A WEAK CONVERGENCE THEOREM FOR RANDOM SUMS IN A NORMED SPACE¹

By Pedro J. Fernandez

University of California, Berkeley²

- **0.** Introduction. The present paper deals with the weak convergence of random sums of independent random variables which take values in a normed space. A similar problem but for independent random variables taking values in D[0, 1], the set of all real-valued functions defined on [0, 1] which are right continuous with left limits was studied by the same author in [3]. The main result of the paper is Theorem 2.1.
- 1. Basic notation and terminology. Throughout this work the pair (Ω, \mathcal{A}) and the triple (Ω, \mathcal{A}, P) will denote a measurable space and a probability space respectively. Let R denote the set of all real numbers.

For $f:\Omega \to R$ we define

$$\int_* f dP = \sup \{ \int g dP : g \mathscr{A}\text{-measurable}, g \leq f, \int g dP \text{ is defined} \}.$$

Similarly we define $\int_{*}^{*} f dp$. If $A \subseteq \Omega$ we will write instead of $\int_{*}^{*} I_{A} dP$ and $\int_{*} I_{A} dP$, $\mu^{*}(A)$ and $\mu_{*}(A)$ respectively.

If (Ω, \mathcal{A}, P) and $(\Omega', \mathcal{A}', P')$ are two probability spaces $P \times P'$ will denote the product probability on $(\Omega \times \Omega', \mathcal{A} \times \mathcal{A}')$ ([4] page 145). Given (Ω, \mathcal{A}, P) , (Ω', \mathcal{A}') and $X:\Omega \to \Omega'$ $\mathcal{A} - \mathcal{A}'$ measurable, we denote by PX^{-1} a probability on (Ω', \mathcal{A}') defined by $PX^{-1}(A') = P(X^{-1}(A'))$. We will also use the symbol $\mathcal{Z}(X)$ for PX^{-1} . Let now (S, d) be a metric space, with distance function d. Let C(S) denote the set of all bounded real valued continuous functions on S. We write $B_{x,r}$ (resp. $\overline{B_{x,r}}$) for the open (resp. closed) ball centered at $x \in S$ of radius r > 0:

$$B_{x,r} = \{ y \in S : d(x, y) < r \} \overline{B_{x,r}} = \{ y : d(x, y) \le r \}.$$

For $A \subseteq S$, we let A^c , \overline{A} , ∂A and A^δ denote respectively the complement of A, the closure of A, the boundary of A and the open δ -ball $\{y:y\in S,\ d(y,A)<\delta\}$ about A. We let $\mathcal B$ denote the Borel σ -algebra of S; this is the σ -algebra generated by the topology induced by d. It coincides with the minimal σ -algebra that makes measurable the bounded continuous real-valued functions on S. Let S_0 denote the σ -algebra generated by the balls of S. If the metric space is separable then clearly $\mathcal B = S_0$.

Received March 18, 1970; revised January 4, 1971.

¹ This paper was prepared with the partial support of the U.S. Army Research Office (Durham), Grants DA-ARO-D-31-124-6816 and DA-ARO-D31-124-G1135.

² Now at the Instituto de Matemática Pura e Aplicada, Rio de Janeiro.

It is easily seen that if K is compact $d(\cdot, K)$ is S_0 -measurable, from which it follows that any compact set $K \in S_0$ and for any $\delta \ge 0$ also $K^{\delta} \in S_0$. If $\mathscr C$ is a σ -algebra, $S_0 \subseteq \mathscr C \subseteq \mathscr B$ and μ is a probability measure on $\mathscr C$ we say that μ is tight iff $\forall \ \varepsilon > 0$, there exists K a compact such that $\mu(K) > 1 - \varepsilon$. A subset A of S is said to be a P-continuity set (P defined on $\mathscr B$) iff $P(\partial(A)) = 0$. The class of all P-continuity sets is easily seen to be an algebra.

2. A weak convergence theorem for random sums in a normal space. Before proving the main result several propositions and lemmas will be stated. Some of these results are well known; in those cases no proofs will be given and only the appropriate references will be listed. (S, d) will be a fixed metric space, and unless explicit mention to the contrary is made, for any net of probability measures $\{\mu_{\alpha}\}_{\alpha\in\Gamma}$ we will always assume the existence of σ -algebras $\{\mathscr{A}_{\alpha}\}_{\alpha\in\Gamma}$, $S_0\subseteq\mathscr{A}_{\alpha}\subseteq\mathscr{B}$, with μ_{α} defined on \mathscr{A}_{α} .

DEFINITION 2.1. Let $\{\mu_{\alpha}\}_{{\alpha}\in\Gamma}$ be a net of probabilities defined on σ -algebras $\mathscr{A}_{\alpha}\supseteq S_0$. We say that μ_{α} converges weakly to μ and write $\mu_{\alpha}\to_{\omega}\mu$, or $\mu=\lim_{\alpha}\mu_{\alpha}$ iff for all bounded continuous functions f

$$\lim_{\alpha} \int_{-\pi}^{\pi} f d\mu_{\alpha} = \lim_{\alpha} \int_{\pi} f d\mu_{\alpha} = \int f d\mu$$

where μ is a probability defined on \mathcal{B} .

Definition 2.2. A net $\{\mu_{\alpha}\}_{\alpha \in \Gamma}$ of probabilities defined on σ -algebras $\mathscr{A}_{\alpha} \supseteq S_0$ is said to be δ -tight iff

$$\sup_{K} \{\inf_{\delta \leq 0} \lim \inf_{\alpha} \mu_{\alpha}(K^{\delta}) : K compact\} = 1.$$

For properties regarding the mode of convergence given by Definition 2.1, the concept of δ -tightness, and related notions the reader is referred to [1], [2], [5], [8] and [9].

PROPOSITION 2.1 If μ is a tight probability measure defined on a σ -algebra \mathscr{C} , $S_0 \subseteq \mathscr{C} \subseteq \mathscr{B}$, then μ can be extended to a probability on \mathscr{B} .

PROOF. Notice that if μ is tight $\int_{*}^{*} f du = \int_{*}^{*} f d\mu$ for all $f \in C(S)$. Define $M(f) = \int_{*}^{*} f d\mu$ for $f \in C(S)$. M is positive, linear, M(1) = 1 and σ -smooth. The result now follows from Daniell's representation theorem ([7] Section II.7).

Let (S, d) and (S', d') be two metric spaces. If we endow the product $S \times S'$ with the max. metric:

$$d''((x,x'),(y,y')) = \max\{d(x,y),d'(x',y')\}\$$

then $(S \times S')_0 = S_0 \times S_0'$. If μ and ν are two tight probabilities on σ -algebras $\mathscr{A} \supseteq S_0$ and $\mathscr{A}' \supseteq S_0'$ then by Proposition 2.1 $\mu \times \nu$ which is defined on $\mathscr{A} \times \mathscr{A}'$ can be extended to the Borel σ -algebra of $S \times S'$, we denote that extension by $\mu \otimes \nu$.

In the following propositions we will always consider the following situation. $(E, ||\cdot||)$ a normed space, \mathscr{D} a σ -algebra containing S_0 , $\{\mu_{\alpha}\}_{\alpha \in \Gamma}$ and $\{\nu_{\alpha}\}_{\alpha \in \Gamma}$ are

nets of probabilities on \mathscr{D} , and if $\phi: E \times E \to E$, $\phi(x, y) = x + y$, is the addition operation in E, we will assume that ϕ is $\mathscr{D} \times \mathscr{D} - \mathscr{D}$ measurable. If μ and ν are tight probabilities on the Borel σ -algebra of E then we define $\mu * \nu = (\mu \otimes \nu)\phi^{-1}$. An $\mathscr{A} - \mathscr{D}$ measurable random variable will be called a random element of E.

PROPOSITION 2.2. If $\mu_{\alpha} \to_{\omega} \mu$, $\nu_{\alpha} \to_{\omega} \nu$, and μ and ν are tight then

$$(\mu_{\alpha} \times \nu_{\alpha}) \phi^{-1} \rightarrow_{\omega} \mu * \nu.$$

PROOF. If $\mu_{\alpha} \to_{\omega} \mu$ and $\nu_{\alpha} \to_{\omega} \nu$ with μ and ν tight then $\mu_{\alpha} \times \nu_{\alpha} \to_{\omega} \mu \otimes \nu$ by Theorem 1.6. of [9]. Then $(\mu_{\alpha} \times \nu_{\alpha})\phi^{-1} \to_{\omega} \mu * \nu$ by a corollary to Theorem 1.2 (b) of [9]. See also Dudley [2] or Lemma 5 of LeCam [5].

PROPOSITION 2.3. If $\{(\mu_{\alpha} \times \nu_{\alpha})\phi^{-1}\}_{\alpha \in \Gamma}$ is δ -tight and $\{\mu_{\alpha}\}_{\alpha \in \Gamma}$ is δ -tight then $\{\nu_{\alpha}\}_{\alpha \in \Gamma}$ is also δ -tight.

PROOF. The proof follows from the relation $K^{\delta} - K^{\delta} \subseteq (K - K)^{2\delta}$ which is valid for any $\delta > 0$ and any set K, and the inequality

$$(\mu_{\alpha} \times \nu_{\alpha}) \phi^{-1}(K^{\delta}) \leq \nu_{\alpha}((K - K)^{2\delta}) + \mu_{\alpha}((K^{\delta}))$$

where K is now a compact set and $\delta > 0$.

PROPOSITION 2.4. If μ and ν are two tight probability measures on the Borel σ -algebra of E and $\mu = \mu * \nu$ then $\nu = \delta_0$ where $\delta_0(\{0\}) = 1$.

PROOF. If $\hat{\mu}(y) = \int_E e^{i\langle x,y\rangle} \mu(dx)$ where $y \in E'$, the topological dual of E, is the characteristic function of μ , then it is not difficult to show that $\hat{v} = 1 = \delta_0$. From this equality it follows that $v = \delta_0$ on the minimum σ -algebra which makes measurable all the elements of E'. Since v and δ_0 are tight this implies that $v = \delta_0$ on the Borel σ -algebra.

PROPOSITION 2.5. $(\mu_{\alpha} \times \nu_{\alpha}) \phi^{-1} \to_{\omega} \mu$ and $\mu_{\alpha} \to_{\omega} \mu$ where μ is tight. Then $\nu_{\alpha} \to_{\omega} \delta_0$.

PROOF. Since $\{\mu_{\alpha}\}_{\alpha \in \Gamma}$ and $\{(\mu_{\alpha} \times \nu_{\alpha})\phi^{-1}\}_{\alpha \in \Gamma}$ converge are δ -tight and by Proposition 2.3 $\{\nu_{\alpha}\}_{\alpha \in \Gamma}$ is δ -tight. It is enough to show now that if $\{\nu_{\alpha'}\}_{\alpha' \in \Gamma'}$ is a subnet of $\{\nu_{\alpha}\}_{\alpha \in \Gamma}$ which converges then $\nu_{\alpha'} \to_{\omega} \delta_0$. If $\nu_{\alpha'} \to_{\omega} \nu$ then ν is tight and we have $(\mu_{\alpha'} \times \nu_{\alpha'})\phi^{-1} \to_{\omega} \mu$ by assumption and $(\mu_{\alpha'} \times \nu_{\alpha'})\phi^{-1} \to_{\omega} \mu * \nu$ by assumption and Proposition 2.2. Therefore $\mu = \mu * \nu$. The result now follows from Proposition 2.4.

We come now to the main result of this paper. We also assume now that for any real number λ the mapping $x \to \lambda x$ is $\mathscr{D} - \mathscr{D}$ measurable. From this assumption it follows that the inequality given by Proposition 2.2 of [3] holds. Let $\{X_n\}_{n=1,2,...}$ be a sequence of independent $\mathscr{A} - \mathscr{D}$ measurable random variables, and $\{\tau_n\}_{n=1,2,...}$ a sequence of positive integer-valued random variables satisfying Condition I of [3]. The main result of this paper is the following. Let $\{X_n\}_{n=1,2,...}$ be a sequence of independent random variables and

$$S_n = \sum_{i=1}^n X_i, \qquad S_{\tau_n} = \sum_{i=1}^{\tau_n} X_i.$$

THEOREM 2.1. (a) If the random variables in the sequence are identically distributed and $\mathcal{L}(S_n/n^{\frac{1}{2}}) \to_{\omega} \mu$ then $\mathcal{L}(S_{\tau_n}/\tau_n^{\frac{1}{2}}) \to_{\omega} \mu$.

(b) If
$$\mathscr{L}(S_n/n^{\frac{1}{2}}) \to_{\omega} \mu$$
 and μ is tight then $\mathscr{L}(S_{\tau_n}/\tau_n^{\frac{1}{2}}) \to_{\omega} \mu$.

PROOF. First notice that S_{τ_n} and $S_{\tau_n}/\tau_n^{\frac{1}{2}}$ are $\mathscr{A}-\mathscr{D}$ measurable. As in Theorem 1 of [3] the problem is reduced to show that

$$P[||S_{c_n} - S_{a_n}|| \ge b_n^{\frac{1}{2}} \varepsilon/2] \to 0 \qquad \text{as } n \to \infty$$

where $b_n \le a_n < c_n$, $b_n \to \infty$ and $c_n/b_n \to 1$.

The proof of (a) is similar to the one given in Theorem 1 of [3].

To prove (b) we write

$$(c_n/b_n)^{\frac{1}{2}}S_{c_n}/c_n^{\frac{1}{2}}+(S_{c_n}-S_{a_n})/b_n^{\frac{1}{2}}+(a_n/b_n)^{\frac{1}{2}}S_{a_n}/a_n^{\frac{1}{2}}.$$

If we let

$$\mathcal{L}((c_n/b_n)^{\frac{1}{2}}S_{c_n}/c_n^{\frac{1}{2}}) = \lambda_n$$

$$\mathcal{L}((S_{c_n} - S_{a_n})/b_n^{\frac{1}{2}}) = \nu_n$$

$$\mathcal{L}((a_n/b_n)^{\frac{1}{2}}S_{a_n}/a_n^{\frac{1}{2}}) = \mu_n$$

we have $\lambda_n = (\mu_n \times \nu_n) \phi^{-1}$ and $\lambda_n \to_{\omega} \mu$, $\mu_n \to_{\omega} \mu$ with μ tight. Then by Proposition 2.5: $\nu_n \to_{\omega} \delta_0$ which is what we wanted to prove.

REMARK. The main result of this paper, though seemingly more general than the one in [3], does not contain it. If we consider in D[0, 1] the norm ||x|| = $\sup_{0 \le t \le 1} |x(t)|$, D[0, 1] becomes a Banach space (not separable). It is not difficult to show that the σ -algebra generated by the Skorokhod topology \mathcal{D} , coincides with the σ -algebra S_0 generated by the balls (with respect to $||\cdot||$). Therefore in Theorem 1 of [3] the limit measure μ is defined only on the σ -algebra generated by the balls while in Theorem 2.1 the limit measure is a Borel measure. If the limit measure in the first case were concentrated on C[0, 1], the set of all continuous functions on [0, 1], then Theorem 1 of [3] would be a particular case of Theorem 2.1 because, since the uniform topology coincides with the Skorokhod topology on C[0, 1], μ is tight and by Proposition 2.1, can be extended to \mathcal{B} , the Borel σ -algebra in D[0, 1]for $||\cdot||$. By an argument similar to the one used in [1], page 151 (where we have to replace μ_n by μ_n^* all along, μ_n being $\mathcal{L}(S_n/n^{\frac{1}{2}})$, we have that $\mathcal{L}(S_n/n^{\frac{1}{2}}) \to_{\omega} \mu$ in the sense of Definition 2.1. Therefore Theorem 2.1 can be applied. In particular Theorem 1 of [3] remains true if the sequence of independent random elements $\{X_n\}_{n=1,2,...}$ does not consist of identically distributed ones provided the limit measure is concentrated on C[0, 1].

Acknowledgment. I would like to express my deep gratitude to Professor LeCam for his guidance and encouragement during the preparation of this work.

REFERENCES

- [1] BILLINGSLEY, PATRICK (1968). Convergence of Probability Measures. Wiley, New York.
- [2] DUDLEY, R. M. (1966). Weak convergence of probabilities on nonseparable metric spaces and empirical measures on Euclidean spaces. *Illinois J. Math.* 10 109-126.
- [3] Fernandez, P. J. (1970). A weak convergence theorem for random sums of independent random variables. *Ann. Math. Statist.* 41 710–712.
- [4] HALMOS, PAUL R. (1950). Measure Theory, Van Nostrand, Princeton.
- [5] LECAM, L. (1957). Convergence in distribution of stochastic processes. *Univ. California Publ. Statist.* 2, 11 207–236.
- [6] LOEVE, M. (1963). Probability Theory, 3rd ed. Princeton Univ. Press.
- [7] Neveu, J. (1965). Mathematical Foundations of the Calculus of Probability. Holden-Day, San Francisco.
- [8] VARADARAJAN, V. S. (1961). Measures on topological spaces. Mat. Sbornik 55 1 35-100.
- [9] Wichura, M. J. (1968). On the weak convergence of non-Borel probabilities on a metric space. Ph.D. Dissertation, Columbia Univ.