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A COMPOSITE NONPARAMETRIC TEST FOR
A SCALE SLIPPAGE ALTERNATIVE

By MELVIN N. WOINSKY

Bell Telephone Laboratories, Inc.

Consider the 2-sample problem where the null cdf F(x) satisfies
F(0) =0 and the alternative is Fg(x) = F(x/(1 + 6)) with § > 0. An
asymptotically optimum statistic z is obtained for a parametric model
where F(x) is a gamma distribution. The Mann-Whitney U and Savage
T statistics are compared to z for several null densities. It is shown that
the Pitman asymptotic relative efﬁciencsr, ARE (U/z), can approach zero
if #/c — 0, where p is the mean and o2 the variance of the null distribu-
tion. However, a lower bond on ARE (U/z) is obtained as a function of
o for general F(x). Using the bound a composite test is constructed
which has a specified minimum ARE of any desired value between 0 and
.864. Densities exist for the composite test which result in arbitrarily

large values of efficiency.

1. Introduction. Consider the two-sample problem,
H:X,X, - X,,Y,Y,--- Y, iid ~Fx)
K:X, X,, -+ X, 1id. ~ Fy(x)
Y, Y,.-- Y, iid ~Fx),

where F(x) is an absolutely continuous cdf with F(0) = 0 and corresponding
density f(x) and mean x and variance ¢?. The X and Y data are independent.
The alternative cdf is F,(x) = F(x/(1 + 6)) with @ > 0. Ina parametric model
of interest f(x) is a gamma density,

(1.1) f(x) = ($TA)xtexp(—sx)  A,5>0, x>0,

with known shape parameter 2 and unknown scale parameter s. This model
arises in a target detection problem [19] where the X and Y data are obtained
by spectral analysis of a stationary Gaussian time-series. The parameter 2 is
the time-bandwidth product used in the analyzer and s is inversely proportional
to the input noise power in the analyzer band. The presence of an input si-
nusoid induces a noncentral gamma density which at small signal-to-noise ratio
can be characterized as'a scale alternative. If the form of the distribution of
the input time-series data is unknown then the form of the distribution of the
spectral data is unknown and a nonparametric formulation is appropriate.
In the parametric case (1.1) an asymptotically optimum statistic z defined in
(2.2) is used. This statistic depends on the ratio of sample means. The restric-
" tion F(0) = 0 makes the scale alternative a one-sided slippage alternative, i.e.
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Fy(x) < F(x), and the Mann-Whitney-Wilcoxon U and Savage T tests are suit-
able for use in the nonparametric model. T is the locally most powerful rank
test [4] for (1.1) when 2 = 1. Pitman asymptotic relative efficiency (ARE) is
used to make comparisons. ARE results are obtained for the gamma and other
densities. For (1.1)and 2 = 1 it follows from [2], [4] that ARE (U/z) = $ and
ARE (T/z) = 1. It is shown that for 2 > 1, ARE (U/z) > 2 and ARE(T/z) >
.816. For other densities such as a mixture of gamma densities, large values
of ARE can be obtained.

Of particular interest is the result that for general f(x) with f{x) = 0 for
x < 0 and finite second moment,

-

ARE (UJz) = .864(1 — .458_0_2) if 2>
@ ¢
> 21 __(po) if # <2
=4 W iy .

Using this result a composite test can be designed which has a specified minimum
ARE of any desired value between 0 and .864. It is shown that densities exist
for the composite test which result in an arbitrarily large ARE. The composite
test is constructed by forming an estimate of u/o; if the estimate is smaller
than a specified value, z is used otherwise U is used as the test statistic.

It should be noted that the literature contains several papers, for example,
[4], [9], [15], concerning nonparametric tests against a scale alternative. The
empbhasis is usually on dispersion, i.e., F(0) = 4. The statistics of Puri and Puri
[13] and the statistic of Ansari and Bradley [1] reduce to the Mann-Whitney
statistic if it is known that F(0) = 0. Sukhatme’s S statistic [17] appears effi-
cient for the problem considered. However, although it is not mentioned the
derivation of Sukhatme’s [17] efficiency equations assumes F(0) = 1. The
dispersion statistic of Mood [16] is efficient for testing for a change in variance
in a Gaussian distribution [1]. However, for F(0) = 0 this statistic appears to
be very inefficient [3].

2. Parametric statistic. For the problem considered and the gamma density
of (1.1) it can be shown in a lengthy but straightforward manner that a statistic
equivalent to the likelihood ratio statistic for all known 2 is,

2.1) t= XY,

where X and ¥ are the sample means. The critical region consists of large
values of ¢. It has been shown [7] that in the case 2 = 1, ¢ is uniformly most
powerful. The ratio ¢, is F-distributed with 24n, and 24n, degrees of freedom
under H if 22 is an integer. If 2 is unknown or if the density is not given by
(1.1), ¢ cannot be used since the critical region cannot be specified, not even
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asymptotically. Note also that a maximum likelihood estimator of 2 is not
available in closed form [6].
Consider the following statistic,

(2.2) z=¢log X/¥,
where
(2.3) 93 = ny(n, + ny) ' X/Sy + ny(n, + n)'Y/S,

and §,%, S,* are the sample variances of the X and Y sample, respectively. For
the nonparametric formulation, F(x) continuous and F(0) = 0, § —, . p/o as
min (n,, n,) — oo, for all §. Also from Lehmann ([10] page 274) and the central
limit theorem it follows that

(2.4) (r(1 = N)¥(p/o)(log X|Y — log(1 + 0))

is asymptotically distributed according to ¢(x) the standard normal cdf, where
N = n, + nyand r = n,/N provided lim,__, r # 0, 1. It follows from ([8] page
236) that (2.4) with ¢/o replaced by & is still asymptotically distributed accord-
ing to ¢(x) and, therefore, ¢ and z are asymptotically equi-efficient. Then from
the properties of the likelihood ratio [18], z is asymptotically optimum for the
gamma density and all values of 2. Clearly this remains true if $ in (2.2) is
replaced by any consistent estimate of y/o. The statistic z can be used when
A is unknown or for general F(x). The critical region consisting of large values
of z can be specified asymptotically from (2.4).

3. Asymptotic relative efficiency. The nonparametric statistics can be defined
in terms of the ranks R, i = 1,2 ... n,, where R; is the rank of X in the
pooled Y, X data. The linearly equivalent Mann-Whitney-Wilcoxon [11]
statistic is,

3.1 U= (nmn)' 3" R, — (n, + 1)/2n,
and the Savage statistic [14] is,

(3.2) T=n" S (Zlyrn ™)
The Savage statistic is the optimum rank statistic [14] for an exponential distri-
bution and a scale alternative. Tables of the null distribution of U and T are
available and the critical regions can be specified approximately by using the
asymptotic normality of U and T.

Subject to the usual regularity conditions for Pitman efficiency [12], the ARE
can be obtained from the efficacy of each test. The procedure is outlined below.

Let E,(Q;) and ¢}(Q;) = d3_(Q;) be the moments of Q; representing z, U or
T. The efficacy of Q; is,

2
[fa)
6=0

(0) = | “EA2)
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and ARE(Q,/Q,) = lim,_., &(2,)/e(Qs) -
From Section 2. zisasymptotically normal under H and K and it follows that
the efficacy of z is,

(3.3) &(z) = mn,N7\(p/a)" .

From [11], 6(U) = (N + 1)/12mn, and E,(U) = §§ [1 — F,(x)] dF(x), using
F,(x) = F(x/(1 + 0)) gives

(3.4 e(U) = 12mny(N + 1)7'[§5 xf*(x) dx]* .

From Chernoff and Savage [5],

(3.5) E(T) = {3 J[n, N7'Fy(x) + n,N'F(x)] dFy(x) ,

where J(x) = —log(l — x), 0 < x < 1, and ¢(T) = n,/(n,N) so that
— 1] o XfH(%) ?

(3.6) «T) = mmN [go mdx] .

Note that Basu and Woodworth [3] give the efficacy of T for general f{x) as
shown in (3.6) but with the lower limit of integration —co and 1 — F(x) incor-
rectly replaced by e~=. However, they only make a numerical calculation for
an exponential f{x). In that case their result and (3.6) agree.

It follows from (3.3), (3.4) and (3.6) that

3.7) ARE(U/z) = 12 (%)2[5;; xXf(x) de ,
(3.8) ARE(T)z) = (%) [gg T’%’% dx] .
For the gamma density of (1.1),

(3.9) ARE(Uz) = 12I%22)/(22%T¥(2)) ,
(3.10) ARE(TJz) = IJ(225T¥(2)) ,
where

1= dxe""x““l/[l _ 7(4, x/2)j|
r'@)
and y(2, x/2) is the incomplete gamma function.

Using lim,_,AI'(2) = 1 yields lim, ,, ARE(U/z) = 0 and by numerical evalua-
tion ARE (U/z) is a monotonically increasing function of 1. For 2 = } (density
function has infinite discontinuity at the origin) ARE (U/z) = 6/z*and for 2 = 1
(exponential density) ARE(U/z) = 3. Also if f(x) is the gamma density,
af(ox + p) — ¢(x) the standard normal density as 2 — co. Then from (3.7)
with x = oy + g and plo = 24,

ARE (U/z) = 12[27* §=3 yofloy + ) dy + §2u [of(oy + m)F dy]*,
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and

(3.11) lim, . ARE (U/z) = 12[{=., ¢*(y) dy]* = 3/=,

since (= |y|¢*(y)dy < oo. This efficiency is the same as the translation value
for U and a normal density.

Similarly, by numerical integration, lim, , ARE(T/z) = 0 and ARE(T/z)
reaches its maximum at 2 = 1. At 2 = %, ARE(7/z) = .978 and by direct
evaluation ARE(T/z) =1 at 2 = 1. The function falls monotonically for
2> 1. As before, with ®(x) the standard normal cdf,

(3.12) lim, ... ARE (T}z) = [ “ s % de ,

since

- FO) 4o o
~i-op Y S
Expression (3.12) has the value .816 by numerical integration. The result of
(3.12) corresponds to the translation value for T and a normal density.

It follows that ARE (T/z) = .816 and ARE(U/z) = 2for 2 = 1 if f(x) is a
gamma density. Note that ARE (U/z) can be near zero and that this occurs
for small 2 or small values of y?/¢%. This will be shown to hold for general
densities with a “large concentration” of mass near the origin resulting in
small values of ARE (U/z).

If other densities are considered, large values for ARE can be obtained.
For a mixture density of f{x) = (1 — ¢)f(x: 4, 5,) + ¢f(x: 4, 5,), the value of
ARE (U/z) can be obtained by multiplying (3.9) by

(3.13) M= LR —1) + A1 —e)e(R — 1)]
[1+ «R — 1)

% [1 —2¢(1 — e)(l - %)T,

where R = s,/s, > 1. The factor M is the relative improvement due to non-
parametric processing when there is contamination of the underlying gamma
density. Note that

(3.14) M, g e mra M =14+ (1 + 24,

so large improvements are possible. With 2 = 8 and 4 = } the limiting value
of M is 4. For the Savage statistic the limiting value of M is the same as in
(3.14) and the actual value approximately the same as (3.13).

Based on the examples, for the alternative F,(x) = F(x/(1 + 6)), the Savage
statistic in general appears to perform better than the Mann-Whitney statistic.
When the density has a very heavy upper tail or is concentrated far from the
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origin there is a slight preference for the Mann-Whitney statistic. The Savage
statistic does relatively well for densities with both heavy and sharp upper
tails. It does particulary well when there is a sharp cut-off on this tail. For
instance if f{x) is triangular (decreasing linearly from x = 0), ARE (U/z) = %
while ARE (T/z) = 2.

4. Lower bound on ARE (U/z). It is clear from the previous section that
ARE (U/z) can approach zero. However it is possible to obtain a lower bound
as a function of y/o.

Since all factors are positive, minimizing ARE (U/z) of (3.7) is equivalent
to minimizing .

4.1 L = {7 xf*(x)dx,

subject to 1 = §5° fix) dx, p = §5 xf(x) dx, p, = (& ¥*f(x) dxand f{x) = 0. Let,
V = xf*x) — 2(4 + 4, x + 2,x*)f(x) where the 2’s are numbers determined by
the integral constraints. The necessary Euler equations are V/af = 0 for
f(x) > 0and dV/af = 0 for fix) = 0. The first equation yields

(4.2) S(x) = fx + A+ A4x.
Assume 2; < 0 so that the integral constraints can be satisfied with 2, > 0 and

4, < 0. The resulting f{x) intersects the x axis at r, and r,, 0 < r, < r, where
r, and r, are solutions of

(4.3) A+ x4+ A4x*=0.

Taking f(x) = 0 outside of [r,, r,] allows f{x) of (4.2) to satisfy both Euler
equations. From (4.3), 4,/2, = —(r, + 1), A4, =, and if y =/, it is
clear that 0 < y < 1. Using the integral constraints and ¢* = y, — ¢ gives
after much algebra,

(4.4) @ _3 0=+ -1 =y +2logy
¢#o2 (1 =3y + 3y — )

and

(4-5) [ xfo(x) dxpp = (L= 8 — 12" logy + 8 — )"

9(1 — y* + 2ylog y)*

The min {ARE (U/z)} is obtained by using (4.4) and (4.5) in (3.7). This cal-
culation was performed on a computer for y € [0, 1). As y goes from zero to
one, u/o monotonically increases from 2 to infinity. The min{ARE (U/z)} is
a linearly decreasing function of ¢?/4* (to the accuracy of the plotting) with a
value of .864 as p/o — oo and £ at p/o = 2% It then follows that
(4.6) ARE (U/z) = .864(1 — .4584¢%/11%) if 22< plo < oo

except for small computational error in the lower bound.
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The result is a global minimum. This is easily verified by substituting an
arbitrary density into (4.1), consisting of the minimizing density plus a term
e(x) with (& e(x) = {5 xe(x) dx = §5° x*(x) dx = 0, and ¢(x) = 0 for x ¢ [r,, r,].

To obtain a solution for 0 < p/o < 2%, assume that 2, = ¢, > 0 with 2, > 0,
2, < 0. Taking f(x) = 0 outside of (0, ] allows f(x) of (4.2) to satisfy the
Euler conditions if r, is the positive root of (4.3). In order to satisfy the con-
straint that the density integrates to one, let f(x) = 0 outside of (e, r,]. By
letting ¢, and ¢, approach zero at an appropriate rate it is possible to satisfy
both this constraint and in the limit the minimizing Euler equations with
0 < pfo <28 .

Using (4.2), xf*(x) = x(&,/x + 4, + 4,x)f(x) so that from (4.1), L = ¢, +
At + Aty In the limit as e, — 0, &, — 0, it follows.from (4.3) and the con-
straints on the first and second moments that r, = —2,/2,, ¢ = ,1,}/2 + 2,1,%/3,
and p, = 4,1,}/3 + A,rt/4. Then r,— 2p/p, A, — 6plr} = 318°/2p0), 4, —
—3u(4), L— 3p8)(4p) = 3p(4]0* + 4#]) and from (3.7),

4.7) min {ARE (U/z)} = 12(¢*/¢*)L?

min {ARE (UJ2)} = 2/ __(#9)" _

4 (1 + p2/o)!

For this procedure to be valid and consistent with (4.6) it is necessary to show
that the constraint 1 = {° f(x) dx can be satisfied if and only if 0 < p/o < 2%
Using the constraint yields,
(4.8) 1 =B+ 1lim, ., (L% + 45)2),
where B = lim, _, ., —(c,loge;). Equation (4.8) is equivalent to 1 = B +
(312%)/(2[1 + ¢*/a?]) so that p?/e* = 2(1 — B)/(1 + 2B). Since ¢ > 0 and
¢, > 0, it follows that B > 0. It is then possible to let ¢, and ¢, approach zero
such that (4.7) is valid only for any given /s € [0, 2¢]. Note that for p/o = 24
both bounds give ARE (U/z) = % and that the density resulting in this value is
triangular, decreasing lineary from a peak at x = 0. The bounds of (4.6) and
(4.7) are monotonically increasing functions of z/s.

Relation (4.7) and its derivation points out what was indicated in Section 3
for the gamma density. ARE (U/z) can be small when /o is small due to a
“great concentration” of mass near the origin.

5. Composite test. The results of Section 4 can be used to construct a test
that has a lower bound but not an upper bound on its relative efficiency.
Let z and § be as defined in (2.2) and (2.3) and let

(5.1 w,=1 b <k,
-0 $=k;
(5.2) w, =1 b=k,

-0 d<k.
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The number k is a design parameter for the test. A proper choice for k will
be made clearer in the following discussion. The composite test rejects H if

(5.3) C=Wz+ W,Uz=W,L, + W,L,,

where L, = ®(1 — a)/(r(1 — r)N)}, r = n,/N, N = n, + n,and « is the desired
size of the test. L, is determined from the null distribution of U such that
P[U = L,] = «a or using the asymptotic normality of U,

L, = @1 — a)/12r(1 — HN)} + % .

Since as N — oo, ¢ —, . p/o, it follows that W, and W, approach 1 or 0 a.s.
depending on whether g/ is less than or greater than the chosen k. Then it
follows ([8], page 236) that for any k > 0, the test of (5.3) is asymptotically
size a and,

(5.4) ARE (C/z) = ARE (U/2) plo =k,

=1 plo < k.
From Section 4,

ARE (C/z) = min,,,_, {ARE (U/z)}

rlo=
and
ARE(C[z) = Q7/4k(1 + k)t if 0=<k <2},

> .864(1 — .458/k")  if 2P<k < oo.

The parameter k for the test can be chosen to give any desired lower bound
between 0 and .864.

It can be shown that for any k > 0, ARE (C/z) does not have an upper bound.
Let g(x) be a density with mean y, and variance ¢* such that g(x) = 0, x < 0.
Take f{x) = g(x — m) m > 0 and from (3.7)

ARE(Ujz) = 12— % [{zxg*(x — m) dx]’
(¢ + m)?
— 124° (o xg*(x) dx m w3 2
=12 |: ‘ug_i_m +#g+m80g(X)dxj|’
m ¥ 2[¢ 2 2
(5.5) ARE (U/2) = [#g . m] 1200 [§ g*(x) T -

For any fixed g(x), p/o = (m + p,)/o can be made arbitrarily large and m/(z, +
m) arbitrarily close to one, by choosing a sufficiently large value of m. The
second term in (5.5) is the ARE value for a translation alternative and null
density g(x). It is well known that densities g(x) exist which make this term
arbitrarily large. Therefore for any k > 0, a density exists such that ARE (C/z)
is arbitrarily large.

To implement the composite test a choice for k must be made. Although large
values of k give a lower bound close to .864 and still allow the possibility of
a large ARE value, in most cases this will result in essentially using the z-test.
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A reasonable choice is k = 2! this gives a lower bound of 2 and should fre-
quently result in the use of the U-test.
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