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A REMARK ON QUADRATIC MEAN DIFFERENTIABILITY!

BY BrRUCE LIND AND GEORGE RoussaAs
University of Wisconsin, Madison

1. Introduction. In recent years, some authors (see, for example, LeCam [5],
[6], Roussas [7], [8], Johnson and Roussas [2], [3], [4]) have replaced the usual
assumption of pointwise differentiability of certain random functions depending
on a parameter ¢ by differentiability in quadratic mean (q.m.) for the purpose
of obtaining distributional theory and/or making statistical inferences. When
the parameter 6 is real valued, one may conveniently employ well-known theo-
rems (Vitali’s theorem, for example) for checking differentiability in q.m. This
process, however, does not avail itself equally well when the underlying pa-
rameter ¢ is multi-dimensional.

The purpose of the present note is to reduce, in essence, the multi-dimensional
parameter case to the one-dimensional situation. This reduction is made precise
in Theorem 2.1.

In the remaining part of this section, we introduce the necessary terminology
and notation, and in the following Section, we formulate and prove first an
auxiliary result (Lemma 2.1) and then the main result of this note (Theorem 2.1).
Also an additional theorem (Theorem 2.2), relating pointwise differentiability
and differentiability in q.m., is stated and proved in the same section. More
results along these lines will be presented elsewhere.

Let (Q, .7, P) be a probability space and let f(0) = f(w; 6) be a real-valued
random function defined on Q x O, where O is an open subset of R*. Let

L(Q) = L(Q, P) = {rv’s X on (Q, %, P); £X* < oo},
and for X, Y e L,(Q), define the inner product (X, Y as follows
X, Yy = &XY).
Denote by ||+||, the L,-norm induced by the inner product (., .); i.e., for
X e L(Q),
[I1X]l. = (KX, XD)* .

DEerINITION 1.1. The random function f(#) is said to be differentiable in q.m.
at ¢ when P is employed, if there exists a k-dimensional vector of random func-

tions, f(0), such that
B 6 + k) — f(0) — Kf(O),—>0  as 0=|h—0,

where |+| denotes the usual Euclidean norm of the vector A; f(f) is the q.m.
derivative of f(0) at 8. Here “’”” denotes transpose and 4'f(0) is the inner product
of the indicated vectors.
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2. The results. We now formulate the main result of this note, namely,

THEOREM 2.1. For each 0 € ©, we assume that the partial derivatives in q.m. of
the random function f(0) exist and are continuous (in 0) in the L,-norm, ||+||,. Then
f(6), the derivative in q.m. of f(0), exists and is equal to the vector of partial de-
rivatives in q.m. That is, for each 0 € © and h + 0,

2.1) | L0 + B) — f0) — Bha b ;O >0 as [H—0,
where fJ(O) j=1, ...,k are the partial q.m. derivatives of f(0) at 0 and h =
( 10 k)

To fac111tate the proof of the theorem, we first establish the following result.

LemMA 2.1. Let F(t) = F(w, t), te T, an open subset of R, be a real-valued
random function defined on Q X T which is differentiable in q.m. on T with q.m.
derivative F(f). Then for every g € Ly(Q), independent of t, we have

(R0, 6y = <F0), 0>

Proor. For 0 == Il e R such that ¢, ¢t + /e T, one has
I ICR(E + D), 9> — <F(1), 93] — <E(0), 9))]
= |I7E(t + 1) — F(1), 9) — <F(0), 9))]
= [KIPIRe + D) — F(0)] — F(), 9|
< [|IPF( + D) — Fo)] — F@llllgl.— 0 as 0.
The proof of the lemma is complete. Of course, the lemma implies that
(F(¢), g) is continuous on T.

ProoF oF THEOREM 2.1. For the proof of the theorem, it will be convenient
to introduce the following notation.

SO by j) =f(01 -+ +5 05, 0500+ Bypys -+, 04 + By)

J*0,h 0) =16 + h)

X, h, k) = f(0)

fl*(a’h’.]) f1(01’ Tt J’ J+l+hg+la””0k+hk)-

Consider the following identity
JO + k) — () =f*0, b, 0) — f*(O, b, k)
2.2) = [f*(0: b, 0) — £*(0, b, D] + [f*(O, b, 1) — £*(6, b, 2)]
+ [f*0, bk — 1) — f*(@0, h, k)] .

Then instead of (2.1), it suffices to establish the following equivalent formula-
tion. Namely, for every ¢ > 0, there exists a § = d(¢) > O such that |k <9
implies

23) ILf6 + k) — f(0)] — T b f;O)| < Keelh] .
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Inserting (2.2) in (2.3), the assertion may be stated as follows: |k < é implies

I{Lf*(@, b, 0) — £5(0, b, D] — ki f(0))
(24) AL 1 1) = £4(0, 1, 2)] — b fu(O)} + - -
L0, bk — 1) — f50, )] — b fuO))]]. < e |h] .
We first show that there exists a d such that |4 < ¢ implies
(2:3) /(05 By 0) — f*(0, b, 1)] — by fi(O)]]. < ke | -

Let g € Ly(Q) be independent of #, but otherwise arbitrarily chosen. Then by
our assumptions and Lemma 1.1, we have

0 * — ¢k
a5 SO 1), 0> = (fr0 s 1), 0)

By the same lemma, we have that {f(¢,0, + h,, ---, 0, + h,), g> as a function
of ¢, is continuous in the closed interval with end-points 6,, 6, + 4,. Thus the
mean value theorem (for real-valued functions of a real variable) applies to
{fie, 0,4+ hy, -+, 0, + h), g), regarded as a function of ¢, and gives
(2:6)  (fHO, B, 0) — £5(0, b, 1), 6> = B fi(tn Oy + by -+, 0, + ), g
where ¢, lies between 6, and 6, + h, (and, in general, also dependsoné,, - - -,4,,
hy, ---, h,and g). But
<f1(t1’ 0, + hy ---,0, + h), 9>

2.7) = <L) + [fit 0y + hoy -+, 0, + ) — fi%(0, b, 1)]

+ A0 1) = X0, B D]+ - - + X0 bk — 1) — /i(0)], 9) -

By means of (2.6) and (2.7), one then has

Lf*(0, h,0) — f5(0, b, 1)] — b fi(0), 9)

(2.8) = h1<[f1(t1’ 0, + hyy -+, 0, + hy) — fl*(ﬁ, h, 1)), 9>

+ BLLAXO, By 1) — £%(0, h, 2)], 9)

+ o ALARO B k= 1) — f(O)], 9)
One of our assumptions is that £,(9) is continuous in ||+|,-norm. Thus, since ¢,
lies between 60, and 6, + h,, it follows that for ¢, sufficiently small and /4 such
that |h| < d,, one has

1/t O+ Foy =3 0, 4 1) — fi2(0, 1, D], < ¢

(2.9) 1£%(0, by 1) — fi2(0, B, 2)]], < ¢

140, bk — 1) — f(O)]] < ¢
Taking absolute values on both sides of (2.8) and utilizing (2.9), we obtain
(2.10)  KLS*(05 ks 0) — f*(8, b, 1)] — by f(0), 03] < ke |m] |lg]l, < ke || [|g]]. ,

the last inequality following since |4, < |#|. If we now take the supremum of
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both sides of (2.10) over g e L,(Q), such that ||g||, = 1, the left-hand side will
be equal to

ILf*(O5 By 0) = f£*(0, b 1)] — b fi(O)]l: -
(See, for example, Rudin [9] pages 128-130). Thus, we get

ILF*(05 1y 0) — f4(0, by D] — b fi(0) ]z < ke || ,
which is (2.5).

Inequalities analogous to (2.5) can be established for the other terms on the
left-hand side of (2.4). Applying the triangle inequality for norms to (2.4) gives
the desired result.

The theorem just proved changes the problem from a search for a vector of
functions and the taking of limits as a vector variable approaches zero in norm
to one of finding the partial derivatives in q.m., which involves only a single
function and a real argument, and then checking to see that they are continuous
in ,~-norm.

In the final theorem of this section, we present another result, Theorem 2.2,
which also deals with the case k > 1. This theorem gives another method of
finding the q.m. derivative by relating it to the pointwise partial derivatives.

THEOREM 2.2. For each 0 € ©, assume that the pointwise partial derivatives of the
random function f(0) exist and are continuous, belong to L,(Q) and satisfy the follow-
ing condition: For each 0,¢c ©, there exists a neighborhood containing 0, in which

(2.11) |[fi(@; 0) — fi(@; 0))] < Hi)(w) as. [P]

for each 0 in the neighborhood, where H{f) € L(Q), j=1, - -, k and f; denotes the
pointwise partial derivative of f(0) with respect to 6;. Under the above assumptions,
f(0) exists and is equal to the vector of pointwise partial derivatives.

Proor. We first remark that the uniformity condition above, clearly, implies
continuity in the ,-norm.
Next, for ¢t = 0, we have

212) [0 + B = fO) = K(/@), -+, SOV U
= RIZIAO + By = f0) = Ts by [ Ol -

Now, by the mean value theorem for functions of several variables (see, for
example, Franklin [1] page 336), we have, under the assumptions of the theorem,

(2.13) SO + by — f(0) = Tk [0 + a(w)h)h; as. [P]
for some 0 < a(w) < 1.
Using this in (2.12), we obtain
(2.14) W7 £ + k) — f(O) — X5 [iO)hle
= |B| 7| Sk BLF0) — (0 + a(@)h)]|l,
= W]k, f(O) — J(6 + a(@))); ,
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where (-, +) denotes the usual inner product on' R* and f(¢) denotes the vector
of pointwise partial derivatives of f(¢#). By the Cauchy-Schwarz inequality,
applied to the Euclidean inner product and norm, the last expression on the
right-hand side of (2.14) is bounded by

A=) 17| (6) — f(6 + a@)h)] Iy

< T8 1£i0) = [0 + @b Il

< Zhallfi0) — Fi0 + a(@)h)], -
By the Dominated convergence theorem, the uniformity condition, along with
the continuity of f;, j=1, - .-, k, implies that each individual term on the right
hand side of the last expression above approaches zero as |h| — 0. The proof
is thus complete. .

The use of the theorems in this paper will be demonstrated in a forthcoming

paper which will be devoted to the calculation of some asymptotically optimal
tests for certain failure distributions.
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