The Annals of Mathematical Statistics
1971, Vol. 42, No. 5, 1588-1594

NEW CRITERIA FOR ESTIMABILITY FOR LINEAR MODELS!*?

By GEORGE A. MILLIKEN
Kansas State University

A new criterion for determining the estimability of linear combinations
of the parameters of a linear model is established. The result consists of
evaluating the trace of a matrix and thus only one number must be checked
to determine estimability. The sums of squares necessary to test hypotheses
about estimable linear combinations are also derived. Finally, a stepwise
computational procedure to compute generalized inverses and matrix
products involving generalized inverses is presented. Using the theory and
computational techniques, a computer program can be developed to
provide a complete analysis of the linear model using generalized inverses.

1. Introduction. Let
(1.1) y = Xp+e

be any linear model (LM) where y is a nx 1 random observation vector, X is a
n X p matrix of known constants (design matrix) of rank ¢ (¢ < n), pis a px1
vector of unknown parameters defined in E,, and e is an unobserved random normal
vector with mean 0 and covariance matrix ¢2I where ¢ is positive and unknown.
Linear combinations of the parameters, say Ap, are defined to be estimable if the
rows of the matrix A belong to the vector space spanned by the rows of the matrix
X (Bose (1949)). The importance of the idea of estimability is that there exist
unique best linear unbiased estimates (BLUE) of linear combinations of the
parameters if the linear combinations are estimable. Generally the estimability
condition is difficult to check; however, Searle (1966) states the condition as: the
linear combinations AB are estimable if and only if AX'X)°X'X = A, where
(X'X)¢ is any matrix satisfying the matrix equation X'X(X'X)°X'X = X'X (the
matrix B¢ is called a conditional inverse of the matrix B). To determine whether
the rows of A belong to the row space of X, one must check each element of the
matrix product against the corresponding element of the matrix A. There are
several other references which have considered the problem of estimability of linear
combinations of the parameters of a linear model. (Bose (1949); Chipman (1964);
Graybill (1961); Rao (1962); Searle (1966)).

The results herein restate the estimability condition in terms of the trace of a
matrix product, i.e., only one number needs to be computed and checked in order
to establish the estimability of the linear combinations Af as opposed to checking
each element of the matrix product for Searle’s procedure. The matrix product
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considered involves generalized inverses of matrices (Penrose (1955)); B~ denotes
the generalized inverse of the matrix Bif B™ satisfies BB"B = B, B"TBB™ = B™,
(B"B) =B Band (BB™) = BB™.

The main results are presented in Section 2. Section 3 provides procedures for
testing hypotheses about estimable linear combinations, and a stepwise procedure
for computing the matrix products B”B and BB~ as well as B™ is developed in
Section 4. The structure of these results enables the linear model to be easily
analyzed via a computer.

2. Estimability. The theorems to be proved concern the estimability of certain
linear combinations of the parameters of the linear model (1.1). The normal
equations are

Q.1 X'Xp = Xy
and a general solution, B, to the normal equations is (Graybill (1969))
2.2 B=Xy+I-X"X)h

where h is any px 1 vector in E,. If Ap are estimable linear combinations, it is
known (Bose (1949)) that the BLUE’s of the set are Af where j is any solution
as (2.2). The estimability condition can be stated in terms of the rank of the
matrix product X(I—A™A).

THEOREM 2.1. For the LM, where the rank of X is q, the linear combinations Ap
are estimable, where A is a kxp matrix of rank k, if and only if the rank of
XA—-A"A)isq—k.

PROOF. Assume that the linear combinations Af are estimable. By definition,
there exists a k x » matrix C, of rank k such that A = CyX. Let X; be ag x p row
basis of the matrix X. Then there exists a k x ¢ matrix C of rank k such that
A = CX,. Let p(B) denote the rank of the matrix B. Then

2.3) pIXA—-A"A)] = p[X,I-A"A)]
= p[X;I-ATA)X,']
= p[X,I-X, C'(CX,X,'C) ' CX)X,]

using the result A"A = A’(AA’)"'A. Since X;X,’ is a gxg positive definite
matrix, it can be factored as X;X;’ = MM’ where M is a g X g nonsingular matrix.
Using the matrix M, (2.3) can be written as

2.4) p[MM’ —MM’C}(CMM'C')“ICMM’] = p(I,—(CM)~ (CM)].

The matrix I, — (CM)~(CM) is idempotent. Hence its rank is equal to its trace, or
plI,—(CM)~(CM)] = tr [I,—(CM)"(CM)] = q—k.

Thus assuming the set A is estimable implies that

(25 pXA-ATA)] = q—k.
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Now assume (2.5) holds and use the above definitions of X; and C. Assuming
(2.5) and applying (2.3) is equivalent to
(2.6) pIX;I-A7A)X,'] = p[X;(I-A'(AA)'A)X,] = g —k.

In order for (2.5) to imply that the linear combinations A are estimable, it must

be shown that (2.5) implies there exists a kxg matrix C of rank k such that
A = CX|. Assume that A can be expressed as

2.7 A=CX;+B where X;B=0 and C isa kxq matrix.
The matrix in (2.6) can be written, using (2.7), as
(2.8) X, [I-(X,"C'+B)(AA)"}(CX, +B)X,’
= (X X;)—(X;X;)C'(AA)7'CX, X’
= MM’ —~MM'C'(AA)"'CMM’
= M[L,—M'C'(AA")"'CM]M".
The rank condition of (2.6) then becomes
2.9) p[l,—M'C'(AA")"'CM] = q—k.

The matrix of (2.9) is nonnegative and hence there exists a g x g orthogonal matrix
P such that

(2.10) PI,—M'C'(AA)"'CM)P' = ,-D,

where D, is a diagonal matrix of the characteristic roots of M'C’'(AA”)"*CM. The
rank condition of (2.9) implies that D, has k ones on the diagonal and zeros else-
where. This means that M'C'(AA’)"'CM is an idempotent matrix. Thus
M'C'(AA")"'CMM'C'(AA")"'CM = M'C'(AA’)"'CM which implies C'(AA") ™! x
CX,X,'C'(AA)™I1C = C'(AA")"!C. Pre- and post-multiplying by (CC’)"*C and
C'(CC’)™* respectively, gives (AA")"'CX,X,'C'(AA")"! = (AA")"! or AA' =
CX,X,'C. From (2.7) A = CX, +B; thus AA’ = CX,X,'C' +BB’ which implies
BB’ = 0. But BB’ = 0 if and only if B = 0, which implies A = CXj. Since the
rank of A is assumed to be k, the rank of the k x ¢ matrix C must also be k. This
completes the proof.

For unbalanced designs, it is generally difficult to determine whether a linear
combination of B is estimable. The result in Theorem 2.1 is also difficult to check
but the estimability condition can be reformulated in terms of the trace of a matrix.

THEOREM 2.2. For the conditions of Theorem 2.1, the linear combinations AB are
estimable if and only if

2.11) tr [XA—ATA){XTA—-AA)} ] =g—k.
ProoF. The matrix of (2.11) is idempotent, hence
tr [XA-ATA){XA-ATA)}] = p[XA-ATAXA-ATA)}7]
= p[XA-A"A)] = g—k.
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This is necessary and sufficient for Af to be estimable linear combinations.

The condition for estimability in Theorem 2.2 is easily checked since the matrix
manipulations can be performed by an electronic computer as is described in
Section 4.

3. Testing hypotheses about estimable linear combinations. For the LM, consider
testing

3.1 Hy:Ap =0 against H,:AB #0

where A is a k x p matrix of rank k£ and the linear combinations Ap are estimable.
Thus by Theorem 2.1

3.2 p [XA—A"A)] =q—k.

The principle of conditional error (Bose (1949)) is used to compute the sum of
squares due to the hypothesis as follows. Obtain the sum of squares due to error
for the LM. Next impose the hypothesis on the LM to obtain a restricted model.
The sum of squares due to the hypothesis is the sum of squares due to error for the
restricted model minus the sum of squares due to error for the LM.

THEOREM 3.1. The restricted model used to obtain the sum of squares due to the
null hypothesis of (3.1), where the AP are estimable linear combinations, is

(3.3) y = XT—A"A)p+e.

ProoF. Let F be a p x p—k full rank matrix such that FF* = (I— A~ A). Note that
F'F =1, ,. Let L' be the pxp matrix [A’, F]; in which case, L !=[A",Fl
The LM can be written as

(3.4 y = XL™LB+e = XA“AB+XFF B +e.
When the null hypothesis is true, i.e., A = 0, the model of (3.4) is
(3.5) y = XFF'B+e = X(I—-A"A)f+e.

Equation (3.5) is the desired model.
The sum of squares due to error for the restricted model of (3.3) is

(3.6) SSEr = yYI-XTA-ATA)XT-ATA)] Iy.
The sum of squares due to error for the LM is
(3.7 SSE = (y—XB)'(y—Xp) = y'@-XX")y.

By the principle of conditional error, the sum of squares due to the hypothesis is
(3.8) SSH, = SSEx—SSE = y'{XX™—=XI-ATA)[XA—-AA)] }y.
THEOREM 3.2. Let
0, = 0y {XX™ —X(T-ATA)XA-ATA)]" }y
0, =c 2y[I-XX"]y and
y ~ N,(XB, ¢°L,).

I
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Then Q is distributed as a noncentral chi-square random variable with k degrees
of freedom and noncentrality parameter 1/26*B'A’A’"X'I—-XIA—-A"A)
[XA—-ATA)])XA™AB, Q, is distributed as a central chi-square random variable
with n—k degrees of freedom, and Q, and Q , are independent.

Proor. For the quadratic form y’Ay to be distributed as a chi-square random
variable with r degrees of freedom, the matrix of the quadratic form, A, must be
idempotent of rank r. This condition is easily checked for Q, and Q,. The non-
centrality parameter of the quadratic form is 1/20?E(y’)AE(y). The noncentrality
parameters can be easily obtained for Q, and Q,. The product of the two matrices
of the quadratic forms is null, which is the necessary and sufficient condition for
the two quadratic forms to be independent. This completes the proof.

4. A stepwise computing procedure. Matrix products of the form BB~ and B™B
need to be computed in order to check the estimability condition and to compute
the sums of squares for testing hypotheses. This matrix product can be computed
by an iterative technique, which only involves computing the generalized inverse of a
vector.

THEOREM 4.1. Let X be any nxp matrix of rank q where ¢ < p < n and let
X, X,] be any column-wise partition of X. Then

(4.1) XX = X, X, +I-X, X, )X, [A-X,X,)X,]".

Proor. It is known that for any conditional inverse of (X'X), XX~ = X(X'X)°X'".
It can be shown that a conditional inverse of (X'X) is

4.2) (XX + X X)X XOHX X (X X)) — (X X)X XGHE

X'X)* =

—HX,'X, (X'X,)° H°¢ B
where H° is any conditional inverse of H = X,’I—X,X;7)X,. Using this con-
ditional inverse, XX~ can be expressed as
XX™ = X, X, T +d-X X DX, [T-XX; )X,] .

The iterative procedure uses this ﬁult by partitioning X as [X;q, X,,] Where
X0 is anx 1 vector and X, is a # x p— 1 matrix. Then by Theorem 4.1,
4.3) XX™ = x;0X10+ [A—X10X10)X20][X—X10X10)X 0]

= X;0X10+X: Xy,

where X; = (I—x,,X10)X,0. Next partition the nxpTl matrix X; as X; =

[X11, X5;] where x,; is a nx 1 vector and X,; is a #xp—2 matrix. Again by
Theorem 4.1,

(44)  XX7 = x;0X70+Xq1X1q F[T=x0 X7 )Xo J[A—x11x11)X24]7
= X;0X10+X;1X11 + XX, 7, where X, = (I—x;;X11)X;.
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Continue by partitioning the nx p—2 matrix X, as X, = [x;,, X,,] and apply
Theorem 4.1 to this partitioned matrix. This process must be carried out p—1
times where on the pth step the X,_; matrix will be a nx 1 vector. The generalized
inverse of a vector h is h™ = h’/h’h which is easily computed. The following
theorem has just been proven.

THEOREM 4.2. Let X be any nxp matrix of rank q. Then XX~ = Y P24 Xy Xy;
where the X, ; vectors are defined above.

THEOREM 4.3. Let X be any nxp matrix of rank q. Partition X row-wise as

X,
X = . Then

X,
X7X = XXy 7+ A-X XX NA-X X XS]
ProOF. By a property of the definition of the generalized inverse,
XX =XX)=XX" and X =[X,,X,]
The result follows by applying Theorem 4.1 to the matrix X'.

A technique for computing the generalized inverse of a matrix is obtained using
the iterative procedure and Theorem 4.3.

THEOREM 4.4. The p x p matrix X'X+1,—X"X is nonsingular and
X~ = (XX+I,-X"X)"'X".

ProOF. The n x p matrix X has ¢ linearly independent rows and the p x p matrix
I,— XX has p—gq linearly independent rows. Since X[I,—X"X] = 0,

X
w =
I,-X"X

has p linearly independent rows. But W'W = X'X+I,—X X and is of rank p
since W is of rank p. The inverse of W'W can be expressed as (W'W) ™! = (X'X)™ +
I-X"Xie.,

[(XX)” +I,-X"X][(XX)+I,—X"X] = L,
Therefore [X'X+IL,—X"X]'X' = [X'X)"+[-XX[X' = XX)X =
XXX =XXX"=X".

This completes the proof.

The theoretical and computational results obtained herein enable one to easily
analyze the LM as the iterative computational procedure can be programmed for
computer application. The estimate of p can be computed as § = XY using
Theorem 4.4, the estimability of linear combinations of the parameters can be
determined and the sums of squares due to a hypothesis about estimable linear
combinations can be computed by applying Theorems 4.2 and 4.3. In particular,
the criterion of Theorem 2.2 implies that the trace of the matrix must be an integer.
This condition is not significantly affected by machine rounding error for the above
computational procedure and it has the advantage over Searle’s condition in that
only one number must be checked.
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