The Annals of Mathematical Statistics
1972, Vol. 43, No. 4, 1204-1212

APPLICATION OF THE SKOROKHOD REPRESENTATION
THEOREM TO RATES OF CONVERGENCE FOR LINEAR
COMBINATIONS OF ORDER STATISTICS
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and Rutgers University
Rates of convergence for linear combinations of order statistics are
obtained. The work is in the spirit of those authors who have used in one
form or another the weak convergence of the sample empirical process to
a tied-down Wiener process, except that the Skorokhod embedding is ex-
plicitly used to obtain a rate of convergence via control on the tail-behavior
of the stopping times. The paper concludes with a remark on the limita-
tions of the technique as far as getting the best possible rate is concerned.

1. Introduction. Suppose that there are given U,,, U,,, - - -, U,, ordered obser-
vations from a uniform distribution on (0,1). Set U,, =0, U,,,,, = 1 and let
F,™ be a version of the inverse of the empirical distribution function of the
U;,’s defined by

(11) Fn_l(t) = U(i—l)n’
=D+ )=t <jln+1);j=1,2,---,(n+1).
=1, t=1.

Our purpose is to consider rates of convergence for the asymptotic normality
of statistics, appropriately normalized, of the form

(1.2) T,=n"'3", C, HX;,

where the C;,’s are specified constants, H is a real valued Borel measurable
function on the real line and X, X,,, - - -, X,, are the order statistics of a sample
of size n from a continuous distribution F. It is convenient to represent T, as

(1.3) T, = G HET (O] dva(D) 5

where £ is the composition of H with F~*i.e. h(t) = H[F~'(t)], and v, is a discrete
signed measure defined by

(1.4) v,[j/(n + 1)] = n1C;, j=1,2, -, n.

If v is a signed measure we denote its total variation by |v|. Thatis |v| = v+ 4 v~
where vt, v~ are the components appearing in the Jordan-Hahn decomposition
of v. Pyke in [2] notes that “in most applications the sequence of measure v,
converges suitably to a finite Lebesgue Stieltjes signed measure v in such a way
as to allow one to replace v, by the limiting measure v.” Initially then, we
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consider not T, but the normalized statistic

(1.5) Vi = nt S{LF, (0] — A(D)} du(t)
= o 4u(0)D,(1) du(2)
where
h(F,~\(t)) — h(t
(1.6) A(t) = (;n_f(g = t() , 0<r<1
and
(1.7) D, (t) = n¥(F,7'(t) — 1), 01,

The method depends on using the Skorokhod embedding theorem as in
Rosenkrantz [4] to get a speed for the convergence to zero in probability of the
maximum distance between a version of the process D, and a tied down Wiener
process W (t) defined on a common probability space. In Section 2 preliminary
results for a special version of D, are established in Lemmas 2.1, 2.2 and 2.3.
The results on rates are given in Section 3. Theorem 3.1 applies to the statistic
V,. while Theorem 3.2 gives a result for 7, in the case that the weights are
given by a “scoring” function. Section 4 is a comment on the “right” rate and
the limitations of the method used.

2. Preliminary results. For any two functions x(+) and y(.) on [0, 1] let

2.1) d(x, y) = sup (|x(t) — O 0 < £ < 1).
The rate of convergence will depend on the choice of a nonnegative sequence
&, &, - - - decreasing to zero for which P(d(D,, W) = ¢,) > 0,asn— oo, at a

speed which can be determined. In Section 4 it is shown that a necessary condi-
tion on ¢, is that

(2.2) lim, . e nt = oo .

To get a version of D, for which P(d(D,, W) = ¢,) tends to zero for a suitable
choice of ¢, we use the Skorokhod embedding.

Let Y, = >3%_, X;, where X}, X,, - - . is a sequence ofindepéndent, identically
distributed random variables with
P(X; = x) =exp(—x), x=0.

It is well known (see e.g. [1] page 285) that the random vectors (U,,, U,,, - - -, U,,)
and (Y}/Y,.,, V,/Y, ., -+, Y,/Y,,,) have the same distribution. If S, () is the
“random broken line” defined by
(2.3) Sunl) = (Y, = DI+ 1)}, jln+ 1) S 1< (G + Djin+ 1)
= [Yos — (1 + D)2 + D, t=1
where j=0,1,2, ..., nand Z, = 0, then
3 1)}
@4 Dy = TOE (s, (1) = 18,,(1)) + men(®) — 1)

n+1
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where =~ means that the two processes have the same distribution and e, , () =
(n + 1)7(n + 1)1].

There exists a probability space with a Brownian motion W(¢) and a sequence
73 Ty + - - Of nonnegative, independent and identically distributed random vari-
ables with the following properties:

(2.5) (a) the sequence {(Y, — k)/nt}, k = 1 is distributed as the sequence

{W(Z5=1i/m}-
(b) E(r) =1, Elr,|r < 4T(NE(X, — 1), r = 1.

D, can be represented on the same space as W(¢) since

4 1)t - -
2.6 D,(f) = mn + Spa(t) — 18,,1(1 beua(t) — ¢
(2.6) (1) w((n + 1) S Tj)( wia(?) :n+l( )) + n¥(e, () )
where S, ,,(¢) is defined in (2.3) but with W(3}i_,7,/n+ 1) replacing (Y, —j)/(n+1)}
there.
Rosenkrantz [4] showed that for a version of D, almost like that in (2.6)

(2.7) P(d(D,, W,) = 12(log njnt) = O(nY) ,

where W(t) = W(t) — tW(1). Slight modifications to the methods in [4] will
yield (2.7) for D, exactly as in (2.6). However, this result can be improved if
in place of the estimate (27) in Rosenkrantz [3] one uses

(2.8) P(Max,gigniyy | L5 (t; — Dl = (1 + 1)t logn) = O(n7") .

This gives in place of Lemma 6 of [3], with ¢, = 2(log »)n~* and 4, = n~* log n,
(2.9) P(SUPygyzt | Woia(t) — Spn(D)] Z €,) = O(n7) ,

where

Won) = W(jlin + 1)), jln+ 1) =t <G+ Din+1)
= W(l) s t=1.
Lemma 8 of [4] can now be sharpened in an obvious way to get

LeEMMA 2.1. There exists a probability space with a Brownian motion W(t) and
Ty, Ty + + + Satisfying (2.5) so that for D, as in (2.6)

(2.10) P(d(D,, W,) = 12(log m)n~t) = O(n~*) .

Proor. This has been indicated above, apart from (2.8) which is established
by a reasonably straightforward truncation argument which we will not give
here.

We require two additional preliminary results.

LEMMA 2.2, P(sup,.,, |D.(?)] = 12(log n)t) = O(n™}).

Proor. From (2.4) it follows that,
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P(Supys,<; [Du(f)] = 12(log n)?)

= P(SUPogizi [Su(t) — 1Suu(1)] = 12(log m)tY, . /(n + 1))

(2.11) = P(SUPygig1 [Spia(t) — 88p4a(1)] = 12(log m¥(1 — a,,)}
+ P{|Yos — (n+ 1) = (n + Da,}

=P," 4+ P,®, say.
Choose a, = 3(logn)}/(n + 1)}. Then by Lemma 4(i) of [4] it follows imme-
diately that
(2.12) P,® = O(nt).
Since for sufficiently large n, (1 — @,) = £ it follows that

Pn(l) é P{Supost§1 ISn+1(t) - tS?l+l(1)| ; 8(1°g n)i}
< P{max,guz, | D5- (X; — 1)/(n + 1)} = 4(log n)}}

(2.13) < 2P(|Y,,, — (n + 1) Z 4[(n + 1) log ]t — (2(n + 1))
<2P{|Y, . —(rn+ 1) = (n+ Da,} for large enough n,
=0, by Lemma 4(i) of [4].

The result follows from (2.11), (2.12) and (2.13).
LemMA 2.3. Forsome 0 < 2 < 1land0 < a < 4, let

(2.14) a, = 12(1 — 2)~'(log n/n)}
and
(2.15) gu(t) = 7, 0<r<4}
=gl — 1), tst=1
For any constant C > 0,
(2.16) P(SUPogisa, (IWo(D)l/9.(1) = C(log n)lt+eiPn=el%) = O(n™") .
Proor.

P{|W(t)| = C(log n)*/*+=p==i?q (f) for some 0 < t < a,}

< P{| w(t)| = g(log n)diteliy=elig (1) for some 0 <t < an}

+ P 2 S (log nypreern-era, i
= P, 4 P, say.
Let C, = $C(log m)*'*+**n=*%.  Then
(2.17) P,V < 2P{W(f) = C,t* forsome 0 < t < a,}.

Let r be a real number between 0 and 1 and let k(a,) denote the largest integer
k such that r* = «,. Then
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P <2 Fpnr, PIMAX,kiigycne W(t) 2 C,rkt0t-)
(2.18) = 2 Ylizkia, Pimaxg o W(H) =2 C,r#+04-o}
=4 Dizkta,y PIW(1) = C,ritvima-tin
= [427) 7 C,] Dazriayt™ 40 exp {—4(C, 2 e}

The last sum is bounded by the following integral,

(219)  [4QR7)HC,] §5iayy o Y exp {—H(C 2 et ) dx

Make the change of variable y = f(x) where

(2.20) f(x) = C etz

A routine calculation transforms (2.17) into

(2.21) 4Q2n)7* §5, yhexp (—y) Ay,

where

(2.22) B. = flk@0,) — 11 = (logn)} for large enough ».

It is clear then that (2.21), and hence P,", is O(n~"). P,® is easily estimated
to be O(n™).

3. Rates of convergence. For 0 < 1 < 1 define V,(4) by
(3. Va(d) = nt S oo (H[F, 7 ()] — h()} du(?)
with a, = 12(1 — 2)~'(log n/n)t. Let G,(4; x) denote the distribution function
of V,(2). That is

G, (4 %) = P(S,() < %).
Denote by ® the standard normal distribution function. Let
g./(1) = {1(1 — }4.(1).-
Our first result is

TueoREM 3.1. Suppose h'(t) exists on (0, 1) and that for some 0 < a < % and
0 < 2 < 1 the following conditions are satisfied.

(3.2) §o [H'(D)]q.(1) dv| < oo .
(3.3) () — K(t)| < K|t — 1| fort, tin [, 1 — a1 —1)],
0<t< 1,

where K is a nonnegative function, non-increasing on [0, §], with K(t) = K(1 — 1)
and

(3.4) s Ki(0)g.' (1) dy| < oo,
where
(3.5) K,(t) = K(41) , 0<et=sd

= K[A(1 — )], <1,
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Then
(3.6) MAX e, [Go(25 %) — O(x/0)] = Of(log n)t/s+eitp=ei2)
where o is defined by
3.7 o = (G SEH (O (s)s(1 — 1) du(s) du(t) .
Proor. Let b, = C(log n)**+**n=2/* where
C = 36 max (§3 K ())q.(t) d)v], §} Ky(1)g,(t) d]s]) -
The first step in the proof is to show that
(3.8) P(V,(2) — SHOW (1) dv| = b,) = O(n) .
The left-hand side of (3.8) is bounded above by P,™ + P, + P, where
P, = P{d(D,, W)(a,) ¥+ §i |4, — K (1)lg.(0) dIv| = b,[3},
(3.9) P2 = P{§i* (A, — K)W,d| = b,[3)
P, @ = Pld, (I, D, Wo) §s | (0)|g.(1) dv| = b,/3}
where I, is the indicator function of the interval [a,, 1 — «a,], and
(3.10) d, (% ) = sup (|x(t) — Y(O)|/q.(1:0 S t < 1)

Let B, be the event that sup |F,~'(f) — ¢| < 12(log n/n)t. Then on B, for all ¢
in [a,, 1 — a,],

(3.11) |4.(1) — ()| = K,()|F, (1) — 1| < Ky(1)12(log n/n)t
so that, by Lemma 2.2,
(3.12) P,® < P{d(D,, W,) = 12(log n)n=*} + O(n~%)
= O(n*) by Lemma 2.1.

Similarly, by intersecting the event of P, with the event B, one obtains
P, < P{12(log nfn)}(a,)" 7§} K(t) Wi(1)*== dv| = b,/3} + O(n~1)
(3.13) < P{I§i K WH)r—=dv| = (log n)l} + O(n)
= O0(nt)
since by condition (3.4) §} K (¢) W(£)#*~*dv is a well-defined normal random vari-
able with zero mean. Now
P,® < P{d(D,, W,) = 12(log ny**+*I*n=2*q (a,)}
+ P{{W(5)| = Cq.(t)b, forsome 0< < a,}
(3.14) = P{d(D,, W,) = 12(log n)n~*} + O(n™"), by Lemma 2.3
= 0(n¥), by Lemma 2.1,
Hence (3.8) holds. The limiting random variable §jA'(f) W (¢) dv(t) is clearly

normal with mean 0 and variance ¢° given by (3.7). Now

(3.15) |D(x,/0) — D(x,/0)] < (2ma?)"Hx, — X,
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and this together with (3.8) yields

(3.16) D(x/0) — r(n) < G,(% %) < D(x[o) + r(n)
where
(3.17) r(n) = O(n~%) + (2ma®)~tb,

— 0[(10g n)3/4+a/2n—a/2] .

The authors are indebted to one of the referees for pointing out that the “right”
exponent of ¢ in the function ¢,'(f) is 3 — & rather than the authors’ original
1 — a. Also the idea of the “shifted” function K is due to Shorack in [5].

In some applications the weights are given by C;, = J(jin + 1), 1 <j < n,
n > 1, for some Borel measurable function J on (0, 1). Let G,(x) be the
distribution function of the normalized statistic n¥(7, — p,) where for some
o<k,

(3.18) Mo = Vu “nh()J(2) dt .

THEOREM 3.2. Suppose that for some 0 < a < L and 0 < 2 < 1 the conditions
of Theorem 3.1 hold with v defined by

(3.19) v((a, b]) = §2 J(t) dt .

If in addition there exist nonnegative functions h and J, increasing on [, 1] and
symmetric about } such that |h(t)| < h(t) a.s. |v| and

IJ(tl) - J(tz)l § jz(t)ltl - t2| for Lyt in ['Zt’ 1 — '2(1 - t)]

and

(3.20) §8 (D[ — D]t dt < oo
smJO[H(1 — 1]t dt < o

then

(3.21) MaxX ., e |G,(%) — P(x/0)| = O(n=*/*(log m)¥/t+ai2) .

Proor.

(3.22) ni(T, — p,) = S,(3) + R,

where

(3.23) R, = nt §i 5 BE,7(0)][(n + 1)/nd () — J(2)] dt .

Let b, be as in the proof of Theorem 2. Then
P{InX(T, — 1) — SsH(O)Wy(1)J() di| = 2b,)
(3.24) = P{IS.(A) — i H()Wy(0)J(1) dt| = b,} + P{|R,| = b,}
= O[n~*/*(log n)**+2/*] + P{|R,| = b,}, by Theorem 3.1.

It is now a fairly straightforward matter to see that the additional conditions
in the hypothesis of the theorem imply
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(3.25) P(|R,| = b,) = O(n7¥).

The theorem follows from (3.24) and (3.25).
If h = [(1 — f)]"and dv = J = [#(1 — 1)]"***** then withh = hand J = J',
K = K" the conditions of Theorem (3.2) hold.

4. The “right” rate. In general the rate of convergence will depend on the
weight function. However, one may conjecture that at least in some situations
the “right” rate is n~¢. Our methods yield a rate n~* when the conditions of
Theorems 3.1 and 3.2 are satisfied for « = 1. This will be the case, for example,
when the extreme order statistics are given zero weight; that is, for some 0 <
0 < %, v((0, 1 — d)) = 0. Moreover, n~t is the largest possible rate that can be
obtained by these methods. This is so because the rate is bounded by the sequence
of constants ¢, for which P(d(D,, W,) = ¢,) — 0 for any constant ¢ > 0
(4.1) lim inf,_, P(d(D,, Wy) = en %) > 0.

¢

To show that (4.1) holds it is sufficient to establish the corresponding result for
S, and W. Using the notation of Rosenkrantz [3] let

Z, = i (T, — Hin
and B, denote the event:

B, = {maxlé,cén

o(E 2) - w(E) 2]

n
and note B, = B,, U B,, where
B, = B, N {max,_,., |Z,.] < d,}
and
B,, = B, N {max,_,., |Z,.| > 9,}
where d, > 0 is a sequence whose dependence on n will be specified later. Now
P((S,, W) = ent) = P(B,)
(4.2) = P(B,,)
> P(S,(1) — W(1) = ent, Z,, < —3,)
= {=0 POW(1 + 1) — W(1) = entZ,, = )F,(d),
where F,(t) = P(Z,, < t). Use thestrong Markov property for Brownian motion
to write the right-hand side of (4.2) as
§2i P(W(1 4 1) — W(1) = en™H)F, (dr)
(4.3) = (20)F §200 §5e oy € dSF, ()

2p—1%
> (r) g e R (2, < 1) as
R}

for 6, chosen so that e?n7%/5, — oo and n large enough that ¢*2~%/d, > C, where
C is an arbitrary constant. By the central limit theorem,
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eln~}
(4.4) P<z,,,, -2 >—> D(—efrs?) ,
where y? is the variance of r,. By the dominated convergence theorem the right-
hand side of (4.3) tends as n — co to

(4.4) (27)~% (§ e~ 2D(—e*/ys*) ds > 0 .
It follows from (4.2), (4.3) and (4.4) that
(4.5) lim inf,_, P(d(S,, W) = en~t) = (2r)~t § e=*"*®(—¢*/yS?) ds

where the right side of (4.5) is strictly greater than zero.
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