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ON THE DISTRIBUTION OF THE MAXIMUM
OF RANDOM VARIABLES

By JaANos GALAMBOS
Temple University

For a wide class of (dependent) random variables Xi, Xz, -+ -, Xu, a
limit law is proved for the maximum, with suitable normalization, of
X1, Xz, + -+, Xu. The results are more general in two aspects than the ones
obtained earlier by several authors, namely, the stationarity of the X’s
is not assumed and secondly, the assumptions on the dependence of the
X’s are weaker than those occurring in previous papers. A generaliza-
tion of the method of inclusion and exclusion is one of the main tools.

1. The results and related works. Let X, X, - - ., X, be random variables on
a given probability space and put Z, = max(X,, X, ---, X,) and F(x) =
P(X; < ).

We introduce the following combinatorial concepts. Let H = {1,2, - - -, n},
and let E be a subset of the set of ordered pairs of distinct elements of H. The
pair G = (H, E) is called a finite graph. The elements of H are the vertices
and those of E are the edges of G. Let N, denote the number of elements of
E. Let further H,” be the set of those ordered sets (i, i,, - - -, i,) of k distinct
elements of H, which contain no pairs (i, i,) belonging to E, and H,® is the
set of those ordered sets (i, iy, - - -, ;) of k distinct elements of H, which contain
exactly one pair (i,, i,) € E.

In this note we prove the following

THEOREM. Let G be a finite graph, and let c, = c,(a) be a sequence of real
numbers for which

(1 lim, .. 21, (1 — Fy(c,) = a.
Assume that each of the following properties is satisfied.
(i) There is a finite K such that for all n and j
n(l — Fyc,) < K.

‘

(ii) lim Nymax; .., P(X;=c,, X, =2¢,)=0

n=-+eo 3
and
Ny,=o(n".

(iii) For any set (i}, iy, + - -, i) € H,®

— k ; i
P(le Z cn’ ] Xik ; cn) - j=1 (1 - FJ(cn)) + r(ll’ ] lk)
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with

limn:er Z(il,“~,ik)EHk(0) I‘(il, ceey ik) =0.
(iv) There is a real sequence d, such that for any set (i, - - -, i,) € H,"

PX, zc, - X, 2¢)SdPX, =zc, X, = €u) Il5=rijmae P(Xi; = €,)

= *n k = =

where (i, i,) € E.
Then

(2) 1imn=+°° P(Zn < C'n,) =e".

Without attempting to review the results in this direction, we shall analyze
our theorem in terms of previous results. For a detailed review and bibli-
ography, the reader is referred to the book by David (1970). Let first the X’s
be independent. Then we can choose E to be empty and therefore our assump-
tions (ii)—(iv)are automatically satisfied, and the theorem becomes well known.
Let now X, X, - .-, X, be from an m-dependent stationary stochastic process.
In this case, evidently, (1) implies (i). Define E as the set of all (i, j) for which
li —jl| £mand i+ j Thusr(, ---,i,) =0 in (iii), and (iv) is also satisfied
with d, = 1. Since N, = nm + O(1), our condition (ii), in view of (1), is
equivalent to the assumption of Watson (1954), namely, that

max;; ;<. PXi 2 ¢,, X; 2 ¢,) _ ¢

e P(X, = c,)

It is worthwhile to look at the conditions of our Theorem in more detail.
The idea behind the conditions is that, if we have a set of random variables,
“almost all” of which are “almost independent”, then a restriction on their
bivariate distributions already guarantees that their maximum behaves as if
they were completely independent. As a matter of fact, if the almost inde-
pendence, expressed in (iii), is not satisfied with X, and X, then include (7, j)
in E; otherwise do not. Condition (ii) requires that a positive percentage of
all pairs (X, X,) cannot be in the exceptional set, but there is no other restric-
tion on the set E. 1 wish to point out two facts about assumption (iv). First
of all, that it imposes restrictions only on the elements of H,", and secondly,
that a much weaker assumption is madg than the independence of (X;,, X; )and
the rest of the random variables in question. Our model thus includes the
mixing sequences of random variables by constructing E in the same way as
in the case of m-dependence. As a matter of fact, the essential difference
between m-dependence and mixing is that, in the first case, X; and X’ ,;are inde-
pendent if |i — j| > m, while in the second case they are “almost” independent
for m large. For the asymptotic distribution of the maximum of random vari-
ables from a mixing sequence, see Loynes (1965). Our result is thus more
general than these previous ones, since their assumptions on the dependence are
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much stronger. In addition, stationarity is always assumed, except for the case
of independent random variables, Juncosa (1949). For a stationary sequence,
with stronger assumptions than (iii) and (iv), a general theorem is proved in
Galambos (1970a).

It is easy to construct several different kinds of examples for stationary
sequences of random variables to which the present result applies but previous
ones do not. The following example plays a significant role in a problem of
probabilistic number theory, see Galambos (1970b) and a paper to appear [5].
The infinite sequence X, X,, - - - of random variables is identically distributed
with distribution function 1 — e~#. For their joint distribution we have

P(X, > x, X, >x, -, X, >x)=[l + Dy§)1]exp (—kx),

where | < i, < i, < --- < i,are positive integers and D, is a constant, bounded
over the possible choices of the subscripts i;. Note the exponent i, in the error
term. Thisshows that X, and X,, do not become “almost independent” whatever
the value of m be, hence the sequence X; is not mixing(therefore notm-dependent
either). Our conditions are, however, satisfied by choosing E as the set of all
(i, j), i < j, with 1 < i < logn, say (any function can be taken for log n which
is of smaller order than n). The result of Galambos (1970a) does not contain
this example as a special case.

2. Proof of Theorem. We shall apply a graph sieve theorem (a generalization
of the method of inclusion and exclusion) of Rényi (1961) which will be stated
as Lemma 1. By the notations of the previous section, let H, = H,'” U H,™.
Let 4,, 4,, -- -, A, be a sequence of events and let B denote the event that
none of the A’s occurs. Let S, , = S,, =1 and for k = 1, put

(3) Sip= X P(A;, A - A,), i=1lor2,

the summation being extended over (i, i,, - - -, §,) € H, if i = 1 and k is even
or if i = 2 and k is odd, and over (i, i,, - --, i,) ¢ H,” if i = 1 and k is odd
or if i = 2 and k is even. Then we have

LemMA 1. For any integer s = 0,
(4) 0 (=18, = P(B) = o (= 1)*S,, -

Since the proof of this lemma is only available in Hungarian, 1 give the
major steps in it. The details are similar (and simpler) than those in the proof
of a generalization of Lemma 1 in Galambos (1966).

By the method of indicators of Loéve (1942) (see also Loéve’s book on proba-
bility theory), it is sufficient to prove (4) when all the A’s are replaced by their
indicator variables. Let 4 denote the number of those indicators which are
equal to 1. (4) is proved by induction over 4. For A = 0, both inequalities
in (4) evidently hold. For & > 0, (4) reduces to the following combinatorial
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inequalities. First of all, note that, without loss of generality, we may assume
that the indicators of 4,, - - -, 4, are 1, and those of the rest are 0. Let G,
denote the graph obtained from G by considering the vertices 1,2, - .-, A only.
Let H(h) = {1, 2, - - -, h} and let N,(G,; j, m) be the number of those subsets
of H(h), the number of elements of which is at most 7 and is an odd number:
further, the number of pairs of the elements of these subsets which belong to
E is at most j. N,(G,; j, m) is defined in the same way, only the number of
elements of the subsets considered is required to be an even number. The empty
set is considered as a set with even number of elements. (4) now becomes

(4a) Ny(Gy; 1, 25) — Ny(G,;0,25 — 1) =0
and
(4b) Ny(G,; 0, 25) — N(G,; 1,25 + 1) 0.

To prove (4a, b) by induction over A, assume that they hold for any graph with
at most h vertices and consider G,,,. We shall adopt the usual terminology
that / and jare connected with an edge if (i, j) € E. Observe that those subsets
of H(h 4 1) which contain at most one edge of G,,,, belong to one of the
following three categories: (a) those which do not contain the vertex 4 4+ 1
(b) those which contain 4 + 1 and one element is connected with # 4+ 1 and
(c) those which contain /# + 1 and none of their elements is connected with
h + 1. Denoting by G* that subgraph of G, the vertices of which are not
connected with 2 4 1, we have by definition

Ny(Gyii5 1, 25) = Ny(G); 1, 25) + Ny(G*; 1,25 — 1) + R,
and
N(G,,150,25 — 1) = N(G,; 0, 25 — 1) 4+ N,(G*; 0, 25 — 2)

where R, is the number of those subsets which correspond to the category (b).
Since the number of vertices of G, and of G* is at most 4, the assumption of
induction is applicable to them; therefore by subtracting the two equations
above, (4a) easily follows. The proof of (4b) is exactly the same.

From Lemma 1 we easily get

LEMMA 2. Let Ay, 4,, - - -, A, be a sequence of events and suppose that for any
fixed k = 0
®) lim,_,.S;, = a*/k!, i=1,2.
Then
(6) lim, ., P(B) = e.

Proof. Fix sin (4) and let # — + 0. We thus have from (4) and (5)
ot (— D*ak/k! < liminf,_,, P(B) < limsup,_,_ P(B) < Y%, (—1)a*/k! .
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Letting s — + oo, we obtain the statement of the lemma. Hence the proof is
complete.

We can now turn to the proof of the Theorem. Put 4, = {X; = ¢,}. Thus
by Lemma 2 it suffices to show that (5) applies. By the definition of S, ,, for
k=1,

|Sl,k - Sz,k’ = Z(i1,~--,ik)er‘1) P(Ail A4, -

9 Aik)
and thus by assumption (iv)
(1) [S1k — Soul = dNpmax; ., P(4;4;) Z(il,m,ik_2)eH;‘0_)2 P(4;) - P(4;,_)

<d.N; max; ;eg P(AiAj)[Z?:l P(At)]k—2 —0 (n— 4 o00)

where the last step follows from (1) and (ii).

On the other hand, for i = 1 and & odd or for i = 2 and k even, in view of
(iii) and (3),

Sk = Z(il,m,ik)er(o) P(Ail) ce P(Aik) + o(l)
= Zlg«;1<m<ik§h P(Ail)P(AiZ) cee P(Aik) — R, +o(l),
where
R, =2 P(4,)P(4,) - - - P(4;,)

the summation being extended over the vectors (i, i, - - -, i,) for which at least
one pair (i,, i,) € E. Evidently

R, < NE[maxlgjgn P(Aj)]z[Z?=1 P(Aj)]k_z
which tends to zero by (i) and (ii). Thus, putting

(8) T, = Zl§i1<~-<ik§n P(Ail)P(Ai2) T P(A,.k) >
we have that for i = 1,2 and for k > 1,
%) S, =T, + o(1), (n— +o0).

Note that U, = (1/k)T,T,_, contains all terms of 7, and that any term of U,
is majorized by [max,_;_, P(4,)]*. We thus have

(10 0= (IOT\T,, — T, < [%(kf )= () Jimaxic,, Py,

which tends to zero by (i) and by the fact that for fixed &,

%(kj 1) B <Z> = %Rkﬁ 1) - <Z _ m - %<Z _ ;) = 0™ -

Hence (9), (10) and (1) yield by induction that (5) holds for all £k > 1 and for
i =1, 2, which terminates the proof of the Theorem.

3. A concluding remark. Let Z,* denote the ¢th largestamong X, X,, - - -, X,

n
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(i.e. Z,* = Z,). Under the same conditions as those assumed in the Theorem,
limit law can be obtained for Z*_, in the same way that the Theorem is proved.
This is made possible by the inequalities obtained in Galambos (1966) for P(B,),
where B, denotes the event that at least ¢ out of the events 4,, 4,, ---, 4,
occur. For Z}_, with m = 2, however, the inequalities of [2] require restric-
tion at least on the trivariate distributions of those X’s, for which the “almost
independence” is not satisfied. Recent unpublished improvements on the in-
equalities of [2] reduce it now to m > 4.

Evidently the Theorem yields conditions for Z, * to have limiting distribution.
Also, by the technique of the present paper, the limit of the joint distribution
of (Z,*, Z,) can be evaluated.
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