since {p,}yer and {(u,xv))¢ '},cr converge are &-tight and by
Proposition 2.3 {v,},r is J-tight. It is enough to show now that if {v, },.cp- is a
subnet of {v,},.r which converges then v,. -, §,. If v,, =, v then v is tight and we
have (s X v,)¢ ™! =, u by assumption and (u, X v, )¢ ! =, u * v by assumption
and Proposition 2.2. Therefore u = p*v. The result now follows from
Proposition 2.4.

We come now to the main result of this paper. We also assume now that for any
real number A the mapping x — Ax is 2 — 2 measurable. From this assumption it
follows that the inequality given by Proposition 2.2 of [3] holds. Let {X,},-, ,, be
a sequence of independent &/ —2 measurable random variables, and {t,},- 1,5,
a sequence of positive integer-valued random variables satisfying Condition I of [3].
The main result of this paper is the following. Let {X,},-;,,, . be a sequence of
independent random variables and

Sn=Z?=1Xia St,.=Zit;1Xi'
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THEOREM 2.1. (a) If the random variables in the sequence are identically distributed
and Z(S,/n*) —,, 1 then .SF(S,"/I,,%) =, U

(b) If Z(S,/n*) -, pand p is tight then L(S . [7,}) =, p.

Proor. First notice that S, and S, / 7} are o/ — 2 measurable. As in Theorem 1
of [3] the problem is reduced to show that

P[”Scn—sa..” gb,,%/z]-»o asn—

where b, < a, < ¢,, b, > 0 and ¢,/b, - 1.
The proof of (a) is similar to the one given in Theorem 1 of [3].
To prove (b) we write

(culbn)Se,Jen* +(Se, = Sa,)Iba* +(an/b,) S, /a,*.
If we let
L((calbn)*Sc,cn*) = A
L((Se, = Sa)Ib*) = v,
L((anlbs)*S,, ant) = py

we have 1, = (u,xv,)¢ "' and A, =, p, u, =, 1 with p tight. Then by Proposition
2.5:v, -, 0o which is what we wanted to prove.

REMARK. The main result of this paper, though seemingly more general than the
one in [3], does not contain it. If we consider in DI[0, 1] the norm ||x|| =
SUPo<r<1 |x(t)|, D[0, 1] becomes a Banach space (not separable). It is not difficult
to show that the g-algebra generated by the Skorokhod topology 2, coincides with
the o-algebra S, generated by the balls (with respect to ||-||). Therefore in Theorem 1
of [3] the limit measure u is defined only on the g-algebra generated by the balls
while in Theorem 2.1 the limit measure is a Borel measure. If the limit measure
in the first case were concentrated on C[0, 1], the set of all continuous functions
on [0, 1], then Theorem 1 of [3] would be a particular case of Theorem 2.1 because,
since the uniform topology coincides with the Skorokhod topology on CI0, 1], u is
tight and by Proposition 2.1, can be extended to 4, the Borel g-algebra in D[0, 1]
for ||||- By an argument similar to the one used in [1], page 151 (where we have to
replace p, by u," all along, u, being £(S,/n?)), we have that £(S,/n*) -, u in the
sense of Definition 2.1. Therefore Theorem 2.1 can be applied. In particular
Theorem 1 of [3] remains true if the sequence of independent random elements
{X,}n=1,2,.. does not consist of identically distributed ones provided the limit

" measure is concentrated on CJ[0, 1].
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