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THE SERIAL CORRELATION COEFFICIENTS OF WAITING TIMES
IN THE STATIONARY GI/M/1 QUEUE!
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Monash University

1. Introduction. The serial correlation coefficients {r,} of a stationary sequence
of waiting times in the GI/G/l1 queueing system have recently been studied
by Daley (1968a) and Blomqvist (1968, 1969). From a practical point of view,
knowledge of the properties of {r,} is useful for obtaining the variance of the mean
of a sample of waiting times, and thus for obtaining some idea of required sample
sizes for estimation and simulation. For example, Blomqvist (1968) has defined,
for a stable GI/G/1 system with zero initial waiting time, an estimator for the
expected stationary waiting time which is based on a sample of successive waiting
times. He shows that the mean square error of this estimator can be expressed in
terms of Xr,. Blomqvist (1969) has given heavy traffic approximations for r, and
r,. The special case of the stationary M/G/1 queue has been treated in some detail
by Daley (1968a) and Blomgqvist (1967).

In this paper we consider the stationary GI/M/1 queue, thus complementing the
work of Daley and Blomqvist, and also of Daley (1968b) and Pakes (1971) where a
discussion is given of the serial correlation coefficients of a stationary sequence of
queue lengths embedded at the epochs of arrival of successive customers. In Section
3 we evaluate {r,} for the stationary GI/M/1 queue and in Section 4 we discuss
heavy traffic approximations.

A quantity related to waiting time is the sojourn, or waiting plus service, time
of a customer. In Section 5 we consider {z,}, the serial correlation coefficients of a
stationary sequence of sojourn times in the GI/G/1 queue. Using the results and
methods of Section 3, we evaluate {r,} for the stationary GI/M/1 queue and thus
show the equality of this sequence and the sequence of correlation coefficients of a
stationary sequence of queue lengths embedded at arrival epochs.

2. Notation. We consider a GI/G/1 queue where the nth arriving customer is
denoted by C,(n =0, 1, ---), T, is the interarrival time of C, and C,.,, and
S, W, and V, = W,+S, are the service, waiting and sojourn times of C,,
respectively. Forn = 0, 1, ---, we let A(x) = Pr {T, < x}and B(x) = Pr {S, < x}
(x = 0) with 4(0+) = B(0+) = 0. We assume that {S,} and {T,} are independent
sequences of mutually independent random variables and we put U, = S,—T,
with U(x) = Pr (U, £ x) (—o0 < x < 00). We denote the moments of the inter-
arrival times by A, = E(T,") and of the service times by u, = E(S,)) (r = 1, 2, --),
when they exist. We always assume A,, u; < oo.
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The distribution functions of the sojourn times and waiting times will be denoted
by F,(x) = Pr(V, < x) and G,(x) = Pr {W, < x}, respectively. When E(U,) < 0
it is well known that F(x) = lim,_, ., F,(x) and G(x) = lim,_, ,G,(x) exist and are
proper distribution functions. Moreover, they define stationary distributions of the
sojourn time and waiting time processes respectively. When they exist, we denote
the moments of these distributions by v, = [§ ¥dF(x) and w, = [§ x"dG(x)
(r =1,2,-).Given 4, < oo, a necessary and sufficient condltlon for the ﬁmteness
of v and w, 1s that u,., < oo. Letting pu; < co, we define 0,2 = v,—v.? and
0,2 = wy—w,;% When E(U,) < 0, we define 7, = [Cov (Vo, Vole,? and r, =
[Cov (W, W,,)]/awz(n = 0,1, ) to be the serial correlation coefficients of a
stationary sequence of sojourn times and waiting times, respectively. Daley
(1968a) has shown that in a stationary GI/G/1 system, {r,} is monotone non-
increasing with limit zero and Y ;%o 7, < c0iffpu, < 00

3. The serial correlation coefficients of waiting times in GI/M/1. For the GI/M/1
queue we have B(x) = 1—e *(u > 0), so that yu; = 1/u. When p;—4; <0 it is
well known (e.g. Takacs (1962)) that the stationary (and limiting) waiting time
distribution function is given by G(x) = 1—E&e™** where £ = 1—v/u, v is the
unique positive solution of pu—v—pux(v) =0, and o(-) is the Laplace-Stieltjes
transform of A(-). With this notation we prove the following theorem.

THEOREM 1. The generating function R(t) =Y ort'(|t| <1) of the serial
correlation coefficients {r,} of the waiting times in the stationary GI/M/1 queue is
given by

1 (19t (1-8°¢()
1 R() = -
2 R v I O] () = e () (e )

(1—8)*1¢(1)
MG OEDEE0)

where for 0 < t < 1v(t) = p(1—&(2)) is the unique positive solution of u—0—puta(0)
= 0. The correlation coefficients are given by (n = 1, 2, -++)

(1= (-2 (1-¢p a
@ "R e é)kZ Bt =), (B

where

rL )

(3) Bn = Pr(Wm # O(m = 1’ 2’ B n)’ WO 0) (dt" 1 (1 t)z

ProOF. The proof is accomplished by using techniques similar to those of
Daley (1968d). Since {W,} is a Markov chain we have

E(WoW,) = [ EW,| W, = x)dEWo; Wy < %) (n=1,2,--).
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We evaluate the integrating function by first finding
(4) E(e™™; W, <x)=[p,<xe °dPr

=[G [L—E+EW(1—e” OV (G v) e dz dA(y)

=[(6(1 —&)+v)(1 —ap) e #*) — uv&(o(6 +v) e~ O —a(p) e™#¥)

+(u—=v=0)]/(0+v).
On observing that o'(v) = — (1 —¢/&(1)/p, Pr (W, < x| Wy = 0) = 1 —e™*a(u)
and E(W,; W, £ x) = £[(1 —e™")/v—xe~ "], differentiation of (4) yields
E(Wo; Wy < x) = E(Wy; Wy £ x)+((1—&)/ué) Pr (W, £ x| W, =0)
—(Pr (W, = ))E(1)~[(1- e~ /W) HIH()

where H(x) is the unit step function with its jump at x = 0. Thus, by stationarity,
we obtain

E(WoWn)—E(WO Wn—l) = ((1 _6)/ﬂé)(E(Wn_ W1 ‘ Wo = 0))
B,y | Wo = O —EM)ut(l)  (n=1,2,).

Equation (1) now follows by taking generating functions and noting that ¢, =
(2¢ —&2)/v? and that the generating function of {E(W, | W, = 0)} may be found
explicitly (e.g. from Takacs (1962) page 121 (28)).

Lagrange’s theorem on the reversion of power series shows that &(¢)/(1—¢&(1))=
Y . B,t" where B, is given by the right-hand member of (3), and the first
equality follows from Pakes (1971) (last equation in Section 5). Equation (2) now
follows from (1), and the proof is complete.

We shall see below that for a stationary GI/M/1 queue {r,} is a convex sequence
and it is known (Daley (1968a)) that for a stationary M/G/1 system {r,} is convex.
However it is not clear from (2) whether {r,} is convex for the stationary GI/M/1
queue. Similarly, it is unclear whether, or not, {t,}, for the stationary M/G/1

system, is convex.

4. Estimation and heavy traffic approximations. In order to estimate the mean of a
stationary stochastic process such as is the waiting time process {#,}, given a
sample of observations (W, ---, Wy), we form the unbiased estimator
m = (Y.N_, W,)/N whose variance is given exactly by

Var(m) = 6,2 {N+2YN_! (N —n)r,}/N2.
If Zr, converges, the variance of the sample mean is, when N is large, asymptotic-
ally equal to
) o, {1+235%  1,}IN.

Thus for the purposes of estimating w, in this way, we are interested in the conver-
gence of Xr,, and it follows from the nonnegativity of r, and Abel’s theorem that
Y ots < coifflim,,; R(t) < co, and the two limits are equal.
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LEMMA 1. For the stationary GI/M/1 queue, Y o1, < o0 and is given by
(6)  Yiiora=[1/E+EM)/E(1-&) - (DA -E)/E*+&"(1)/28¢(1)])(2-¢)
=1/(1=&)(1 4 po') + " [2(2— E)(1 + pot’)?

where o' and o” are the first and second derivatives of a(0) respectively, evaluated
at p(1-9).

Proor. That the series does converge follows from Daley’s result mentioned
at the end of Section 2, and a two-fold application of L’Hospital’s rule to (1) gives
the first equality in (6). Now &(¢) satisfies £(¢) = ta[u(l —&(¢))] and this equation
can be used to eliminate £'(1) and £(1) in (6) to give the second equality.

Let p = 1/ul; < 1 be the traffic intensity. Under actual operating conditions
interest often attaches to the case in which p approaches unity from below, the
well-known condition of heavy traffic. We shall now obtain the heavy traffic

forms of expressions (6) and (2).

LEMMA 2. For the stationary GI/M/1 queueing system with fixed interarrival time
distribution function and A, < o,

(7) 207w = [Aaf A2 +0(1)]/(1-p)? (p11).

REMARKS. (i) Strictly speaking, the result is to be proved for a family of stationary
GI/M/1 systems with common A(-) and with u such that 0 < 1—p < 1.

(ii) The lemma shows that to achieve reasonable sampling accuracy in estimating
the mean waiting time, the sample size, N, should satisfy N ~ K(1 —p)~ 2 for some
constant K, when p is near one.

(iii) The lemma is contained in Corollary 2.1 of Blomgqvist (1969) but his result
(which is for a stationary GI/G/1 system) requires 1, < co. If we make this
assumption here then we can show that Y2, r, = a,/(1—p)*+a,/(1—p)+O(1)
(p11) where a; = A,/A;* and a, is a function of 4;, 4, and 4. Daley (1968a) has
obtained a similar expansion for a family of stationary M/G/1 systems having
common service time distribution functions with pu, < c0. The leading term of his
expansion is (u2/p1%)/(1—p)*.

Proor. Noting that £ — 1 as p11 and substituting the expressions
(8) 1—&=2(1—p)/pp’a"(8,) (0<8, <pu(1-¢)
L1+ pa’ =(1-p)[2¢"(0,)/a"(6,)~1]/p (0 <0, < u(1—¢))

into (6) yields (7). Expressions (8) are derived using Taylor’s theorem; see Daley
(1968b) for the details.

THEOREM 2. For a family of GI/M/1 queues with fixed interarrival time distribution
Junctions such that 15 < oo, and with service distribution function parameter u such
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that 0 < 1—p < 6 < 1, the serial correlation coefficients, r,, of a stationary
sequence of waiting times satisfy

9) |1—-Qn(1-p)*—r,| < K(1—p)?
for any finite set of integersn = 1,2, -+, N, where Q = 21,2/ A, and K is a constant
depending on N.

RemARKS. Blomgqvist (1969) has obtained a theorem for the stationary GI/G/1
queue which shows that, under our conditions, 1—Qn(1—p)2—r, = o[(1—p)?]
(p11) for each fixed positive integer n. In our case we only need A, < oo for this

result to hold.
Daley (1968a) has obtained a result of the form (9) for the stationary M/G/1

system with u; < oo and Q = 2u,%/u,.
ProOF. The first part of (8) can be cast into the form
1—-& =Q(1—p)+22,*(1—p)(A, —«"(6,))/2,2"(61) + O[(1— p)*]
where 0 < 6, < u(1—¢£). Thus we have
0 2, —a’(0,) < [ x*(1— e~ =9%) dA(x) < pu(1—&) |3 x* dA(x).
The right-hand side is O(1 — p) by virtue of (8) and A; < co. Hence

(10) 1-¢ =0(1-p)+0[(1-p)’]
and a similar argument shows that
(11) 1/E(1) =(1+pa’)/é =1—p+0O[(1—p)*].

Since a(u(1 — x)) is a regular function of x in |x| < & < 1 and a continuous function
of p in a closed interval containing {0 < 1—p < § < 1}, the theorem follows on
substituting (10) and (11) into (2) and noting that the summations therein form a
finite set of finite sums of finite order derivatives of a(u(l —x))/(1—x)? and are
thus uniformly bounded intheset {x = 0;0 < 1—p = 6 < 1}.

5. Sojourn times. From the definition of the sojourn time, V,, of C, in a GI/G/1
queue, it is easily seen that V,,; = (V,—T,)* +S,+, and our assumptions imply
that {V,;n =0, 1, ---} is a Markov chain defined on the nonnegative real line.
The transition probability of this Markov chain is given by

Pr{V,i1 x|V, =y} =[sPr{(y—T,)" < x—z}dB(2)
= B(x)—[5 A(z—x+y—0)dB(z) (n=0,1,---;x,y 2 0).

For each fixed x = 0, this function is a non-increasing function of y, thus the
Markov chain {V,} is stochastically monotone and a result of Daley (1968c) allows

us to assert
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THEOREM 3. In the queue GI/G/[1 with u; < oo and E(U,) < O, the serial cor-
relation coefficients, {t,}, of a stationary sequence of sojourn times, decrease
monotonically to zero.

Since S, is independent of Sy, W, and W, we have
(12) Cov (Vy, V,) = Cov(Wo, W,)+Cov (S,, W,) (n=1,2,--).
For a stationary GI/G/1 queue define the functions C,(x) = E(Sy; W, = x) =
fw,<xSodPr(n=1,2,---;x 2 0) so that
(13) E(SoW,) = [§xdC,(x) = [§ (u; — C\(x)) dx and
Crri(¥) = J- Ux—3)dC,3) = [ C(x—)dU().
Letting x{A} be the indicator function of the set 4, we have

Cy(x) = E(Sox{(Wo+So—To)" < x})
= E(E(Sox{(Wo+So—To)" < x}| W, Tp)))
< E(E(So)E({(Wo+So—To)" = x} | Wo, To)) = #1G(x)

since y{(Wo+So—T,)* < x} is a non-increasing function of S, and Gurland’s
(1967) lemma has been applied; see also Daley (1968d). This bound and station-
arity together with (13) imply that C,(x) < u;G(x) (x 2 0; n = 1,2, --) which
with the observation that C,(x)1u;(x — c0), implies that

Cov (S, W) = [ (4, G(x) — Cy(x)) dx 2 0,

and thus Cov (V,, V,) = Cov (W,, W,). This, together with Daley’s theorem
mentioned at the end of Section 2, proves the first half of

THEOREM 4. If {V,} is a stationary sequence of sojourn times of the G1/G/1 queue
with s, Ay < oo and E(U,) < 0O, then the necessary and sufficient condition that
w0 Cov (Vy, V,) < oo isthat u, < 0.

PROOF OF SUFFICIENCY. In view of Daley’s theorem it suffices to prove that
Yy Cov (So, W,) < o0 if ps < 00. Define the functions

R,(») = ap,(y) =[5 (1:G(x)—C,(x))dx (y 2 0;n=1,2,--)

where a = o,(Var S;)* > 0. The integrand is nonnegative and so for each
n=12 - pl) is a continuous, non-decreasing and nonnegative function
with p,(0) = 0 and lim,., ,p,(») = (Cov (Sy, W,))/a < 1. Thus each p,(-) is
the distribution function of a (possibly defective) random variable. By using
substantially the same argument as in the proof of Theorem 2 of Daley (1968a)

we can show that
Z,?:Z COV(S(), VV”) = 580 H(x) de(x)
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where H(x) is the unique nonnegative renewal function satisfying
H(x) = V(x)+ [, H(x—y)dV(y) (x 2 0), V(x) =1—-U(—x—0)
and which also satisfies the inequality
ex[2+K, £ H(x) £ 2ex+K, (xz0)
where K; and K, are finite constants and 1/¢ = E(—U,) > 0. Thus we see that

Y1 Cov(So, W,) converges or diverges with [§ x dR,(x).
Now by definition

Ci(%) = E(So; (Wo+50)" = X) = [ [ fwry-n* ssuopz0 ¥ dB(y) dG(u) dA(v)
=[5 8 yG(x+v—y)dA(v)dB(y)
(using Fubini’s theorem)
2 [§ yG(x—y)dB(y).
This gives
& xdRy(x) £ (& x[1,G(x)— [ yG(x—y) dB(y)] dx
=[x J& ¥(G(x)— G(x—y)) dB(y) dx.
Use of Fubini’s theorem shows this to be
18 v [& x(G(x)— G(x— y))dx dB(y) = [& (w,y*+y*/2)dB(y)
= Wyliy + /2
and this completes the proof.
By using the representation given above for ) 52, Cov (S,, W,) it can be shown
that under certain conditions (see Blomqvist (1969) Theorem 2) Y 2, Cov (V,, V)

~ Y o Cov(W,, W,)as E(U,)10. A similar argument to that which leads to
Theorem 6 in Blomqvist (1969) enables us to state that

0,2 —Cov(Vo, V,)+nw,E(U,) = o(1) (E(U,)10)

for each fixed n, provided certain extra conditions are satisfied and for which we
refer to the paper cited above.

Consider now the stationary GI/M/1 queue. In view of (12) and Theorem 1, it is
only necessary to find Cov (S,, W,) in order to calculate Cov (V,, V,). Since
{W,}is a Markov chain,

E(SO Wn) = '[80_ E(VI,” | Wl = x)de(SO; Wl é x) (n = 1, 2, "‘).
Using the notation of Section 2, we have
E(e™"%; W, < x) = [& [ e~ @ W=(1 - F ™"+~ dz dA(y)

_ U B #62 J— 0Vd(0+/l) e_(o+”)x
O+p 0+ué (0+m)(0+1g) '
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Differentiation yields
E(So; Wi < %) = [1—E ™ (1 &)1 —a() )]
=[Pr(W, = x)—(1=¢) Pr(W, = x| Wo = 0))/u¢
and so
E(SoW,) = [w, —(1=&)E(W, | W, = 0)]/ué.

(Since {E(W, | W, = 0)} is monotone non-decreasing we see that {Cov (Sy, W,);
n = 1,2, ---} is a non-increasing sequence. This property holds for any stationary
GI/G/1 queue (with p; < o) as can be seen by applying Gurland’s lemma to
So(W,+U,)* —W,). This expression yields

Y1 Cov(So, Wyt = [1— (1= £)8(1)/E(1 () I/w(1-1)

and combining this with the generating function of {Cov (W,, W,)} through (12)
and recalling that 0,2 = 1/(u(1—¢))? leads to an expression for Y 2%, 7,¢" which is
identical to the generating function of the serial correlation coefficients of a
stationary sequence of queue lengths embedded at arrival epochs (for example
see Daley (1968b) or Pakes (1971)).
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REFERENCES

Bromqvist, N. (1967). The covariance function of the M/G/1 queueing system. Skand.
Aktuarietidskr. 50 157-174.

BromqvisT, N. (1968). Estimation of waiting time parameters in the GI/G/1 queueing system.
Part 1: General results. Skand. Aktuarietidskr.51 178-197.

BrLoMmaqvisT, N. (1969). Estimation of waiting time parameters in the GI/G/1 queueing system.
Part 2: Heavy traffic approximations. Skand. Aktuarietidskr.52 125-136.

DaLEY, D. J. (1968a). The serial correlation coefficients of waiting times in a stationary single
server queue. J. Austral. Math. Soc. 8 683-699.

DALEY, D. J. (1968b). Monte Carlo estimation of the mean queue size in a stationary GI/M/1
queue. Operations Res. 16 1002-100S.

DALEY, D. J. (1968c). Stochastically monotone Markov chains. Z. Wahrscheinlichkeitstheorie und
Verw. Gebiete. 10 305-317.

DaLEY, D. J. (1968d). The correlation structure of the output process of some single server
queueing systems. Ann. Math. Statist. 39 1007-1019.

GURLAND, J. (1967). An inequality satisfied by the expectation of the reciprocal of a random
variable. Amer. Statistician 21 24-25.

Pakes, A. G. (1971). The correlation coefficients of the queue lengths of some stationary single
server queues. J. Austral. Math. Soc.13 35-46.

TAKACS, L. (1962). An Introduction to the Theory of Queues. Oxford Univ. Press.



